Multi-Dimensional Hybrid Fourier Continuation-WENO Solvers for
Conservation Laws

Khosro Shahbazi®*, Jan S. Hesthaven®, Xueyu Zhu®

® Mechanical Engineering, South Dakota School of Mines & Technology, 501 E. St. Joseph St., Rapid City, SD 57701, United
States

b Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, United States

Abstract

We introduce a multi-dimensional point-wise multi-domain hybrid Fourier-Continuation/WENO technique
(FC-WENO) that enables high-order and non-oscillatory solution of systems of nonlinear conservation laws,
and essentially dispersionless, spectral, solution away from discontinuities, as well as mild CFL constraints
for explicit time stepping schemes. The hybrid scheme conjugates the expensive, shock-capturing WENO
method in small regions containing discontinuities with the efficient FC method in the rest of the com-
putational domain, yielding a highly effective overall scheme for applications with a mix of discontinuities
and complex smooth structures. The smooth and discontinuous solution regions are distinguished using the
multi-resolution procedure of Harten [J. Comput. Phys. 115 (1994) 319-338]. We consider a WENO scheme
of formal order nine and a FC method of order five. The accuracy, stability and efficiency of the new hybrid
method for conservation laws are investigated for problems with both smooth and non-smooth solutions.
The Euler equations for gas dynamics are solved for the Mach 3 and Mach 1.25 shock wave interaction
with a small, plain, oblique entropy wave using the hybrid FC-WENO, the pure WENO and the hybrid
central difference-WENO (CD-WENO) schemes. We demonstrate considerable computational advantages
of the new FC-based method over the two alternatives. Moreover, in solving a challenging two-dimensional
Richtmyer-Meshkov instability (RMI), the hybrid solver results in seven-fold speedup over the pure WENO
scheme. Thanks to the multi-domain formulation of the solver, the scheme is straightforwardly implemented
on parallel processors using message passing interface as well as on Graphics Processing Units (GPUs) using
CUDA programming language. The performance of the solver on parallel CPUs yields almost perfect scaling,
illustrating the minimal communication requirements of the multi-domain strategy. For the same RMI test,
the hybrid computations on a single GPU, in double precision arithmetics, displays five- to six-fold speedup
over the hybrid computations on a single CPU. The relative speedup of the hybrid computation over the
WENO computations on GPUs is similar to that on CPUs, demonstrating the advantage of hybrid schemes
technique on both CPUs and GPUs.

Keywords: Fourier continuation Methods, high-order WENO methods, multi-resolution methods,
conservation laws, shock waves, parallel and many core computation

1. Introduction

Solutions of high-speed flow problems are often characterized by a challenging combination of sharp
gradients, discontinuities and regions of complex but smooth flow structures; examples of such situations
are provided by the well known shock-induced multi-material flow instabilities, mixing, and acoustic noise
generation by turbulent flows. To accurately capture all regimes in such complicated flow it is necessary
to account accurately for both sharp nonlinear discontinuities as well as complex smooth flow structures.
While it is well known that high-order accurate methods, e.g high-order finite difference methods or spectral
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methods, are well suited for the smooth elements of the solution, it is also well appreciated that such techniques
introduce oscillatory behavior near discontinuities [20, 21].

A well-known alternative for the solution of such flows is based on a high-order weighted essentially non-
oscillatory (WENO) finite difference method; in particular, high-order WENO algorithms have been used to
produce successful simulations of the Rayleigh-Taylor instability [24] and Richtmyer-Meshkov instability [25,
26] in two and three space dimensions. Finite volume version of the high-order WENO scheme have been used
in shock wave bubble interactions in three dimensions [36]. It is notable that although the formal high-order
accuracy of the WENO schemes is degraded near discontinuities and large solution gradients, the high-order
scheme do indeed achieve higher level of accuracy/resolution in a more computational efficient fashion as
demonstrated by recent investigations [24, 25, 39]. Recent research activities in extending and optimizing
WENO schemes to orders up to 16 [37, 38] may also be motivated by the computational efficiency of these
higher order schemes over their lower order counterparts.

Unfortunately, the WENO finite difference methods are generally computationally very expensive and
do not compare favorably with linear schemes such as finite difference or spectral methods. The reason
for this is at least two-fold. The WENO schemes are, on one hand, more expensive based on operation
counts per grid point, often by a constant factor of roughly ten in three dimensions. This is due to several
costly WENO operations: the characteristic decomposition of fluxes to control oscillations, the calculation of
nonlinear weights both for smooth and non-smooth flux contributions, and double operations for “positive”
and “negative” flux splits. Secondly, the WENO scheme requires a substantial and increasing number of grid
points to achieve a specific accuracy level as the solution frequency spectrum widens, or as spatial domains
are enlarged and larger physical simulation time are sought. This is due to the upwinding nature of the
WENO schemes essential for non-oscillatory capturing of discontinuities. In view of the complexity of three-
dimensional computations of complex high-speed flows, it is crucial to seek a more efficient alternative to
enable the ability to model complex problems and multi material scenarios.

We focus on problems in which the solution discontinuities are mainly local phenomena in both space and
time. This suggests that a hybrid scheme could advantageously be used whereby the “expensive” WENO
procedure is only used in parts of the space-time domain containing discontinuities, while a less costly, high-
order linear numerical method is employed for the portion of the domain containing complex but smooth
features. For problems with localized shocks and extended regions of mixing or acoustic noise propagation,
we would expect such an approach to yield a considerably faster algorithm.

The core of such a hybrid approach is the use of an efficient numerical method for smooth regions together
with an effective “smoothness-indicator” strategy to identify areas of smoothness and discontinuity. For the
former, a central difference (upwind-biased or unbiased) or a Chebyshev-based spectral methods are possible
choices that have been explored previously, e.g., in [10, 12] a hybridization of spectral Chebyshev and
WENO methods for conservation laws in one and two space dimensions is proposed and applied to a complex
simulation of early-stage two-dimensional Richtmyer-Meshkov instability while a hybrid central difference-
WENO scheme in one space dimension is presented in [11]. Both of these developments accurately identify
discontinuities using the multi-resolution algorithm of Harten [9], based on differences of the point-values of
a function and its high-order interpolated function on coarser grids [10, 12].

The advantage of the very high order Chebyshev spectral methods over the central difference methods lies
in the higher order of accuracy near the non-periodic boundaries and, perhaps of most importance, solutions
free of dispersion error (also known as pollution error). Absence of dispersion error is crucial for efficient
simulation of problems with a wide range of spatial and temporal scales including transitional and turbulent
flows [28].

As we shall discuss shortly, the hybrid scheme proposed here maintains these properties while overcoming
some severe restrictions imposed by the scheme based on Chebyshev polynomials. A particular consequence
of the use of the Chebyshev spectral method is the presence of grid points that cluster near the boundaries of
each such sub-domain, impacting the overall performance of the scheme in different ways. On one hand, the
WENO finite difference method is defined on an equidistant grid. Thus, the two grids in a Chebyshev-WENO
hybrid do not conform in any natural manner, implying that extra interpolation operations are required for
transfer of data at overlapping regions between adjacent domains with two different discretization schemes.
This also complicates the multi-resolution analysis. Furthermore, for explicit time integration strategies, a



hybrid Chebyshev-WENO method requires a much smaller (O(1/N?)) time step than a scheme based on an
equidistant grid due to the nature of the polynomial approximation, leading to a very stringent time-step
restriction that is particularly problematic if long time integration and/or very high accuracy is required.

In this work, extending the one-dimensional version of the hybrid approach [39] to two-dimensional prob-
lems, we propose an attractive alternative in which we hybridize the WENO method with a recently proposed
Fourier continuation (FC) method [1, 6, 7]. The FC approximation is based on a high-order periodic con-
tinuation of a (possibly non-periodic) function, yet being based on a Fourier method, the FC approximation
has almost no dispersion (pollution) error and, utilizing an equispaced grid, provides a simple and efficient
interface with WENO scheme and the multi-resolution analysis while allowing for an efficient temporal inte-
gration as compared to the Chebyshev-WENO scheme. At high resolution it furthermore allows for the use
of the Fast Fourier Transform, enabling a further acceleration.

The remainder of the paper is organized as follows. In Sec. 2 we review the Fourier continuation (FC)
method for the approximation of functions, and in Sec. 3 we discuss our multi-domain FC-WENO hybrid
method for two-dimensional conservation laws. This sets the stage for Sec. 4 where we present a variety of
numerical results for problems governed by the inviscid Burgers’ equation and the Euler equations. Among
other things, we demonstrate the accuracy of the FC method for the Burgers’ problems with smooth solutions
in both single-domain and multi-domain formulations, and we assess the overall efficiency of our method in
the context of challenging computational problems—including nonlinear systems of conservation laws with
discontinuous solutions. For Ritchmyer-Meshkov instability problem we demonstrate the speedup of the
hybrid scheme over the pure WENO scheme , and also show the performance of the solver on contemporary
parallel computers as well as on many core processing units exemplified by Graphic Processing Units (GPUs).
In Sec. 5 we offer a few remarks and suggested directions of future research.

2. The Point-wise Fourier continuation approximation

The point-wise, as opposed to cell-averaging, nature of the FC approximation considered here allows us
to compute approximations in multiple dimensions based on a sequence of one-dimensional approximations
along lines of points. Thus the one-dimensional FC approximation described in [39] directly applies and we
highlight the central elements of this approach below.

Given a (typically non-periodic) smooth function f defined over the interval (0,1) and with values of f
given at an N-point equi-spaced grid {xk}ggol C (0, 1) purely internal to the domain, the Fourier continuation
(extension) method seeks to produce, on the basis of {f (:vk)}kN:_Ol, a periodic function f expressed by a finite
number M of Fourier modes,

fa)y= > a5, (1)
jeg(M)

and defined over a larger domain (0,1 4+ d) in such a way that it matches closely the original function f

throughout the original interval (0,1). Here g(M) = {j € N|— M/2+1 < j < M/2} for M even and

gM)={jeN|—(M—-1)/2<j<(M-1)/2} for M odd. In general, N must be chosen larger than M due

to the intrinsic ill-conditioning of the resulting linear system; as shown in [2, 5], the least-squares solution

via singular value decomposition of the over-determined system

S ael I = f(ay,) Vk=0,---,N—1, (2)
JjEg(M)
for the coefficients a; leads to an effective Fourier Continuation strategy.

However, it is observed that a smooth and accurate continuation of f(x) does not necessarily require
the value of the function over the entire interval (0,1) and only the function values on small intervals near
the boundaries (boundary intervals) are sufficient. A continuation method based on this philosophy requires
finding a matching function h(x) defined over (1 — A, 1+ 2d 4+ A) with periodicity 2d + 2A as

ha)= Y aelasin), (3)

Jj€g(M)
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Figure 1: Continuation of f(z) = exp(xsin(16(z + 1))), « € (0,1), based on Eq. 5, the continuation interval d = 0.26 and
boundary interval size A = 0.06. In the lower diagram, the original function and its continuation are shown in solid and dotted
line, respectively; In the upper diagram, the matching function ﬁ(r) is shown, raised three units for better visibility. In the upper
diagram, the two solid line segments mark values of h(z) matching f(z) at the two boundary intervals (0, A) and (1 — A, 1).

h(x) matches the original function f(z), in the least squares sense, as

h(ze +1—A) = f(zr+1—A) (4a)

h(1+d+zr) = f(zk) (4b)

for a sufficiently large fine equi-spaced grid points 2, defined over (0,A). The Fourier continuation of f(x),
f(z), is then obtained as

fl@)=f(z) O0<z<l, (5a)
f)=h(z) 1<z<l+d. (5b)

Fig. 1 illustrates the basic idea behind the continuation and the matching function for a sample function.

As an alternative approach to decrease the impact of the ill-conditioning without incurring the high
O(N?) computational cost arising from the evaluation of the singular value decomposition [8], Bruno and
Lyon [6] proposed a different strategy based on the use of Gram polynomials [30]. Their approach, also
adopted here, uses the continuation of Gram polynomials to approximate the matching function h. For a
given approximation order the set of Gram polynomials are unique and thus their continuations can be carried
out in a preprocessing stage and used to approximate the periodic extension of any given function f via its
matching function % as detailed in [6, 39).

Remark 1. For our numerical examples we have taken the maximum Gram polynomial degree as p = 5,
the number of boundary points vy =p+ 1 =6, and d/A = 26/6.

It is worth emphasizing that extensive experimentation with higher values of p does not show significant
advantages for the class of problems considered in this work. This is mainly due to the limitations in accuracy
imposed by the WENO techniques for problems with discontinuous solutions. However, for problems with
large regions of smooth solution, improvements may be achieved by increasing this value ([1]).

Remark 2. It may seem counter intuitive that the high-order projection of a function into a polynomial
spaces defined by a set of equi-spaced grid points does not exhibit the Runge phenomenon as the approxima-
tion approaches the boundary. The explanation for this is that since the polynomial order is kept constant



— as the number of points per domains increases, the boundary interval shrinks and so does the Runge zone
in the complex plane. For details and rigorous proofs of related subjects, we refer to [3, 4].

Remark 3. 1t is interesting to note that, while the polynomial projection of the original function implies
a finite order of approximation of the method, the Fourier continuation method retains all the desirable
properties normally associated with a Fourier spectral method, e.g., a differential operator with spectrum
that scales linearly with the spatial resolution and, as we shall demonstrate in Sec. 4, no pollution error in
the sense that for a certain accuracy level, the required number of points per wave length remains constant
as the wave number of the solution increases.

3. Multi-domain Fourier-Continuation/WENO hybrid method

In the following we describe the four main elements of our multi-domain hybrid FC-WENO method for
solution of conservation laws: (1) use of the FC method for derivative computations for the smooth portions
of the solutions; (2) the WENO method for regions with steep gradients or discontinuous solutions; (3)
the smoothness indicator, which allows us to determine when to switch between the two techniques; (4) a
multi-domain formulation ensuring stable and non-oscillatory transfer of data between adjacent domains. For
the temporal discretization, we use a standard third-order total variation diminishing (TVD) Runge-Kutta
method [29].

3.1. FC method for conservation laws with smooth solutions

We consider smooth solutions to a two-dimensional nonlinear scalar conservation law of the form

Ou(t,x)) OF(u(t,x)) 0G(u(t,x))
T ar oy 0 (6)

defined on a two-dimensional spatial domain x = [z,y] € Q = [X7, X3] x [Y1, Y2] in the time interval [0, T],
subject to appropriate initial and boundary conditions. Given a set of equi-spaced grid points in each
direction, x, = [z, yx] defined as xp, = X1 + (k+1/2)L,/N, k =0,---N — 1, with L, = Xo — X3, and
yp =Y1+(k+1/2)Ly/N, k=0,--- N —1, with L, = Y5 — Y7 we seek uy(t,xx), an approximation to u(t, x),
that satisfies the equation in a collocation sense

Oup, (t,xx) n 8uh(t,xk) OF (up(t,xx)) n Aup, (t,xx) 8G(uh(t,xk))

- —0,-.- ,N—1.
ot Ox Ou Oy ou 0 Vk=0,---, (™)

Note that we have not expressed our equation in conservation form, since (7) leads to a more efficient
algorithm in the smooth-region.

The spatial derivatives in the z- and y-direction, auha(i’x’“) and a“hgg’x’“), are computed using the one-

dimensional Fourier continuation of the numerical solution along solution data lines in the x- and y-direction,
respectively. Specifically, using (2), we have the Fourier continuation expansion of uy, (¢, z, yx) and uyp, (¢, xg, y),

Uh(t733ayk) = Z d](t’yk)e(%ﬂr)? Vk = 07 e 7N - 17 (83.)
Jj€g(M)

un(tany) = > ay(tag)e T’ vk=0,. N1, (8b)
JjEg(M)

with L4y = Ly +d and Lgy, = L, + d. Thus the spatial derivatives are computed as

W: > ;Zj@j(t,yk)e(zdzm, Vk=0,---,N—1, (%)
icgar)
. orii s
Qunlonst) _ 5 2005 1 e B k=0, N1, (90)
y gy ~ W



As discussed in details in [39], the appearance of very small unstable eigenvalues through the Fourier con-
tinuation may render this approach weakly unstable. To remedy this, a very weak exponential filter is used
to damp out high-frequency modes with minimal adverse impact on accuracy [20]. For number of grids
points per domain and per direction of NP, the filter order is typically chosen to be NP/2. Details of the
exponential filter and the boundary condition imposition are identical to the one-dimensional case and can
be found in [39].

Remark 4. For nonlinear problems, the use of an exponential filter serves the additional purpose of
removing energy accumulated at high frequencies, and thus overcoming instabilities due to the nonlinearity.

Remark 5. Note that with p = 5 in the FC approximation, the derivative computation is technically
fifth-order accurate, i.e., our FC method for the conservation law (6) with smooth solution is formally fifth-
order accurate. However, as we discuss shortly, the behavior of the method away from the boundaries is
closer to that of a Fourier spectral method and the performance is not impacted by the nominal fifth order
of approximation.

Remark 6. Regarding the implementation of the derivative calculations, the Fourier coefficients in (8a or
8b) are first computed using a fast Fourier transform (FFT) and point-values of the derivatives in (9a or 9b)
are obtained using an inverse FFT. Both steps, FFT and inverse FFT, can be computed with a complexity of
O(Nlog(N)). Alternatively, the derivative calculation can be performed using a matrix-vector product with
a cost of O(N?) with the matrix representing the effect of differentiation and the vector being the collocation
values of the function [21]. For larger values N, the former is clearly preferred and that is the approach we
consider here.

Remark 7. Equation (7) is on non-conservative form. The equivalent conservative form (for smooth
problems) is
8uh(t,xk) + 8F(uh(t,xk)) + 5‘G(uh(t,xk))
ot or dy

In all our numerical tests, both conservative and non-conservative FC discretizations of the conservation laws
have been tested and observed to yield almost identical results. This is natural since the FC approach is only
used in regions with smooth solutions. Our preference for the non-conservative form is guided by efficiency.
While the non-conservative form requires only the continuation of u and its filtering, the conservative form
requires continuation and filtering of both v and the flux, f(u) and, thus, renders the scheme more expensive.

=0 Vk=0,---,N—1. (10)

3.2. WENO Methods for conservation laws with discontinuous solutions

WENO finite difference methods are finite difference schemes tailored to enable the accurate solution of
conservation laws involving discontinuous solutions—or, more generally, solutions which contain steep/unresolved
gradients. The details of the WENO schemes are well-documented [18, 15], and we therefore offer only a
brief presentation of the essential elements of these methods.

A traditional spatial finite difference discretization of (6) seeks point-wise enforcement of the equation
at a set of equi-spaced grid points in each direction z; = Xy + (i +1/2)L,/N, y; = Y1 + (i + 1/2)L,/N
1=0,---N—1, as

Oup(t,%;)) n F(t7$i+1/2, Yi) — F(t7xi—1/2,yi) " G’(tvl'ivyi-&-l/Q) - G(tamiayi—1/2)

ot Az Ay =9 (11)

where Az = z; — w1, Ay = y; — yi—1, up(t,r;) is a numerical approximation of u(t,x;) and where
F(t,xit1/2,y) (F(t,wi-1/2,v:)) and G(t, 74, yi41/2) (G(t,2i,y;—1/2)) represent numerical fluxes computed
using the solution data along the z- and y-direction respectively. The numerical flux fi+1 /2 is defined
through a reconstruction based on the numerical solutions at x; (or y;), r solution to the left (or south) and

s solutions to the right (or north) of z; (or y;):

fi+1/2 = fttimp,+ uiss). (12)



Here f is required to be Lipschitz continuous in all arguments and consistent with the physical flux f, that
is, f(u, -+ ,u) = f(u). Based on the Lax-Wendroff theorem, the solution of this conservative scheme, if it
converges, converges to the weak solution of (6).

The precise choice of the numerical flux fi+1 /2 1s central and must follow a number of guidelines. To
guarantee entropy dissipation, the flux is first split into positive and negative parts using Lax-Friedrichs
i _ . _ d
splitting as f(u) = f*(u)+ f~ (u), with f+(u) = (f(u) +au)/2, f~(u) = (f(u) —au)/2, and a = max, L.
The reconstruction is applied for each positive and negative flux separately, before adding up to give the

numerical flux.

A finite difference reconstruction of the flux in the z-direction or the y-direction, for instance for f*(u;11/2),
can be computed using solutions in k different substencils,

Sk() =i py iy T =0,---,k—1 (13)
or
Sk(1) = Yiery s Yimrih—1 T=0,-+ k=1, (14)
as
k-1
fj(uiﬂ/z) = Z Cr [T (Wimrsj)- (15)
=0

The constant coefficients C,.,, (given in [14] up to order seven) are chosen such that the approximate solution
is formally accurate up to order k in regions in which the exact solution is sufficiently smooth. On the other
hand, if in a stencil, the solution or one of its j-derivatives j < ¢ contains a discontinuity, that stencil must be
excluded from the flux approximation. This nonlinear procedure is referred to as an essentially non-oscillatory
(ENO) scheme [17]. A slightly modified approach, termed weighted essentially nonoscillatory (WENO),
offering computational advantages and added robustness (see [14]), is to consider a convex combination of all
computed fluxes f;"(u;11/2) in k stencils as

k-1
qu;_(ui+1/2) = Z waA:_(ui+1/2)a (16)

r=0

where w, is chosen such that the approximation is of order 2k — 1 accuracy in cases where the solution is
sufficiently smooth in all stencils. An explicit expression for w,, based on a local smoothness indicator for
orders k = 2, and 3, are given in [13] and for higher orders up to k = 6 in [16]. The WENO parameters ¢ and
p are chosen to be 1076 and 2, respectively [15]. In the following we use the ninth-order variant, introduced
in reference [16].

Remark 8. For system of conservation laws, such as the Euler equations, it is essential to apply the WENO
reconstruction to the fluxes in the characteristic variables. This is enabled through multiplication of the flux
vectors with the left eigensystem. The reconstructed fluxes are then transferred back to the conservative
fluxes through multiplication with the right eigensystem [13]. Both left and right eigensystems are evaluated
using Roe-averaged field variables.

3.3. Detecting the discontinuities

Detecting discontinuities in the solution or its derivatives is an essential component and prerequisite for
the hybrid strategy to be effective. For systems of nonlinear conservation laws like the Euler system of
gas dynamics, the location of the discontinuities, e.g. shocks, are not known a priori and may emerge and
propagate as the solution advances. We thus need to estimate the local smoothness from the solution field
at regular temporal intervals. To this end, the multi-resolution (MR) analysis introduced by Harten [9] and
later used in the context of a hybrid spectral-WENO method by Costa and Don [10] has proven to be effective
in the one-dimension hybrid FC-WENO approach. We extend the approach to two dimensions by applying
the MR analysis line by line first in the z-direction and then in the y-direction. A brief description of this
approach is given below; a detailed account can be found in [9, 10].



Using the solution values f ,? at equi-spaced grid points gcg (k=1,--- 2N +1) at which the approximate
solutions are known, we construct the solution averages f. at one level coarser grid points z;, = (29, ; +
x8k+1)/2 with k=1,--- ,N as

0 0
PO +2f2k+1 Wk=1,---,N. (17)

Let ps(z) denote the polynomial approximation of order s interpolating f,i at the coarser grid points xi The
approximation differences, di = fY — ps(z9), have the property that if f(z) has r — 1 continuous derivatives
and a jump discontinuity at rth derivative, then

Agr[Lde] s>
dy = dx” = 18
F { Az’ ‘fmff s<r, (18)

where Az denotes the coarse grid spacing and [-] denotes jumps across a discontinuity. This implies that
the higher degree of smoothness of the solution, and the higher the order of the polynomial approximation
on the coarser grid (in the case of smooth function), the smaller the approximation differences, d. We thus
adopt a tolerance €, below which the function is assumed to be smooth and otherwise identify it as non-
smooth. Once we have found the approximate locations of the discontinuities by this method, the domains
containing smooth solutions are treated by the FC method and those with non-smooth solutions are treated
by the WENO scheme. This simple strategy works well except for situations in which a discontinuity is very
close to a boundary of a sub-domain, within a few grid points. In this case, the neighboring domain is also
marked as a WENO domain to ensure conservative and non-oscillatory transfer of the discontinuity between
neighboring domains. This strategy was previously adopted in [10, 12]. In our implementation, the detection
of a discontinuity within two grid points away from a sub-domain boundary dictates the WENO treatment
of the sub-domain.

8.4. Point-wise multi-domain formulation

To accommodate the distinct treatment of smooth solution regions and discontinuous regions, we pursue
a multi-domain solution algorithm. The computational domain is first decomposed into sub-domains with
each sub-domain being discretized with either an FC or a WENO method depending on the local smoothness
indication. A domain interface condition is adopted for stable and non-oscillatory transfer of data between
adjacent sub-domains. The decomposition of the domain can be performed using two different strategies:
(1) single decomposition, resulting sub-domains with fixed sizes and with fixed number of grid points, or (2)
repeated decomposition at regular intervals of the time marching yielding sub-domains with time-varying
sizes , and/or with number of grid points varying in time. We adopt the fixed-sized domain strategy since
it facilitates the extension of our multi-domain strategy to relatively complex geometries in multiple space
dimensions in a straightforward block structured manner. Figs. 2 (a) and (b) demonstrate a two-dimensional
domain decomposition of a square domain into four subdomains. Also shown in the figures are grid points
which are internal to each sub-domains.

To ensure a stable approach for transfer of data between adjacent sub-domains, we utilize an overlapping
grid stencil. Specifically, for an internal sub-domain marked as a smooth region, a derivative computation
in the z- or y-direction for all points along a line of points based on the FC method is carried out using
an extended stencil consisting of the sub-domain’s own grid points along the same line and a few of the
closest grid points of its neighbors (Fig. 2 (b)). For a boundary domain, the extension is one-sided across the
internal interface (Fig. 2 (b)). Using this process, the derivatives of the solution are available for the extended
stencil. However, only the computed derivatives of the actual sub-domain grid points are used for updating
the solution field, and derivatives at the extended grid points are discarded. Extensive experimentation
confirms that an extension of three grid points across each domain interface suffices to guarantee stability.
For WENO sub-domains, a similar strategy is required with extensions of three and five grid points in each
direction for fifth- and ninth-order schemes, respectively (Fig. 2 (b)).

Note that this strategy of handling or circumventing interface conditions is uniformly valid regardless of
whether adjacent domains are two FC domains, or two WENO domains, or one FC and one WENO. This
is a consequence of using equi-spaced internal grid points (not including end points, see Fig. 2 (b)) for both
FC and WENO discretizations.



(a) (b)
Figure 2: Point-wise multi-domain formulations; (a) A local stencil, consisting of the blue squares and the red square in horizontal
or vertical directions used to compute flux derivatives in horizontal or vertical direction using a fifth-order WENO finite difference
reconstruction; (b) A global extended stencil containing of grid points in blue for computing derivatives in horizontal or vertical
directions for all points along a horizontal or vertical direction using Fourier continuation method.

4. Numerical Examples

In this section we strive to carefully and rigorously evaluate all elements of the proposed algorithm. We first
verify the performance of the high order scheme for solving the inviscid Burgers’ equation in two dimensions.
We continue by considering a number of results for the Euler system where an extensive set of comparisons
of our hybrid FC-WENO method with pure WENO and another hybrid scheme arising from conjugation of
the central difference and WENO schemes in solving shock-entropy-wave-interaction problems. Finally, we
show the performance of the FC-WENO scheme in solving a two-dimensional Richmyer-Meshkov instability
problem as well as its performance on parallel processors and emerging many core Graphics Computing
Units (GPUs). As we shall see, all cases demonstrate substantial advantages over existing alternatives, both
in terms of accuracy and computational performance.

4.1. 2D Inviscid Burgers’ equation

As a first test, we consider a 2D inviscid Burgers’ equation (also known as the Riemann equation) in the
form of

2 2
ou  Ou/2  Ju®/2 —0 (19)

ot ox y

The computational domain is [—1,1] x [—1, 1] with periodic boundary conditions in both directions and the
initial condition is taken to be u(0,z) = (1 + sin(w(z + y)))/2. Using the characteristic method, the exact
solution of this equation is given as

w=(1+sin(r(z +y — 2ut)))/2. (20)

The solution is smooth for ¢ < % and for ¢ > % contains shock waves. We first study the accuracy of the FC5
method for the Burgers’ equation using both single-domain and multi-domain formulations for the smooth
solution at time ¢ = 0.15. For the single-domain method, the number of points NP = 202,402,802, and 1602,
and for the multi-domain variant NP = 20 and the number of domains are ND = 1,22,42, and 82. In Fig.
3, the maximum error is plotted versus the grid spacing. As is clear, the single- and multi-domain variants
lead to comparable accuracy levels and convergence rates of 5.4 and 5.1, respectively, in agreement with the
expectations.

We also consider the Burgers’ equation at two later times T' = 0.32 and T" = 0.64, by which discontinuities

in the solution have appeared. These results are produced by two different methods: the proposed hybrid FC-
WENO method with ninth-order accuracy for the WENO part and fifth-order of accuracy for the FC scheme,
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Figure 3: Convergence for the fifth-order Fourier continuation (FC5) method for the numerical solution of a 2D inviscid Burgers’
equation in [—1,1] x [—1,1] with initial condition u(0,z,y) = (1 + sin(7(z 4+ y)))/2 and the final time 7' = 0.15 with smooth
exact solution using both multi-domain and single domain formulations. For the single-domain method, the number of points is
NP = 202,402,802, and 1602, while for the multi-domain NP = 202 is fixed and the number of domains ND = 1,22, 42 and
82. For each data set, the best curve fit and its slope are also shown.

and a pure ninth-order WENO scheme. In the FC-WENO hybrid calculations, the multi-resolution analysis
is carried out at every stage of the Runge-Kutta time stepping procedure with the order of the interpolating
polynomial on the coarse grid s = 9, and the tolerance € ~ 1073, In all the numerical experiments, we used
time step size At & 0.25Ax/C, where Az is the grid spacing and C is the maximum wave speed.

In Fig. 4 (a), the FC-WENO computed solutions are shown in pseudocolor along with the sub-domains
treated with a WENO scheme for T' = 0.32 and N D = 82, while in Fig. 4 (b), the same data are shown for
the later time T = 0.64. Similar data with one level refinement are shown in Fig. 4 (c¢) and (d). As is clear
from the figures, the WENO domains are restricted to the two regions containing shocks and as the number of
domains increases, the percentage of the WENO domains decreases, which in turn results in higher speedup.
The qualitative agreement of the computed solution with the exact solution are shown in Figs. 5 (a) and
(b) along the line z = y for T'= 0.32 and T = 0.64, respectively. The solution of the pure WENO method
is numerically identical to the that of the FC-WENO method. The quantitative comparison are shown in
Table 1, where the L; norm error, convergence rate, the speedup over the pure WENO method and the
average number of WENO domains (in percentage) are listed for NP = 20% and different number of domains
ND = 1,22,42,8%2 16%. As evident from the table, a rate of convergence of approximately 1.0 is observed,
verifying the theoretical estimate of the convergence rate for the schemes for discontinuous solutions. Also
seen from the table, the percentage of the WENO domains indeed decreases by increasing the refinement and
thus yielding better speedup.

Table 1: Convergence of the hybrid FC-WENO solution for a discontinuous solution of an inviscid Burgers’ equation at T' = 0.64
with NP = 202

ND L; error | Convergence rate # of WENO domains | Speedup over WENO solver
1 1.8 — 2 - 80% -

22 1.0e — 2 0.85 68% -

42 || 4.5e -3 1.2 43% 1.5

82 2.7e — 3 .74 19% 2.5

162 || 1.1e—3 1.3 9% 3.1
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Figure 4: Pseudocolor of the inviscid Burgers’ eq. solution computed using FC-WENO solver; (a) T = 0.32 and ND = 82; (b)
T = 0.64 and ND = 82; (c) T = 0.32 and ND = 162; (d) T = 0.64 and ND = 162. Squares signify the sub-domains treated
using WENO scheme.

4.2. The 2D FEuler system

The two-dimensional Euler equations are given as

Ou  OF(u) B
e T (21)

where u = [p, pu, pv, pE], F(u) = [pu, pu®+p, pv?, (pE+p)u] and G(u) = [pv, , pu?, pv® +p, (pE+p)v]. Here,
p, E, p, and u and v represent, respectively, the density, the total energy, the pressure, and velocities in the
2- and the y-direction. Equation (21) are subjected to appropriate initial and boundary conditions.

We consider first two test problems, both featuring the interaction of a right-moving shock wave with a
plane entropy wave. The first problem, comprising a Mach 3 shock interaction with a small entropy wave
having an angle 6y = 30° with the shock front normal, which features supersonic flow behind the shock and
allows for a quantitative comparison of our computed hybrid solutions with the pure WENO solutions and
the analytical results obtained using a linear analysis of the Euler equations. The second problem involves
a shock/entropy-wave interaction configuration with Mach 1.25 and a small entropy wave with 6, = 10°,
featuring subsonic flows behind the shock and thus allowing the evaluation of the hybrid scheme in capturing
the generated upstream-propagating acoustic waves and a comparison with another hybrid scheme arising
from central difference-WENO schemes. Finally, we demonstrate the capability of our hybrid scheme in
simulating the challenging Richtmyer-Meshkov instability problem and its good parallel performance on a
distributed memory parallel architectures and on GPUs.

11
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Figure 5: Computed FC-WENO solution of the 2D inviscid Burgers equations with NP = 20% and ND = 42 along with its
exact solution. (a) T'= 0.32; (b) T' = 0.64.

4.2.1. 2D Mach 3 Shock/small-entropy-wave interaction test

To quantify the performance of the hybrid FC-WENO methods we consider a right-moving Mach 3 shock
interacting with a very small entropy wave forming an angle 8, = 30° with the normal vector to the shock
front. The spatial domain is [—10,10] x [0,y*], and the initial conditions are given by

(3.857143,2.629369, 0, 10.33333) x < —9.5,
(p,u,v,p)(0,z,y) = (1,0,0,1) —95<x < -8.85,
(exp(—0.01sin(k((z — xo) cos(bp) + ysin(by)), 0,0, 1) x > —8.85,

(22)
where the wave number £ = 10, rg = —8.85 and y* = ﬁsisniz)g) is defined to permit periodic boundary
conditions in the y-direction. In the z-direction, boundary conditions are applied based on eq. (22). As
a result of the interaction, based on the linear analysis [23], the entropy wave is reduced and transmitted
with angle #; = 26.6642 and a pressure wave is generated with 65 = 8.5130. Linear analysis also gives the
amplitude of the pressure wave as 0.04378 [23], allowing the quantitative assessment of the accuracy of our
hybrid method.

The Euler system is solved using both a pure WENO solver and the hybrid FC-WENO solver for the
final time T = 5.0. It is notable that the pure WENO solver does not include the multi-resolution analysis
and the multi-domain overhead. For resolution ND = 48 x 12 and NP = 322, the computed pressure and
entropy using the hybrid technique are shown in Fig. 6 (a) and (b), where the corresponding pseudocolors
are drawn. From the figures, the constant entropy and pressure contours form angles with the shock fronts
closely matching 6, and 65 obtained from the linear analysis. Figs. 6 also demonstrate the multi-dimensional
nature of this problem as entropy and acoustic waves propagate along different directions not parallel to the
grid edges. Extraction of the pressure waves just behind the shock along y = z tan(6s2) and the density along
y = 2.5 are also presented in Fig. 7. The detailed views of the computed pressure and density, Figs. 7 top
and bottom right, for three resolutions of ND = 16 x 4, ND = 32 x 8 and ND = 48 x 12 with NP = 322
for all three cases clearly show that the solution convergence is achieved through the increasing resolution.
To quantify this, Table 2 lists the errors in the acoustic wave amplitude right behind the shock for all three
resolutions and for both hybrid FC-WENO and the pure WENO schemes. The convergence is clearly seen
as errors of 9.3%, 2.3% and 0.8% are observed for the increasing resolution for both schemes. In the table,
the CPU times and the average number of WENO domains are also reported, demonstrating the speedup of
the hybrid scheme over the pure WENO solver.

4.8. 2D Mach 1.25 Shock/small-entropy-wave interaction test

We now compare our hybrid FC-WENO solver with other hybrid solver arising from the conjugation of
the six- and eight-order central difference methods and the ninth-order WENO scheme (CD6-WENOQO9 and
CD8-WENQ9). The simplicity and low operation counts of central difference schemes suggest comparison

12
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Figure 6: Pseudocolors of pressure (top) and entropy (bottom) behind a Mach 3 shock wave striking a small plane entropy
wave with 8p = 30° counterclockwise inclination from the horizontal direction, generating a pressure wave and transmitting the
entropy wave (with reduced amplitude) at angles matching those from linear analysis [23].

Table 2: Shock interaction with small plain oblique entropy wave, Mach = 3, T' = 5,0y = 30°, NP = 322.

Method Acoustic wave error | WENO domains # | CPU time(s)
FC-WENO, ND =16 x 4 9.3% 16% 1.49e + 2
WENO, ND =16 x 4 9.3% 100% 3.7e +2
FC-WENO, ND =32x8 2.3% 7.8% 8.6e + 2
WENO, ND =32x 8 2.3% 100% 2.8+ 3
FC-WENO, ND =48 x 12 0.8% 5.3% 2.5e +3
WENO, ND = 48 x 12 0.8% 100% 8.8e+3

of the FC5-WENQ9 with not only the CD6-WENQO9 (which has comparable order of accuracy), but with
even higher order CD8-WENQ9Y9. However, as shown below, owning to its almost dispersionless character,
the FC5-WENO9 outperforms both CD6-WENOQO9 and CD8-WENO9 for the cost (CPU time) of achieving
a given accuracy level. The test problem is the shock small entropy interaction problem. A Mach M = 1.25
shock wave moving rightward interacting with an oblique entropy wave. The density disturbance of the
entropy wave are set as

p = exp(—0.01sin(k((z — xo) cos(fy) + ysin(6y))), (23)

where 6y = 10° being the counterclock-wise angle between the entropy wave and the normal to the unper-
turbed shock front, zp = 11, and the wave number x = 15. The computational domain is chosen to be a
rectangle with [—10, 54] x [0, y*], where the width of rectangle is chosen to allow periodic boundary conditions
in the y-direction, y* = #’{eo) = 2.4122. The Euler system with the above setting is solved using both FC-
WENO and CD-WENO schemes. Three simulation runs were carried out: FC-WENO with high-resolution
of NP =962 and ND = 64 x 4, and FC-WENO and CD-WENO both with (one level) lower resolution of
NP = 962 and ND = 32 x 2. The relative density (p — po, where py = 1.42857 is the density behind the
shock wave in the absence of the entropy wave) along the line y = 1.0, obtained using the high-resolution
computation are shown in Fig. 8 (top left). Two distinctive regions of acoustic waves far from the shock
and the region consisting of entropy, vorticity and acoustic waves immediately behind the shock are evident.
Since the amplitude of the acoustic wave are much smaller than the entropy wave (approximately 10% of the
entropy wave) any insignificant error in the composite region behind the shock with a mix of various waves

can pollute the computation of pure acoustic waves propagating upstream. A zoomed-in view, centered at

13



12 10.40
Solid: FC-WENO, ND = 48 * 12, NP = 32 * 32 Biue: FC-WENO, ND =48 * 12, NP = 32* 32
Red: FC-WENO, ND = 32 * 8, NP= 32 * 32
1 ey Black: FC-WENO, ND =16 *4,NP =32 * 32
10 ‘ 10.38
e 10.36
[0 o
4 4
S, ] S
g g 10.34
0 o
¥ H
Ay Ay
o
10.32
2]
10.30
o]
o 3 2 4 6 8 10 7.? 8.0 8.2 8.4 8.6 8.8
Distance along y = X tang(26.66) Distance along y = X tan(26.66)
451 Solid: FC-WENO, ND =48 * 12,NP = 32 * 32 Bue: FC-WENO, ND =48 * 12, NP = 32 * 32
3929 Red: FC-WENO,ND =32 8,NP=232* 32
Black: FC-WENO, ND =16 * 4,NP = 32 * 32
4.0
e AV
3.90
3.5
> E >N 3.88
4_, 3.0 -l-,
-H -
n n
g 1<
0 2.5 q)
[a) A 3.86
2.0
3.84
1.5
L_\ 3.82+
1.0

T T T T T T T T T T g
18 16.8 17.0 17.2 17.4 17.6 17.8 18.0

12 14 16
Distance along y = 2.5 Distance along y = 2.5

Figure 7: Overall view of the computed solution of the Mach 3 shock/small-entropy-wave interaction extracted along a particular
line at final time T' = 5.0, demonstrating the overall profile and the convergence under increasing resolution. Top left, pressure
profile along y = x tan(26.66); top right, detailed view of the pressure right behind the shock for solutions computed using three
different resolutions; bottom left, density profile along y = 2.5; bottom right, detailed view of the computed density for three
different resolutions.

the transition region, of the solution along with the graph of errors in density arising from one-level coarser
grid for FC5-WENQ9, CD6-WENO9 and CD8-WENOQO9 solvers are shown in Fig. 8 (top right). A further
zoomed-in view of the same data is shown in Fig. 8 (bottom). As is evident from the figures, the FC-WENO
approach is significantly more accurate than the two CD-WENO schemes in the tail of the purely acoustic
wave region. For qualitative comparison, the L; norm errors for the two schemes along with the total CPU
times are shown in Table 3. The Ly errors are computed as

T
J.. lp = p*lde
[22 1" = polda’

where py = 1.42857 is the density behind the normal shock with M = 1.25 and p* is the high-resolution
computed density. (We consider this solution as the ’exact density’, since it results in an acoustic wave with
amplitude of 0.002000 changing less than 1% under grid refinement and closely matching that of linear theory
prediction, 0.001975 [23]). The L; errors are computed in [z; = 21.3, 22 = 22.2] (the purely acoustic region)
and in [z7 = 22.2,29 = 23.2]. As reported in the table, while both hybrid techniques result in less than
10% error in the second region, in the first region, the FC-WENO solver yields significantly lower error, less
than 5%, as compared to the 36% and 13.4% errors of the CD6-WENQO9 and CD8-WENO9 schemes. Since
both FC-WENO and CD-WENO schemes requires comparable total CPU times (FC-WENO requires roughly
10% higher), the FC-WENO emerges as a significantly more efficient solver. Even accuracy of the one-level

Ll(error)[m’mz]’y:l = (24)
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Table 3: Shock interaction with small plain oblique entropy wave, Mach = 1.25, T = 39.5, NP = 962.

Method Li(error)ja1.3.22.0],y—1 | Li(error)(as.0.93.9]y=1 | CPU time(s)
CD6-WENQ9, ND =32 x 2 36% 8.5% 5.8¢+3
CD8-WENQ9, ND =32 x 2 13.4% 8.5% 6.0e + 3
FC5-WEN09, ND =32 x 2 4.8% 8.5% 6.2e + 3
CD6-WENO9, ND =64 x 4 18.7% 1.4% 4.6e +4
FC5-WENQO9, ND =64 x 4 — — 5.le+4

refinement of the CD6-WENO9 solution contains 18.7% error at a cost of approximately eight-fold higher
CPU time (Table 3). The large error of the CD-WENO scheme is primarily due to the inherent dispersion
errors of the central difference methods. As stated earlier, the high-level of accuracy of the FC-WENO solver,
on the other hand, is due to the almost dispersion-free character of the Fourier continuation method.

4.4. A 2D Richtmyer-Meshkov instability simulation on parallel CPUs and on a single GPU

The multi-domain framework has been implemented with ease and tested with success on parallel proces-
sors using the Message Passing Interface (MPI) as well as on many core Graphics Processing Units (GPUs).
The performance of the hybrid solver for simulating early stages of a Richtmyer-Meshkov instability problem
have been investigated. As an initial test case we consider a Mach 4.46 shock interacting with a material
interface of two gases Xenon and Argon in a spatial domain of [12, 3.6] similar to that in [12].

Figure 9 (a) depicts the density at the physical time of ~ 128us for resolutions of a (64 x 20) array of
sub-domains and the number of points per domain of NP = 322, Figure 9 (b) also shows the sub-domains
discretized using the WENO solver. Clearly, the use of WENO scheme is restricted to regions containing
discontinuous solutions, hence decreasing the overall computational cost. To illustrate the efficiency of the
hybrid solver over the pure WENO solver, Table 4 lists the wall clock time in seconds for the same Richtmyer-
Meshkov instability problem computed using the hybrid FC-WENO solver for three resolutions (32 x 10),
(64 x 20) and (128 x 40) sub-domains. As is evident, the hybrid solver is five to seven times faster than the
pure WENO solver.

Our parallel strategy on multiple processors is based on distributing the equal portions of the number of
sub-domains, obtained from partitioning the sub-domain grid along the y-direction, among the processors. As
shown in Table 4, the hybrid solver displays great parallel performance, 96% or higher efficiency, illustrating
the minimal inter-processors communications required which is in turn crucial for the three-dimensional
computations. It is notable that this particular domain partitioning is highly effective for cases with a plane
shock wave occupying the entire length of the domain in one of the directions (in this case y-direction).
For more general problems, this strategy may yield some load unbalance among processors and thus results
in reduced parallel efficiency. How large the impact would be in the context of large three dimensional
calculations with large number of domains is a subject of future work.

Table 4: The hybrid FC-WENO solver performance in simulating Richtmyer-Meshkov instability problem

ND # of processor | CPU time (s) | Speedup over WENO solver | Parallel Efficiency
32 x 10 1 4.2 x 103 5.6 -
32 x 10 10 4.3 x 102 5.5 98%
64 x 20 1 2.7 x 10% 6.4 -
64 x 20 20 1.4 x 103 6.2 96%
128 x 40 1 9.6 x 10% 7.0 -
128 x 40 40 2.5 x 103 6.7 96%

We also implemented the hybrid solver on Graphics Processing Units (GPUs). The multi-domain formu-
lation lends itself naturally to the thread block parallel processing of the data in the CUDA programming
framework [42] in which we simply map each subdomain into one GPU block. Here, we highlight some
important steps on GPU in order to achieve reasonable efficiency. All computations are carried out on the
GPU and the data transfer between the CPU and GPU are limited to only one round, before and after the
time stepping stage. In the current implementations the data is stored in the global memory and the shared
memory of the GPU is utilized to minimize the memory latency.
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Figure 8: Computed FC-WENO density and errors of the 2D Euler equations for Mach 1.25 shock wave striking a small oblique
entropy wave with NP = 64 x 4 and NP = 962; top left, the overall view showing the pure acoustic region and the composite
region containing all three characteristic waves; top right, detailed view of the computed density errors in the transition region
for C6D-WENQO9, CD8-WENO9 and FC5-WENOQO9 schemes; bottom, a zoommed-in view of the tail of the acoustic wave region,
demonstrating the superior accuracy of the FC-WENO scheme over both CD6-WENO9 and CD8-WENO9.

Since the WENO kernel is relatively easy to implement efficiently on GPUs the key to reasonable perfor-
mance for the hybrid schemes is to find the right strategy for the FC kernel on GPU. There are two major
concerns: efficient FFT routines for local FC derivative computations, with typical small sizes of NP = 32 or
96, are not readily available in the GPU implementation since the CUDA version of FFT, CUFFT, is a global
function CPU and optimized only for data of very large sizes; simply aggregating the Fourier subdomains
and applying CUFFT naively will increase memory traffic on GPU due to the dynamic nature of the hybrid
schemes. Therefore, we use an alternative approach for derivative calculations based on matrix operations
[21]. Recall that since the differentiation matrix is circulant, it is enough to store one row of the matrix.
Taking advantage of this property will not only lessen the pressure of the shared memory, but also impact
the memory bandwith significantly. In addition, this matrix-based approach can avoid the extra computation
by turning off the derivative computation on the extension points, something that can not be avoided by
FFT-based approach.

For the same RMI simulation with NP = 32, the speedup of the GPU computation of the hybrid and
the pure WENO schemes over the CPU computations using hybrid FC-WENO scheme for various number
of domains are shown in Fig. 10 (a). All computations are carried out in double precision floating point
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Figure 9: (a) Density contours for a Richtmyer-Meshkov instability at physical time of 128us in which a shock wave with Mach
of 4.46 interacting with a single-mode disturbed interface of Xenon and Argon gases; (b) WENO domains are also shown using
the square symbols.

arithmetics on a Nvidia Tesla C2050 (Fermi) GPU and the AMD Phenom(tm) 9850 Quad-Core @1.25 GHz
CPU. As is clear, the hybrid GPU implementation achieves five- to six-fold speedup over the hybrid CPU.
Fig. 10 (b) shows the ratio of the computation time of the hybrid solver over the pure WENO solver for
both CPU and GPU calculations. Clearly, similar ratios are obtained in both architectures highlighting that
potential gain of the hybrid schemes over the WENO solver on CPU computations extends uniformly to the
GPU computations.

W Hybrid scheme on GPU @ Hybrid / WENO (on CPU)
@ WENO scheme on GPU W Hybrid / WENO (on GPU)
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Figure 10: (a) Speedup of the hybrid and WENO computations of RMI problem on a single GPU over the hybrid computations
on a single CPU; (b) ratio of the time taken for hybrid computations over the WENO computations on both a single GPU and
a single CPU, demonstrating similar gain for hybrid solver over the pure WENO solver on both architectures.
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5. Conclusions

We have introduced a high-order method based on the hybridization of the Fourier continuation method
and WENO finite difference discretization methods for the solution of two dimensional non-linear conservation
laws. The hybrid strategy is based on a multi-domain formulation with a smoothness detection procedure
that effectively flags the domains containing discontinuities. These are treated by a WENO scheme and those
with smooth solutions are discretized using a Fourier continuation method. For applications with isolated
discontinuities in space and time, this strategy offers significant advantages over the pure WENO methods,
since the majority of the domains are discretized using the FC method which is considerably less expensive
than the WENO reconstruction, yet offers a highly efficient and accurate procedure for complex but smooth
portions of the solution. The multi-domain strategy facilitates simple and efficient implementation of the
solver on contemporary parallel processors using message passing interface for inter-processor communications
as well as on emerging many core Graphics Processing Units using CUDA programming.
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The stability, accuracy and efficiency of the hybrid FC-WENO solver is illustrated using various challeng-
ing two-dimensional test problems. In a Mach 3 shock wave interaction with an oblique small entropy wave,
the hybrid scheme provides a solution in agreement with the linear stability analysis and matching that of
the pure WENO solver, but with significant savings in the required computational time. Owing to its almost
dispersion-less character, the hybrid FC-WENO outperforms, by at least an order of magnitude, an alterna-
tive hybrid scheme, the central difference-WENO, in solving Mach 1.25 shock wave interaction with a small
entropy waves which features the generated acoustic wave propagating upstream. The excellent performance
of the hybrid schemes for simulating the challenging two-dimensional Richtmyer-Meshkov instability is also
demonstrated. For the same problem, the parallel solution of the solver on multiple CPUs achieves excellent
scaling and the single GPU computations, in double precision, yields a six-fold speedup over the single CPU
computations.

Although the current state of the hybrid solver already offers significant advantages over the existing
alternatives, be that the pure WENO or the hybrid CD-WENO solvers, further capabilities can be build into
the hybrid framework to enable simulation of complex scientific and engineering problems. In particular,
high-fidelity modeling of compressible multi-phase flows with shock waves, or high-amplitude ultrasound
waves, and bubbles featuring complex, nonlinear, discontinuous structures, necessitates even higher level
of resolution along the shock fronts and inter-phase boundaries. The required higher resolution can be
achieved through even higher order WENO schemes (higher than 9) or through local grid refinements, the
two strategies that we are currently pursuing. Interface capturing schemes for gas-liquid interfaces require
cell-averaging formulations, essential for avoiding spurious oscillations in the computed solutions using the
point-wise approach [40, 41]. Such extensions to cell-averaging formulations as well as to complex geometries
are also ongoing.
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