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1. INTRODUCTION
The ability to accurately and efficiently model multilay-
ered diffraction-dominated optics has numerous applica-
tions, e.g., modeling of integrated transmission optics and
the design and analysis of Bragg mirrors and integrated
cavities. Such methods would also permit the modeling
of random variations in design due to manufacturing limi-
tations as well as serve as fast forward solvers in inver-
sion as part of a quality control process.

For binary periodic structures the rigorous coupled-
wave analysis has been widely used to model such optical
elements during the last decade.1 However, the need to
analyze structures with aperiodic nonbinary features of
finite extent and beam illumination requires that alterna-
tives be sought. This has led to the development of sev-
eral alternative approaches, e.g., finite-element,2 bound-
ary element,3 finite-difference time-domain,4 and spectral
collocation.5–7 The latter two methods both compute a
direct solution of the time-domain vectorial Maxwell
equations and are very general, as they are applicable to
a wide variety of geometries and physical settings. As
the need to model problems of realistic size and complex-
ity becomes more pressing, the memory and computa-
tional time requirements of such direct volume methods
quickly become a limiting factor not only for the design
process but also for the analyses of particular structures.

In this paper we take a different approach, building on
the boundary variation method.8–10 This method is
based on the observation that solutions to electromag-
netic diffraction by a periodic structure depend analyti-

cally on a variation of the interface. In other words, dif-
fraction from a smooth grating can be determined from
knowledge of reflection and refraction at a plane inter-
face. With this result, fast and accurate high-order per-
turbation schemes for finite-size perturbations have been
developed for modeling of two- and three-dimensional me-
tallic and transmission gratings8–10 illuminated by plane
waves. These methods were subsequently extended to
include problems illuminated by guided waves11,12 and
verified extensively by comparisons with direct high-order
solution of Maxwell equations.

We continue the development of these methods by dem-
onstrating their use in an iterative approach to accurately
and efficiently model multilayered optics, e.g., transmis-
sion optics, where it is essential to accurately account for
the internal reflections. To make this feasible, we dis-
cuss in some detail the implementation, which relies on
properties of the scattering process to make it efficient.
The proposed algorithm is shown to perform well, and the
results agree very well with directly computed reference
solutions, albeit obtained at a dramatically reduced com-
putational cost.

What remains of this paper is organized as follows. In
Section 2 we discuss the basic setup and the essential de-
tails of the formulation. This sets the stage for Section 3,
where we summarize the boundary variation method,
first for a single interface and subsequently for the gen-
eral multiple-interface problem. Key elements of an effi-
cient implementation are also discussed here. In Section
4 we offer a number of test cases to illustrate the effi-
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ciency and capability of the proposed approach, and Sec-
tion 5 concludes with a few remarks and outlines future
work.

2. PROBLEM SETUP AND MODEL
As illustrated in Fig. 1, we consider a two-dimensional
situation in which a monochromatic plane wave

! Einc!x, t "
Hinc!x, t " " ! ! AE

AH
" exp#i!kinc – x " $t "%,

propagating in the homogeneous region &0, impinges on a
structure of multilayered nonmagnetic homogeneous re-
gions &1,...,&N, separated by the smooth periodic inter-
faces '1,...,'N, described by the functions f 1(x),...,f N(x)
with periods of length L1,...,LN, respectively. For each
region & j we have the associated permittivities ( j. Fur-
thermore, we have introduced the complex amplitudes AE
and AH for the electric and magnetic fields, respectively,
while kinc signifies the wavevector of the incoming field
restricted to propagate in the (x, y) plane, i.e., kinc

! (kx
inc , ky

inc). Recall that

kinc !
2)

*v

!(0k̂inc, $ ! 2)
cv

*v
.

Without loss of generality we can normalize length and
time such that the vacuum wavelength is *v ! 1 and the
vacuum speed of light is cv ! 1.

The illumination of the structure generates the fields
(E j, H j) in the region & j for all j ! +0, 1,...,N,. These
fields satisfy the time-harmonic Maxwell equations

- # E j ! i$H j, - # H j ! "i$( jE j

under the constraint that the fields are solenoidal, i.e.,

- • E j ! - • H j ! 0, $j ! +0, 1,...,N,.

In &0 the total field is given as (Einc, Hinc) % (E0, H0);
i.e., in this region (E0, H0) represents the scattered field,
and (E j, H j) signifies the total fields elsewhere.

The fields in the homogeneous regions & j"1 and & j are
connected through the boundary conditions along ' j for
all j ! +1,...,N,. In particular, along the interface ' j, en-
dowed with an outward-pointing normal vector n̂ j, sepa-
rating the two dielectric regions & j"1 and & j, continuity
of the tangential field components requires that

n̂ j # ! E j"1 % . j"1,0Einc

H j"1 % . j"1,0Hinc" ! n̂j # ! E j

H j " ,

where . i, j is the Kronecker delta. In the special case
where ' j is assumed to be a perfect conductor, this condi-
tion degenerates to a Dirichlet condition on the electric
field as

n̂ j # E j"1 ! "n̂ j # . j"1,0Einc.

When one is solving the Maxwell equations, it is often ad-
vantageous to express the boundary condition on H j

through the condition on E j and the equations them-
selves as a Neumann condition

n̂ j # - # !H j"1 % . j"1,0Hinc"

! "n̂ j • -!H j"1 % . j"1,0Hinc"

! "
/!H j"1 % . j"1,0Hinc"

/n̂ j
! 0

along the perfectly conducting interface ' j.
To simplify matters further, we restrict ourselves to

problems where & j can be considered homogeneous and
lossless and where the incoming fields are two dimen-
sional and either TE or TM polarized. This implies that
the local solutions to the scattering/penetration problems
satisfy the homogeneous Helmholtz equation

0uj % #kj#2uj ! 0, j ! 0,...,N, (1)

where uj ! Ez
j in the case of TE-polarized illumination

and uj ! Hz
j for a TM-polarized incoming wave. Fur-

thermore, #kj# ! 2)!( j represents the magnitude of the
local wave vector under the normalization discussed
above.

This system of Helmholtz equations [Eq. (1)], must be
solved subject to the conditions that

uj"1(x, f j!x ") " uj(x, f j!x ") ! ". j"1,0u inc(x, f j!x "),
(2)

/

/n̂j
uj"1(x, f j!x ") " Cj

/

/n̂j
uj(x, f j!x ")

! "
/

/n̂j
. j"1,0u inc(x, f j!x ")

(3)
at a general dielectric interface. The constant Cj takes
the values

Cj ! $ 1, TE polarization

( j"1/( j, TM polarization
.

In the case where ' j represents a perfectly conducting ob-
ject, the conditions are different for the two polarizations;
i.e., we have a Dirichlet condition in the case of a TE-
polarized wave, given by

uj"1(x, f j!x ") ! ". j"1,0 Ez
inc(x, f j!x "),

while we recover a Neumann condition on the tangential
magnetic field as

Fig. 1. Generic setup for scattering by a problem with multiple
interfaces.

758 J. Opt. Soc. Am. A/Vol. 21, No. 5 /May 2004 Wilcox et al.



/

/n̂j
uj"1(x, f j!x ") ! "

/

/n̂j
. j"1,0Hz

inc(x, f j!x ")

along the metallic interface in the case where the illumi-
nating wave is TM polarized.

To complete the specification of the problem, we require
that the solutions u0 and uN be bounded at infinity and
that the solutions consist of purely outgoing waves. The
means by which we enforce these conditions are closely
related to the computational approach chosen to solve the
above system of coupled Helmholtz equations.

3. BOUNDARY VARIATION METHOD
As we solve the general multiple-interface problem
through a sequence of single-interface problems, we begin
by discussing the single-interface scheme in detail and
subsequently consider the extension to the general case.

A. Single-Interface Scheme
Let us assume that we only have a single interface ',
separating the two homogeneous regions &% ! &0 and
&" ! &1, illuminated by a two-dimensional TE- or TM-
polarized wave. We take the amplitude of the illuminat-
ing TE or TM wave to be 1.

The interface ' is assumed to be L-periodic along x and
described by f(x, L). Since the incident wave is a plane
wave, the fields u&(x) are endowed with a similar period-
icity, i.e.,

u&!x % L, y " ! exp!ikx
incL "u&!x, y ".

Following Ref. 13, we shall fix the notation by introducing

K !
2)

L
, 1n ! kx

inc % nK, 1n
2 % !2n

&"2 ! #k&#2.

Here K simply reflects the wave number associated with
the periodicity, 1n represents the Bragg condition for lat-
tice refraction/reflection, while the last condition ex-
presses energy conservation. To determine 2n

& in accor-
dance with the orientation of the problem (see Fig. 1), we
shall use the notation that for the propagating waves 2n

&

3 0 as the incoming wave propagates in the negative y
direction. To ensure that the waves are bounded at in-
finity, we let Im(2n

&) ' 0 for the evanescent waves.
Clearly there can be only a finite number of propagating
modes since, for n sufficiently large, 2n

& becomes purely
imaginary.

Away from the interface ', we now express the solution
u&(x, y) as a Rayleigh expansion:

u&!x, y " ! 4
n!"5

5

Bn
& exp#i!1nx ( 2n

&y "%.

Conservation of energy implies that

4
n!6%

2n
%#Bn

%#2 % C0 4
n!6"

2n
"#Bn

"#2 ! ky
inc ,

where 6& represent the subset of 2n
& corresponding to the

propagating waves; i.e., 2n
& 3 0 is real. For purely me-

tallic scattering the second part of the sum drops out.

In this setting the unknowns are the Rayleigh coeffi-
cients Bn

& , which depend on the profile f(x, L). We in-
troduce a new profile,

f.!x " ! .f!x, L ";

i.e., . ! 0 corresponds to a flat horizontal interface, and
. ! 1 represents the profile of interest.

The heart of the boundary variation method8,9 is the
assumption that the Rayleigh coefficients Bn

&(.) can be
expressed as a Taylor series in .,

Bn
&!." ! 4

k!0

5 1

k!

dkBn
&!."

d. k %
.!0

. k ! 4
k!0

5

dk,n. k;

i.e., we assume that Bn
& , and hence u&, are analytic in

the boundary variation .. The validity of this is by no
means obvious but has nevertheless been established
rigorously.14

To illustrate the way by which one can obtain dk,n , we
consider the simplest case in which &" is a perfectly con-
ducting metallic object illuminated by a TE-polarized
plane wave, i.e., the boundary condition is

u%(x, f.!x ") ! "exp#ikx
incx % iky

inc.f!x, L "%.

From the Rayleigh expansion itself, we have

1

k!

/ku%

/. k %
.!0

! 4
n!"5

5

dk,n exp#i!1nx " 2n
%y "%. (4)

We can, however, using the boundary condition, also
evaluate the variation of u% with respect to . at y ! 0 as

1

r!

/ru%

/. r %
y,.!0

! "!iky
inc"r

f r

r!
exp!ikx

incx "

" 4
k!0

r"1 f r"k

!r " k "!

/r"k

/yr"k ! 1

k!

/ku%

/. k "
y,.!0

.

(5)

Let us introduce the Fourier expansion of the periodic in-
terface f(x, L), as well as powers of it, as

# f!x, L "%r

r!
! 4

l!"rF

rF

Cr,l exp!iKlx ". (6)

Using Eq. (4) to evaluate the y derivative of
(k!)"1(/ku%//. k), we can, by combining Eqs. (4)–(6), re-
cover an explicit forward recurrence for the unknown ex-
pansion coefficients dk,n of the Rayleigh coefficients in the
form

dk,n ! "!iky
inc"kCk,n

" 4
r!0

k"1

4
q!max#"rF,n"!k"r "F%

min#rF,n%!k"r "F%

Ck"r,n"q!"i2q"k"rdr,q .

Hence, given all expansion coefficients ds,t and Cs,t for s
' k and "sF 3 t 3 sF, we can recover all expansion co-
efficients for s ! k by forward recurrence.

Albeit of a more complicated form, similar recurrences
can be derived for TM-polarized illumination8 as well as
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for TE- and TM-polarized illumination of a general dielec-
tric interface.9 Recurrences for illumination by guided
waves are also known.11,12

Although this yields an approach for computing the
Taylor expansion of the Rayleigh coefficients,

Bn!." ! 4
k!0

D

dk,n. k,

it is generally not an easy matter to evaluate this expan-
sion outside its circle of convergence. To partially over-
come this, we express the Taylor series by its Padé ap-
proximant as

#L/M% !
a0 % a1. % ¯ % aL. L

1 % b1. % ¯ % bM. M
,

where the coefficients are found with standard means by
requiring that its Taylor series be equivalent to the Taylor
series Bn(.) up to order M % L % 1 3 D. It is well-
known that Padé approximations have remarkably better
convergence properties than Taylor series,15 and their use
provides adequate convergence for the present investiga-
tion.

With this in place we can compute the Rayleigh coeffi-
cients of the global solution u&(x, y) at different angles of
incidence, controlled by kinc, using only knowledge of the
Fourier representation of the interface '.

B. Multiple-Interface Scheme
Exploiting the linearity of the Helmholtz equation and
considering a geometrical-optics series, we will use the
single-interface scheme repeatedly to form the scheme for
multiple interfaces. The approximate solution for the
single-interface case is given as a plane- and evanescent-
wave expansion:

u&!x, y " ! 4
n!"p&"Ee

q&%Ee

Bn
& exp#i!1nx ( 2n

&y "%, (7)

where n ! +"p&,...,q&, is the set of waves for which 2n
&

3 0 is real and Ee is a nonnegative integer. The non-
propagating waves can be disregarded in the single-
interface case by setting Ee ! 0 if the focus is on the mod-
eling of the far field. For other applications requiring
detailed near-field information, these evanescent waves
could be included by setting Ee ) 0. This will include
the 2Ee dominating evanescent waves for each interface.

In the multiple-interface scheme the solution for the
first interface, '1 is computed first. This is a sum of
plane waves propagating away from the interface and
evanescent waves [Eq. (7)]. The plane waves traveling
away from the multilayer structure are not propagated
any further. However, the plane waves traveling down
into the multilayer structure are propagated to the next
interface by updating the phase by a factor that depends
on the diffraction order of the wave and the unperturbed
vertical distance between the interfaces. We do not
propagate the evanescent waves, thus disregarding opti-
cal tunneling. There is nothing in the method that pre-
vents us from propagating the evanescent waves, but for
our interest in transmission optics problems we have not

seen the need. For problems such as waveguide cou-
pling, where the accurate representation of the field in-
side the optics is of interest, propagation of the evanes-
cent waves may need to be investigated. The single-
interface boundary variation method is subsequently
used on each of these propagated waves at the new inter-
face. As this process continues, a set of plane and eva-
nescent waves in each region is computed, the sum of
which gives the approximate solution in that region.

By conservation of energy there must be a finite num-
ber of directions in which the plane waves can travel
within each region, i.e., the multiple-interface scheme
evokes the single-interface scheme only a finite number of
times. When the multiple-interface algorithm starts, the
single-interface scheme is called a finite number of times
for a wave of unit amplitude in all the possible plane-
wave directions to build an efficiency table. When the
single-interface scheme is needed, a lookup in the effi-
ciency table based on the direction of the incident wave
and the region that it lives in produces the efficiencies
and the directions of the refracted and reflected waves.
The amplitudes of the refracted and reflected waves are
found by multiplying the efficiencies by the amplitude of
the incident wave. Using the fact that there are a finite
number of possible waves, the method can group waves to
limit the computations. Subsection 3.C will make this
need apparent in order to render the approach computa-
tionally efficient.

C. Implementation
Let us first consider the example of a double-interface
structure (Fig. 2). The structure has a top interface '1,
which gives rise to three diffracted plane waves when il-
luminated. To keep this example simple, we take Ee
! 0, disregarding the evanescent waves. The second in-
terface '2 is taken to be planar for simplicity. With the

Fig. 2. Specific example to illustrate scheme for a problem with
two interfaces.
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incident plane wave Einc(x, t) and the top interface '1,
the single-interface boundary variation method is used to
compute the solution

E&!x, y " ! 4
n!"1

1

En
& ,

where

En
& ! Bn

& exp#i!1nx ( 2n
&y "%, $n ! +"1, 0, 1,.

We assume that the boundary variation method emits a
solution that is the summation of three plane waves for
the region &0 and three plane waves for the region &1.
To track the solutions, the implementation employs a so-
lution set Sn associated with each region &n. These are
initialized to the empty set for n ! +0, 1, 2,. The solu-
tions are added to their respective sets: S0

! S0 ! +En
%,n!"1

1 and S1 ! S1 ! +En
",n!"1

1 . The plane
waves +En

%,n!"1
1 travel away from the interface and re-

quire no further consideration before evaluation of the far
field. The remaining waves +En

",n!"1
1 are traveling to-

ward '2, and we propagate these waves by simply updat-
ing the phase. For the wave exp(i2"1

" d)E"1
" , we need to

solve the single-interface problem at '2. However, as '2

is a flat plane, we use Fresnel’s equations to compute ex-
actly the reflected and refracted waves, E"1,0

"% and E"1,0
"" ,

respectively. The waves are added to the solution sets, so
S1 ! S1 ! +E"1,0

"% , and S2 ! S2 ! +E"1,0
"" ,. The wave

E"1,0
"" is propagating in the negative y direction away from

the optical element and need not be considered further.
However, E"1,0

"% is traveling toward '1 and eventually in-
teracts with '1 from below; i.e., the interaction is com-
puted by using the single-interface algorithm with the
"f 1(x) profile. This process of collecting the solution
waves from the single-interface boundary condition and
propagating the waves in &1 is accounting for multiple in-
ternal reflections and is continued as long as needed.

For the general multilayer problem with N interfaces,
we initialize our method with the region &0 and the inci-
dent wave Einc by adding (Einc, &0) to the wave set W0.
Here W0 is the active set that contains the waves that
need to be propagated to the next interface. The super-
script on W represents the number of iterations, or
bounces, that the waves in the wave set have undergone.
Let Tttl be a positive integer that is the maximum number
of bounces that the calculation is permitted to take. All
of the solution sets are initialized to the empty set: S1

! ¯ ! SN ! 0/ . Also, let Dl ! 4 j!0
l dj, where dj is the

unperturbed thickness of the layer & j. With this nota-
tion we must choose d0 ! dN ! 0.

To initialize the efficiency table, we first note that in
any given layer the local Bragg condition is 1 ! kx

inc

% 4 j!1
N Kjmj , where Kj ! (2))/Lj and mj is an integer

for j ! 1,2,...,N. Also, for each region & j we have conser-
vation of energy:

12 % 22 ! #kj#2.

Recall that we propagate only the waves for which 2 is
real, i.e., there are a finite number of waves in each layer
and we can find all possible directions that a wave will be
traveling in each layer by using the Bragg conditions.
The single-interface boundary variation code can be run

for incident waves of unit magnitude for each of these pos-
sible directions in each layer, and the resulting efficien-
cies are stored in a separate hash table for each layer.
The key to the hash table is the direction of the incident
wave. In the case of an incident wave illumination of a
flat plane interface, the computations are simplified by
using Fresnel’s equations16 instead of the single-interface
boundary variation code.

Assume now that we are considering a wave set that
has undergone m bounces and is scheduled to undergo the
next bounce. First, set Wm%1 ! 0/ . For each element w
! (E, & l) from the set of active waves Wn, we have E
! A exp#i(1x % C2y)%, where C ! "1 if the wave is trav-
eling in the positive y direction and C ! 1 if the wave is
traveling in the negative y direction. Note that the wave
E is going to interact with interface f l*, where l*
! max(l, l % C). The wave E is propagated by updating
the phase through multiplication by exp(i2dl) and using
the single-interface method for the interface f l* % Dl*

with the initial wave E exp(i2dl). This yields the solution

u&!x, y " ! 4
n!"p&"Ee

q&%Ee

En
& ,

where

En
& ! Bn

& exp#i!1nx ( 2n
&y "%

$n ! +"Ee " p&, "Ee " p& % 1,...,q& % Ee,.

Each wave is added to a set corresponding to each layer,

i.e., Sl ! Sl ! +exp("iC2Dl*)En
%,n!"p%"Ee

q%%Ee and Sl%C

! Sl%C ! +exp("iC2Dl*)En
",n!"p""Ee

q"%Ee .
Next, we determine if we should add the newly com-

puted waves to the set Wm%1 of waves to be propagated in
the (m % 1)th bounce. If m ! Tttl, then the waves’
‘‘time to live’’ is up and none of the waves is added to
Wm%1. Alternatively, if a particular amplitude is below a
given threshold w7 , we can decide not to propagate this
wave any further. Furthermore, if l % C ! +1, 2,...,N,,
then the waves (+En

",n!"p"
q"

, &") are added to the set
Wm%1. If C 8 1 ∨ l 8 0, then the waves (+En

%,n!"p%
q%

,
&%) are added to the set Wm%1. Note that the evanes-
cent waves are not added to Wm%1. When waves are
added to the set Wm%1, it is first checked whether a wave
with the same direction and region is already in Wm%1.
If so, then the amplitude of the wave is added to the am-
plitude of the wave already in the set. If there is no wave
with the same direction in the same region, then the wave
is simply added to Wm%1. Owing to conservation of en-
ergy, there are only a maximum of P waves independent
of m in Wm%1. Without this accounting for multiple
waves at a similar direction of propagation, the number of
active waves would grow exponentially, rendering the
computational work prohibitive.

The end of bounce m is reached when all the waves in
Wm have been propagated and their children have been
added to Wm%1 according to the above restrictions. Note
that the computation stops when Wm%1 ! 0. To get the
approximate multilayer solution in the region & l, we sum
up the elements in Sl.
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It is possible to use the L2 difference in solutions of dif-
ferent Tttl’s at a few given y values near the interfaces to
evaluate the convergence as a measure of accuracy. In
each region & j, there is a solution set Sj that holds a fi-
nite number of waves, e.g., sj. We consider the error 7 in
energy by the relation for the scattering efficiencies:

7 ! 4
l!1

s0

el
0 %

(0

(N 4
l!1

sN

el
N " 1, (8)

where el
j ! 2 l

j#Bl
j#2/2 inc is the efficiency and Bl

j exp#i(1l
jx

% C l
j 2 l

j y)% is a wave in Sj. Note that S0 does not include
the incident wave and Cl

j ! "1, 1 denotes the direction in
which the wave is traveling.

It is worthwhile emphasizing that a small energy defi-
ciency 7 does not imply convergence to the correct solution
but simply checks self-consistency.

4. VERIFICATION AND CONVERGENCE
In the following we shall attempt to validate the accuracy
and general performance of the proposed scheme for sev-
eral different multilayer two-dimensional optical ele-
ments. When exact solutions are available, we shall
compare our results with exact solutions. However, for
more interesting cases, these are not available, and we
compare against independently verified highly accurate
solutions obtained with a spectral multidomain time-
domain code.5,6

A. Plane Interfaces
In the case where all interfaces are planar, the solution is
known in analytic form16 as

uj ! A1
j exp#i!11

j x " 21
j y "% % A2

j exp#i!12
j x % 22

j y "%

within each layer, assuming that the stack of layers is il-
luminated by a plane wave A exp#i(1x " 2y)%. The un-
known amplitudes are found by connecting the solutions

Fig. 3. (a) Problem setup for the test with one plane layer, (b) decay of error in field amplitudes as a function of internal reflections or
bounces.

Fig. 4. (a) Problem setup for the test with a stack of plane layers, (b) decay of error in field amplitudes as a function of internal reflec-
tions or bounces.

Fig. 5. Problem specification for a single layer with a shallow
curved interface.
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through the boundary conditions (2) and (3) with A1
0

! A2
N ! 0. For the wave directions we have 11

j ! 12
j

! 1, #1# % #21
j # ! #kj%1#, and #1# % #22

j # ! #kj#. This
forms a linear system, which can be solved, producing Al

j

for j ! 0,...,N and l ! 1, 2. We can then compare the
amplitude of the solution given by the exact solution, #Al

j#,
with the amplitude of the solution given by the multilayer
boundary variation scheme, #Bl

j#, for j ! 0,...,N and l
! 1, 2 as a function of bounces.

1. Thin Plate

For the first test we consider a normal TE wave of unit
amplitude illuminating a thin plate (see Fig. 3). We use
Fresnel’s equations to solve the single-interface problems
and take the wave amplitude threshold w7 ! 10"15; i.e.,
all waves are allowed to live for a maximum number of
bounces.

In Fig. 3 we see that the solution, or rather the ampli-
tudes, converges exponentially fast in the number of

Fig. 6. Ez computed at different heights y, with y ! 0 corresponding to the vertical position of the shallow curved interface: (a) y
! "3, (b) y ! "1, (c) y ! "0.5, (d) y ! 3. Illumination is TE polarized at normal incidence. Results are shown for a fixed number of
internal bounces and compared with a highly accurate spectral solution, illustrating the importance of accounting for the multiple in-
ternal reflections.

Table 1. Convergence of Scattering Efficiencies and Relation to the Threshold Value w"

Used in the Iterative Approach

w7 e0
% e1

% e2
% e0

" e1
" e2

" Total Efficiency "1

10"2 0.0175 0.0443 0.0032 0.7082 0.0814 0.0018 "1.30 # 10"3

10"4 0.0167 0.0458 0.0057 0.7108 0.0828 0.0019 "5.34 # 10"5

10"6 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 4.84 # 10"6

10"8 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 "1.64 # 10"8

10"10 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 "2.98 # 10"10

10"12 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 3.81 # 10"12

10"14 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 "1.54 # 10"14

10"16 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 "2.22 # 10"16

10"18 0.0167 0.0458 0.0057 0.7110 0.0828 0.0019 6.66 # 10"16
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bounces to the exact solution. When comparing the solu-
tions, we look at the error in complex amplitude of the
waves in the exact solution Al

j with the computed solution
Bl

j . As we increase the (maximum) number of bounces,
i.e., Tttl, beyond 22, the error remains constant. This is
because the wave amplitude threshold w7 is now fully re-
sponsible for terminating the waves.

2. Thin Plate Stack

A further test of accuracy is illustrated in Fig. 4, reflecting
a normal TE wave of unit amplitude illuminating four
thin plates stacked on top of each other. Again we use
Fresnel’s equations to solve the single-interface problems,
since all of the interfaces are planar, and we choose the
wave threshold to be w7 ! 10"15.

This problem provides a test of collecting the waves be-
ing propagated into the set Wm%1 into a finite number of
waves independent of number of bounces m. The work to
compute the solution increases linearly with the number
of bounces because of this collection process.

It is clear from Fig. 4 that there is exponentially fast
convergence to the exact solution as the number of inter-
nal reflections increases. We can compute down to ma-
chine precision with 90 bounces in less than two tenths of
a second on an average desktop computer. For bounces
greater than 90, the wave tolerance w7 determines when
the waves stop propagating.

B. Single Curved Interfaces
In the following we provide a few tests in which one in-
terface is curved while all others remain planar. For
simplicity, and supported by the general verifications in
the above, we just consider the double-interface case. All
results are compared with fully converged results ob-
tained with a high-order accurate full field solver.5,6

1. Shallow Single Curve

This problem consists of a normal TE wave of unit ampli-
tude illuminating a thin plate with one sinusoidal inter-
face and a flat bottom, as illustrated in Fig. 5. The

Fig. 7. Ez computed at different heights y, with y ! 0 corresponding to the vertical position of the shallow curved interface: (a) y
! "3, (b) y ! "1, (c) y ! "0.5, (d) y ! 3. Illumination is TE polarized at normal incidence. Results are shown for converged solu-
tions in terms of internal reflections and compared with a highly accurate spectral solution.

Fig. 8. Problem specification for a single layer with a deep
curved interface.
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single-interface interactions with the sinusoidal interface
'1 are calculated by using a [31/31] Padé approximant
and Ee ! 0. The interactions with '2 are calculated by
using Fresnel’s equations.

The height-to-period ratio of '1 is small (0.16), provid-
ing a simple test of the multilayer boundary variation
code. While the efficiency table is being built, the single-
interface boundary variation scheme is used eight times
to compute possible wave interactions with '1 and the
maximum error in the energy efficiency for the single-
interface cases is 1.33 # 10"15.

Table 1 shows that the energy conservation from the
single-interface scheme is kept as the number of bounces
increases, i.e., there does not appear to be severe prob-
lems of error accumulation. In this table we increased
the number of allowed internal bounces sufficiently to en-
sure that the wave tolerance w7 is the factor that controls
when the waves stop propagating.

To check the overall accuracy of the scheme, we illus-
trate in Figs. 6 and 7 the solutions obtained from the
multilayer code with results obtained in a different man-
ner. We see in Fig. 6 the importance of considering the
multiple internal reflections. In Fig. 7 we have increased
the number of internal reflections to ensure that waves

are propagated until their amplitude is below w7

! 10"15, yielding excellent agreement with the reference
solution.

As one could expect, the multilayered boundary varia-
tion approximation becomes more accurate as the dis-
tance from the structure increases. This is a conse-
quence of not including the evanescent waves that remain
in the reference solution. The excellent agreement of the
fields at different values of y confirms that the phases of
the fields are correct to a similar level of accuracy.

Fig. 9. Ez computed at different heights y, with y ! 0 corresponding to the vertical position of the deep curved interface: (a) y
! "3, (b) y ! "1.5, (c) y ! "0.5, (d) y ! 3. Illumination is TE polarized at normal incidence. Results are shown for converged so-
lutions in terms of internal reflections and compared with a highly accurate spectral solution. Ee ! 1 is a solution that includes the two
evanescent modes from each single-interface solve with the smallest #2#.

Fig. 10. Problem specification for a single layer with an inte-
grated lens.
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2. Deeper Single Curve

To further test the algorithm, we consider the case of a
TE-polarized wave illuminating a double-interface prob-
lem in which the top interface varies considerably more
than in the above case (see Fig. 8). In this case the
height-to-period ratio of '1 is 0.5. The single-interface
interactions with '1 are calculated by using a [32/32]
Padé approximant and Ee ! 0, leading to a maximum er-
ror in the efficiency for the single-interface cases of
O(10"7).

The total energy conservation is O(10"6). Thus, as in
the above simpler case, we find that the energy conserva-
tion of the multilayer boundary variation scheme is
largely controlled by the maximum error in the efficiency
for the single-interface cases.

In Fig. 9 we have increased the bounces enough so that
all waves are propagated until the amplitude is below
w7 ! 10"7. The agreement with the reference solution is
good and improves as one moves away from the structure.
Also in the figure we present a solution that includes the
two dominating evanescent modes from each single-
interface solve with the smallest #2#, and we denote this
case as Ee ! 1. These waves are not propagated but are
used in the solution. This provides a first-order correc-
tion, and we can see in Fig. 9(b), where y ! "1.5, that
this simple correction for the evanescent waves improves

the solution. The evanescent modes that are included
with Ee ) 1 are too small to change the plots given for
Ee ! 1, so they are not presented. From the Bragg con-
dition and energy conversation, we know that the amount
at which the evanescent waves get damped increases ex-
ponentially as the order increases. Not accounting for
the multiple reflections of the evanescent waves is the
source for the remaining error in Fig. 9(c), where we are
looking inside the layer.

C. Lens
As an example of a more general nonperiodic problem, we
consider a Gaussian lens being illuminated by a normal
TE wave of unit amplitude. The setup is illustrated in
Fig. 10. Here f 1(x) ! 0.5 exp("x2) for x ! ("7.5, 7.5%
and periodically extended. The periodicity of '1 is set
large enough so that its effect on the solution is small,
thus approximating a nonperiodic surface. For the Fou-
rier transform of '1, needed by the single-interface
boundary variation scheme, we use 33 modes, and the so-
lutions are calculated by using a [37, 37] Padé approxi-
mant with Ee ! 0. Since '2 is flat, Fresnel’s equations
are used to calculate the scattering and penetration.

The multilayer boundary variation solution in Fig. 11 is
for a sufficiently high number of internal reflections to en-
sure convergence, i.e., it is given for w7 ! 10"15. In this

Fig. 11. Ez computed at different heights y, with y ! 0 corresponding to the vertical position of the integrated lens: (a) y ! "2, (b)
y ! "1, (c) y ! 1, (d) y ! 3. Illumination is TE polarized at normal incidence. Results are shown for converged solutions in terms of
internal reflections and compared with a highly accurate spectral solution.
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case the error in efficiency is 0.8. However, the compari-
son with the direct solution reveals excellent agreement,
in particular away from the lens.

D. Double Curved Interfaces
As a final test to illustrate the versatility of the developed
scheme, we consider a TE wave of unit amplitude illumi-
nating a thin structure with two curved interfaces, illus-
trated in Fig. 12. In this case both '1 and '2 are sinu-
soidal, and a [31/31] Padé approximant with Ee ! 0 is

used to calculate the single-interface interactions. The
number of internal reflections is sufficiently high to en-
sure that all waves are propagated until their amplitude
is below w7 ! 10"15.

The results, shown in Fig. 12, show excellent agree-
ment between the multilayer boundary variation scheme
and the directly computed reference solution, in particu-
lar in the far-field region. The only exception is y
! "0.5. This can be attributed to the strong evanescent
waves produced by the two curved interfaces and the high
contrast. As we did in Section 2, we also include in Fig.
13 a solution that includes two evanescent modes from
each single-interface solve (Ee ! 1). In Fig. 13(b),
where y ! "1.5, we see that the correction for the eva-
nescent waves improves the solution substantially. Here
the error in efficiency is O(10"13).

E. Efficiency and Timings
Table 2 lists the efficiency table size, the number of
single-interface solves, and the approximate run times for
the nonplanar cases presented above. As we can see, the
time spent bouncing the waves is a small fraction of the
total run time in each case; in particular, a large fraction
of the computation time is spent in the preprocessing
stage. The preprocessing stage is where the single-

Fig. 12. Problem specification for a single layer with two curved
interfaces.

Fig. 13. Ez computed at different heights y, with y ! 0 corresponding to the vertical position of the slowly varying interface: (a) y
! "3, (b) y ! "1.5, (c) y ! "0.5, (d) y ! 3. Illumination is TE polarized at normal incidence. Results are shown for converged so-
lutions in terms of internal reflections and compared with a highly accurate spectral solution. Ee ! 1 is a solution that includes the two
evanescent modes from each single-interface solve with the smallest #2#.
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interface solutions are computed for waves in all direc-
tions supported by the problem. We also note that the
lens case (Fig. 10) takes longer than the rest for a couple
of reasons. The single-interface solutions are harder to
compute because the interface requires 33 Fourier modes
to be represented instead of three for the other cases.
Also, the larger period of the lens allows, through the
Bragg condition, more propagating modes, increasing the
workload. All times are approximate wall clock time for
the computations on an 800-MHz AMD Athlon processor.

5. CONCLUDING REMARKS
The main purpose of this work has been to develop an ef-
ficient and accurate computational approach to model
multilayered optical elements, with periodic profiles at
each interface separating layers of homogeneous nonmag-
netic magnetic materials. If the far field is of main inter-
est, aperiodic interfaces can be modeled by using periodic
interfaces and near-to-far-field transformations.11

At the heart of the scheme is a very efficient boundary
variation method for accurately solving the problem of re-
flection and refraction by a single interface, be it material
or metallic. The method exploits the linearity of the
Helmholtz equation, along with the Bragg condition, to
significantly reduce the amount of space and time needed
to compute the solutions consisting of numerous inter-
nally reflected waves. A detailed understanding of the
scattering processes allows us to collect the waves into a
finite set of active waves, limiting the otherwise exponen-
tially growing set of waves. Following a setup phase,
tens of thousands of internally reflected waves can subse-
quently be computed at very little additional cost.

In the cases presented here, the evanescent waves pro-
duced by the single-interface boundary variation scheme
are often disregarded, as we have focused on the solution
away from the grating structure. However, for other ap-
plications, one could include these in a way similar to that
used for propagating waves. Given that the kernel is the
single-interface scheme, the limitation is set by this; i.e.,
in double-precision arithmetic the height-to-period ratio
of the variations of the interfaces cannot exceed O(1)
without encountering numerical stability problems. Us-
ing extended precision can help this, although the cost
typically increases.

While these results offer the first step in the develop-
ment of a general high-order accurate method for the ef-
ficient modeling of multilayered diffractive optics, a num-
ber of important issues remain open. Straightforward
extensions include illumination by Gaussian beams, by
solving a sequence of problems subject to plane-wave illu-
mination, and the use of the threshold w7 to adaptively
control the work and the requested accuracy. Extensions
to the three-dimensional vectorial case is likewise
straightforward, following the past developments of ap-
propriate solutions for one interface.10,12
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