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Abstract

We discuss adaptive sparse grid algorithms for stochastic differential equa-
tions with a particular focus on applications to electromagnetic scattering
by structures with holes of uncertain size, location, and quantity. Stochastic
collocation (SC) methods are used in combination with an adaptive sparse
grid approach based on nested Gauss-Patterson grids. As an error estimator
we demonstrate how the nested structure allows an effective error estimation
through Richardson extrapolation. This is shown to allow excellent error
estimation and it also provides an efficient means by which to estimate the
solution at the next level of the refinement. We introduce an adaptive ap-
proach for the computation of problems with discrete random variables and
demonstrate its efficiency for scattering problems with a random number of
holes. The results are compared with results based on Monte Carlo methods
and with Stroud based integration, confirming the accuracy and efficiency of
the proposed techniques.
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1. Introduction

With the increasing need to quantify the impact of random input param-
eters on different types of physical systems or engineering applications, often
described by stochastic ordinary or partial differential equations, comes the
need for new and efficient computational techniques to deal with such prob-
lems. The classic Monte Carlo based method are increasingly inadequate and
a number of alternatives have begun to emerge.

It is reasonable to categorize the majority of these methods into two
groups: sampling based statistical methods and probabilistic techniques. In
the first category one finds the classic Monte Carlo (MC) method [5] with
the clear advantage of being simple and non-intrusive, e.g., one needs only a
deterministic solver. The simplicity, however, comes at the cost of very slow
convergence as O(M−1/2) where M is the number of samples. This quickly
becomes prohibitive even if reasonable accuracy is required, in particular if
the interest is on higher moments such as variance/sensitivity. A notable
exception to this is for very high dimensional problems where the advan-
tage of the dimensionally independent convergence rate eventually becomes
important. However, we shall not consider this limit here.

To accelerate convergence of the MC method, several techniques have
been proposed, e.g., Latin hypercube sampling [17], quasi-MC (QMC) method
[6], and the Markov chain MC (MCMC) [7] method. However, additional
restrictions are often imposed by these methods and their applicability is
limited.

An alternative to sampling based techniques have been recently received
substantial attention. These methods, known as Stochastic Galerkin or Poly-
nomial Chaos (PC) methods [11, 23], are probabilistic in nature and are
based on a generalization of the Wiener-Hermite PC expansion [22]. In this
approach, the randomness is represented by the Wiener expansion and the
unknown expansion coefficients are found by a Galerkin procedure in the
inner product associated with the random variables using in the Wiener ex-
pansion.

Substantial recent work has confirmed the accuracy and efficiency of this
approach, in particular for problem with low to moderate dimensionality
and for problems with sufficient smoothness in observation space, resulting
in very efficient representations through the Wiener expansion. However, a
substantial disadvantage of the Galerkin approach lies in the need to have to
develop entirely new software to solve the large coupled equations resulting
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from this procedure. This represents a significant problem as validated ex-
isting software can not be used directly to model the impact of randomness
and uncertainty.

To address this shortcoming of an otherwise successful approach, several
authors have proposed a slight modification of this traditional approach. As
mentioned above, the bottleneck in the stochastic Galerkin approach is the
creation of a new large coupled system through the required inner product.
It is natural to attempt to satisfy the high-dimensional problem in a colloca-
tion fashion instead, resulting in a large number of decoupled small problems,
much in the sense of an MC approach. However, in the collocation approach,
the sampling points are deterministic and associated with integration for-
mulas for the evaluation of high-dimensional integrals in contrast MC based
techniques where the sampling points are drawn randomly from some a priori
distribution. This approach, now known as stochastic collocation, was first
proposed by [19] and more recently revisited and extended in [24] and subse-
quently considered in more detail by numerous authors, see [26] for a recent
review. A clear advantage of this approach over the stochastic Galerkin for-
mulation is its non-intrusive nature, enabling one to use validated software
much in the same way as for MC based techniques.

A central component of the efficiency and accuracy of these techniques
is the construction of efficient and accurate integration methods for high-
dimensional problems. In [24, 26] several options are discussed in detail,
including Stroud’s cubature points [18], resulting in an efficient approach at
moderate accuracy, and sparse grids constructed through Smolyak’s algo-
rithm [16] combined with the Clenslaw-Curtis integration method [4]. This
latter approach improves accuracy but is costly due to the moderate accuracy
of the quadrature.

In this work we discuss the tradeoff between accuracy and computational
efficiency in a few different ways. We first consider the use of hierarchical
Gauss-Patterson integration formulas as a more accurate alternative to the
Clenslaw-Curtis nodes. A complementary discussion of some of this can
be found in [10]. To further decrease computational cost we propose to use
Richardson extrapolation between the levels to estimate errors and ultimately
predict the results of an increased accuracy at very little additional cost.

Most of the past work discussed in the above focuses on problems with
continuous random variables. In this work we also discuss basic approaches
for the adaptive solution of problems with discrete random variables and
demonstrate how to use a priori information effectively. Throughout, we il-
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lustrate the efficiency and accuracy of the methods on a set of benchmark
problems, often referred to the Genz problems [8, 9]. However, we conclude
this work with the consideration of problems of electromagnetic scattering in
which Maxwell’s equations are solved in the time-domain using a discontin-
uous Galerkin method. It is important to note, however, that the adaptive
techniques proposed here are problem independent and can be applied to
general stochastic problems, solved using a variety of computational tech-
niques.

What remains of the paper is organized as follows. In Section 2 we provide
a brief overview of polynomial chaos techniques with a focus on stochastic
collocation methods. This sets the stage for Section 3 where we discuss high-
dimensional integration schemes and introduce Gauss-Patterson integration
methods in combination with the Smolyak construction. Section 4 discusses
in detail the strategies for adaptivity and the use of Richardson extrapolation
as an error estimator in this context. We also briefly discuss ideas that
allow the efficient adaptive solution of problems in which discrete random
variables are used to model the random behavior. In Section 5 we provide a
brief overview of the application cases and the computational technique used
to solve Maxwell’s equations and then illustrate some additional results in
support of the generality of the proposed techniques. Section 6 contains a
few concluding remarks.

2. Stochastic Collocation Methods

Let us adopt the notation of [24]. (Ω,A,P) is a complete probability
space, where Ω is the event space, A ∈ 2Ω the σ-algebra, and P the probabil-
ity measure. Assume a d-dimensional bounded domain D ⊂ Rd (d = 1, 2, 3),
with boundary ∂D, and focus on the following problem: find a stochastic
function, u ≡ u(ω, x) : Ω × D̄ → R, such that for P-almost everywhere
ω ∈ Ω, the following equation holds,

L(ω, x;u) = f(ω, x), x ∈ D, (1)

subject to the boundary condition

B(ω, x;u) = g(ω, x), x ∈ ∂D, (2)

where x = (x1, ..., xd, t), L is a differential operator, and B is a boundary
operator. Note that we do not designate between spatial and temporal di-
mensions at this stage to keep the notation simple.
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We assume that the randomness can be represented by p independent
variables with zero mean and unit variance, each depending on the random
event ω. There are several ways to achieve this depending on details of the
problem [26]. We assume validity of the standard technique of a Karhunen-
Loéve expansion to express the randomness as

Ξ(ω) = µ0 +

p∑
k=1

√
λkψkξk(ω),

where µ0 represents the mean of the random field and ψk are the orthogonal
eigenfunctions associated with the eigenvalues, λk, of the correlation function
of the random process being represented, and ξk are the random variables
(see e.g. [11, 26] for details).

Representing the randomness in this generic form in Eqns. (1)-(2) yields
an p+ d dimensional differential equation in strong form as

L(ξ, x;u) = f(ξ, x), (ξ, x) ∈ Γ×D,

subject to the boundary condition

B(ξ, x;u) = g(ξ, x), (ξ, x) ∈ Γ× ∂D,

where Γ is the p-dimensional random space.
To account for the impact of the uncertainty, it is natural to consider

moments of the solutions over the probabilistic space. In other words, we
need to evaluate multi-dimensional integrals of the form

I[f ] =

∫
Γ

f(ξ)dµ(ξ).

The simplest way to achieve this is through a Monte Carlo approach like

I[f ] ' 1

M

M∑
m=1

f(ξm)

with the M instances, ξm, being drawn from the distribution, µ(ξ). As men-
tioned previously, the disadvantage of this approach is its low convergence
rate which, however, is independent on the dimension p of the random space.

Realizing that all we need is to be able to evaluate integrals accurately, it
seems reasonable to utilize more accurate integration techniques. At least for
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problems of moderate dimensionality one would expect these to be superior
in terms of accuracy vs cost. This line of arguments were first explored
in [19] for relatively simply ordinary differential equations and discussed in
much more detail in [24]. We refer to these and [26] for further aspects of
this.

The essence of the stochastic collocation approach is to abandon the ran-
dom sampling approach and consider the use of more advanced integration
approached and, in this work, adaptive hierarchical integration techniques.
In other words we shall solve the deterministic problems

L(ξk, x;u) = f(ξk, x), x ∈ D,

with boundary condition

B(ξk, x;u) = g(ξk, x), x ∈ ∂D.

where ξk ∈ Γ are specific instances chosen with an integration formula in
mind. Clearly, an objective in identifying this integration approach is to
minimize the number of samples to achieve a given accuracy in evaluating
the integral.

3. Integration for high-dimensional problems

For the multi-dimensional integration, we consider a number of different
approaches, the simplest of which is the Stroud [18] cubature points. These
are useful when computing integrals of the form

I[f ] =

∫
[−1,1]p

f(x)dx. (3)

This set of cubature points based on (p + 1) points is exact for polynomials
of degree two, and are given as

I[f ] '
n∑
i=1

ωif(xi), (4)

where the n = p+ 1 cubature points xi = (x1
i , x

2
i , ..., x

n
i ) are given by

x2r−1
i =

√
2

3
cos

(
2r(i− 1)π

n+ 1

)
, (5)

x2r
i =

√
2

3
sin

(
2r(i− 1)π

n+ 1

)
,
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for r = 1, ..., bn/2c. If n is odd, xni = (−1)(i−1)/
√

3. The weights in (4) are
all equal to 2n/(n+ 1).

Similarly, we have the Stroud-3 method based on 2p points which is exact
for polynomials of degree three :

I[f ] '
n∑
i=1

ωif(xi), (6)

where the n = 2p cubature points xi = (x1
i , x

2
i , ..., x

n
i ) are now defined by

x2r−1
i =

√
2

3
cos

(
(2r − 1)iπ

n

)
, (7)

x2r
i =

√
2

3
sin

(
(2r − 1)iπ

n

)
,

for r = 1, ..., bn/2c. Again, if n is odd, we have, xni = (−1)i/
√

3. The weights
in (6) are all equal to 2n/2n. It can be shown [4, 25] that Stroud-2 and
Stroud-3 methods use the minimal number of points for their corresponding
integration accuracy. The very simple schemes have recently been extended
to general weights in [25].

While the Stroud schemes are efficient and may suffice to compute the
expectation, their limited accuracy is often a problem. The most straightfor-
ward way to extend the many known one-dimensional integration methods to
higher (p) dimensions is through the use of simple tensor products. However,
this quickly becomes prohibitive with the number of samples growing like Np

for a quadrature of order N used in p dimensions.
A valuable and often superior alternative to this is the use of sparse grid

methods of which the most notable ones are those based on the Smolyak
construction. In [16], Smolyak proposed a construction of sparse multivari-
ate quadrature formulas based on sparse tensor products of one dimensional
quadrature formulas.

Let us consider the numerical integration of functions f(x) over a p-
dimensional unit hypercube Γ := [−1, 1]p,

I[f ] :=

∫
Γ

f(x)dx,

by a sequence of npl−point quadrature formulas with level l ∈ N and npl <
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npl+1,

Qp
l f :=

np
l∑

i=1

ωlif(xli) (8)

using the weights ωli and abscissas xli. Moreover, we define the underlying
grids of a quadrature formula by

Γpl := {xli ∈ [−1, 1]p : 1 ≤ i ≤ npl } . (9)

Now, define the difference quadrature as

∆1
kf := (Q1

k −Q1
k−1)f with Q1

0f := 0. (10)

Smolyak’s construction for the integration of p-dimensional functions f is

Qp
l f :=

∑
|k|1≤l+p+1

(∆1
k1
⊗ ...⊗∆1

kd
)f (11)

where l ∈ N and k ∈ Np. An essential feature of this construction is that the
sparse quadrature formulas are nested if the corresponding one-dimensional
quadrature nodes are nested. Notably, this rules out classic Gauss quadra-
tures which are not nested and the impact of this is illustrated in Fig. 1 and
will be discussed shortly.

3.1. Gauss-Patterson quadrature rules

Seeking nested one-dimensional integration formulas, simple trapezoidal
rules immediately comes to mind. However, the limited accuracy of these
makes this a less interesting choice. A more appropriate, and widely used,
approach is based on the Clenshaw-Curtis rule [4] which is exact for polyno-
mials of order n when using n + 1 points. This is considerably better than
the second order accuracy of the trapezoidal rules but falls short of the 2n+1
polynomial exactness of the Gaussian quadrature.

The natural question to raise is whether there are nested quadratures
which are better than the Clenshaw-Curtis rules, but perhaps not quite as
good as the classic quadratures. This question was first addressed by Kronrod
[4] who extended an n-point Gauss-Legendre quadrature formula by n + 1
points such that the quadrature formulas completed the polynomial degree of
the exactness with degree 3n+1(n even) or 3n+2(n odd). Patterson iterated
Kronrod’s scheme recursively and obtained a sequence of nested quadrature
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formulas with maximal degree of exactness. We refer to [4] for a discussion
of the details of this construction.

For f ∈ Cr, the error bounds of integration f using Gauss-Patterson
sparse grid formula will be [10]∣∣E1

l f
∣∣ = O(2−lr),

where l refers to the number of levels in the hierarchical construction.
When considering the efficiency of the integration measured through poly-

nomial exactness, it is well known that using a quadrature with n points, the
Clenslaw-Curtis is exact for polynomials up to order n − 1 and the Gauss-
Legendre quadrature is exact for orders up to 2n− 1. For the general Gauss-
Patterson rule, one can show exactness up to order (3n − 1)/2, confirming
that this is truly a compromise between the two alternatives [4].

The nested structure of the Gauss-Patterson quadrature grids in com-
bination with the Smolyak’s construction results in a natural hierarchical
structure for computing the integrals. Hence, to improve the accuracy one
needs only compute those new additional grids required to increase from level
l to level l + 1. This is an important property, in particular for high dimen-
sional problems. For the one-dimensional Clenshaw-Curtis rule, the number
of points grows like 2l−1 + 1, whereas the growth for the Gauss-Patterson
rule is 2l − 1 since the rule is based on the Gauss quadrature. Hence, when
comparing cost of the two methods, it is most appropriate to compare the
Clenslaw-Curtis rule at level l with the Gauss-Patterson rule at level l − 1.

When the dimensionality of the problem increases this becomes more
pronounced because the number of quadrature points grows as O(2lld−1) in
the sparse grid [2]. This is illustrated in Table 1 listing the number grid
points required for the two-dimensional example with an increasing number
of levels. The importance of the nested structure is evident for all levels but
the first one.

As a further illustration of this aspect, we plot in Fig.1, the Smolyak
based sparse grids Clenshaw-Curtis, Gauss-Patterson and Gauss-Legendre
formules for two variables and with 6 levels in the Clenslaw-Curtis based
scheme and 5 levels in the two other cases.

The final question to address is whether the Gauss-Patterson based ap-
proach, with its improved accuracy but with more quadrature points at a
given level, is competitive with the more traditional Clenslaw-Curtis scheme
when one compares cost vs accuracy, i.e., to achieve a given accuracy in
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Table 1: The number of grid points required in a two-dimensional Smolyak sparse grid
based Clenslaw-Curtis (C-C), Gauss-Patterson (G-P) or the Gauss-Legendre (G-L) inte-
gration nodes.

Level C-C G-P G-L
1 5 5 5
2 13 17 21
3 29 49 73
4 65 129 221
5 145 321 609
6 321 769 1573

Figure 1: Two-dimensional Smolyak based sparse grids based on Clenshaw-Curtis (left),
Gauss-Patterson (middle) and Gauss-Legendre (right) for 6 levels in the hierarchical inte-
gration.

the integral, which of the two schemes require the least number of function
evaluations.

To address this question, we consider the test function [9] for x ∈ [0, 1]p

f(x1, . . . , xp) = cos

(
2πω1 +

p∑
i=1

cixi

)
,

where ω1 and c = (c1, . . . , cp) are randomly generated and the ci’s sum to 9.
In Fig. 2 we show the convergence of the different high-dimensional in-

tegration schemes discussed previously. We note that the accuracy of the
Gauss-Patterson scheme is comparable to that of the scheme based on the full
Gauss integration. We also note that the sparse grid based on the Clenslaw-
Curtis formula experiences convergence problems for the high-dimensional
case. This is a known problem [10] and is likely associated with the kink-
phenomena discussed in detail in [21]. It is noteworthy that there are nu-
merous other examples of high-dimensional cases where the Clenslaw-Curtis
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formula converges as expected.
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Figure 2: Accuracy vs level for integration of the test-function for dimensions p = 2, 5, 10.

A more important question is, however, which of these methods are pre-
ferred when taking into account the work needed to achieve a specific ac-
curacy. In Fig. 3 we address this question by showing the time taken to
achieve a specific accuracy. From this, it is clear that the sparse grid scheme
based on the Gauss-Patterson scheme is superior except when a very moder-
ate accurate is needed in which case the Stroud based schemes may well be
preferred. Similar conclusions have been reached by considering other test
functions and we will therefore focus on Gauss-Patterson based sparse grid
schemes going forward. This conclusion was also reached in [10] although
the problems being considered were different and less focused on the cost vs
accuracy considerations introduced here.
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Figure 3: Cost vs accuracy for integration of the test function for dimensions p = 2, 5, 10.

4. Error estimation and adaptivity in the sparse grid construction

With the computational work growing exponentially with the dimension-
ality, it is essential that we seek to minimize the cost by carefully using the
required degrees of freedom only where they are needed. This suggests that
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an adaptive approach is warranted and therefore the need to formulate an
effective error estimator.

The hierarchical nature of the Smolyak based integration immediately
suggests that some kind of extrapolation be use to predict the value of the
integral at the next level using results obtained at the previous levels [1]. We
here propose the use of Richardson extrapolation to achieve this.

It is known that for functions f ∈ Cr, the error in the Smolyak algorithm
is |El

pf | = O(n−r/p(log n)(p−1)(r/p+1)) when the integration utilize n = 2llp−1

as the number of integration point sparse grid at level l to evaluate a p-
dimensional integral[14]. With this knowledge of the local error behavior as
a function of the level in the Smolyak grid, we can apply classic Richardson
extrapolation in the following way.

Assume we have computed an estimate to the integral, I[f ], at two dif-
ferent levels. We then know that

I[f ]l = I[f ] + Cr
p(2

llp−1)−r/p(log(2llp−1))(p−1)(r/p+1),

I[f ]l+1 = I[f ] + Cr
p(2

l+1(l + 1)p−1)−r/p(log(2l(l + 1)p−1))(p−1)(r/p+1).

Through simple algebra one recovers that

I[f ] =
α1I(f)l+1 − α2I(f)l

α1 − α2

,

where

α1 = (2l · l(p−1))(−r/p) · (log(2l · l(p−1)))(p−1)·(r/p+1)

α2 = (2(l+1) · (l + 1)(p−1))(−r/p) · (log(2(l+1) · (l + 1)(p−1)))(p−1)·(r/p+1).

This improved estimate of the integral depends on r which we recall is a
measure of the smoothness of f ∈ Cr. This is generally unknown. However,
extensive tests have shown that the efficiency of the error estimator has
limited sensitivity to this number and we have found that taking it to values
of 2 − 4 generally yields excellent results as we will illustrate shortly. In
some cases, there may be benefits to estimating a different value and this
can simply be done by evaluating the accuracy/efficiency of the extrapolated
values at the coarse grid levels and identify the optimal value of r.

In our approach we will not compute the next level in the Smolyak grid
if the extrapolation result is close to the result at the current level to within
a given tolerance. This is vastly advantageous over previously used methods
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which simply compare solutions at the two levels, often resulting in having
to compute an additional level at substantial cost - typically the cost of a
new level is comparable to the combined cost of all previous levels. Instead
of this, we use the Richardson extrapolation to estimate the result at the
next level, hence dramatically reducing the overall cost without impacting
the accuracy.

To test the validity of this approach as a way to accelerate the adaptive
sparse grid algorithm and reduce the computational cost we consider a set
of high-dimensional test functions proposed in [8, 9]. These function are all
defined on [0, 1]p and we seek to integrate them as accurately as possible.
The functions being considered have different characteristics:
1. Oscillatory:

f1(x) = cos(2πω1 +

p∑
i=1

cixi); (12)

2. Product peak:

f2(x) =

p∏
i=1

(c−2
i + (xi − ωi)2)−1; (13)

3. Corner peak:

f3(x) = (1 +

p∑
i=1

cixi)
−(d+1); (14)

4. Gaussian:

f4(x) = exp(−
p∑
i=1

c2
i (xi − ωi)2); (15)

5. Continuous:

f5(x) = exp(−
p∑
i=1

ci |xi − ωi|); (16)

Different test functions can be obtained by varying the parameters c =
(c1, ..., cp) and ω = (ω1, ..., ωp). The parameters ωi act as shift parame-
ters, and the difficulty of the functions is increasing with ci > 0. We test the
integration with the dimension p = 10 and use parameters ci such that

p∑
i=1

ci = bj, (17)
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Table 2: Parameter bj for the five different test functions, fj .

j 1 2 3 4 5
bj 9.0 7.25 1.85 7.03 20.4

Table 3: Integrals computed for functions f1 − f4 for p = 10 using sparse grid (SG)
and Richardson extrapolation (RE) at levels one to six. Note that the integral was also
computed at level zero to enable the extrapolation but is not shown due to its poor
accuracy.

level 1 level 2 level 3 level 4 level 5 level 6

f1
SG -0.1191 -0.1378 -0.1359 -0.1360 -0.1360 -0.1360
RE – -0.1191 -0.1378 -0.1359 -0.1360 -0.1360

f2
SG 4.1472e-06 4.3598e-06 4.3452e-06 4.3458e-06 4.3458e-06 4.3458e-06
RE – 4.1472e-06 4.3601e-06 4.3451e-06 4.3458e-06 4.3458e-06

f3
SG 0.0014 0.0017 0.0018 0.0018 0.0018 0.0018
RE – 0.0014 0.0017 0.0018 0.0018 0.0018

f4
SG 0.3970 0.4085 0.4091 0.4091 0.4091 0.4091
RE – 0.3970 0.4085 0.4091 0.4091 0.4091

where bj depends on the family fj and is given by Table 2.
In Table 3 we illustrate the accuracy of the extrapolation for p = 10 for

the first four test functions above. It is evident that the extrapolation works
very well and offers an accurate estimate of the integral at the next level once
it is reasonably well approximated at previous levels. We have used r = 3
as an estimator of the smoothness in this example but similar results very
obtained with r = 4, confirming the relative insensitivity of the estimate on
the performance of the scheme.

The final test function, f5, is more challenging and in fact violates the
smoothness assumption required to derive the error estimates for the Richard-
son extrapolation. We show in Table 4 the results for the extrapolation for
different dimensions and observe that in spite of the more complex function,
the results confirm the accuracy of the proposed approach for local error
estimation and, thus, enables accurate adaptive integration. Naturally, the
exact same idea can be explored as a dimensional error estimator to enable
anisotropic adaptivity, although we have not explored this further in this
work. Note that in the above results, we used r = 3 for all tests, confirming
the lack of sensitivity to this parameter.
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Table 4: Integrals computed for function f5 for dimensions p = 2, 5, 10 using sparse grid
(SG) and Richardson extrapolation (RE) at levels zero to seven.

level 0 level 1 level 2 level 3 level 4 level 5 level 6 level 7

p=2
SG 0.0029 0.0208 0.0201 0.0452 0.0326 0.0330 0.0338 0.0338
RE – – 0.0214 0.1337 0.0099 0.0336 0.0349 0.0338

p=5
SG 0.0047 0.0114 0.0102 0.0066 0.0068 0.0073 0.0072 0.0072
RE – – 0.0114 0.0112 0.0063 0.0056 0.0078 0.0072

p=10
SG 0.0092 0.0069 0.0021 0.0034 0.0031 0.0034 0.0035 0.0035
RE – – 0.0069 0.0021 0.0035 0.0030 0.0033 0.0035

4.1. Predictive Sampling for Discrete Variables

For discrete random variables, sparse grids and extrapolation are not
directly applicable and we need to seek an alternative approach. We will, in
this work, simply use the knowledge of the a priori density of the discrete
random variables. Let us, for instance, assume a discrete random variable k
with a density

f(k;λ) = e−λ
λk

k!
, k = 0, 1, 2, ...... (18)

where the mean and variance of k are: µk = k = λ > 0 and σ2
k = λ, respec-

tively. We use the a priori density to select which samples to compute first.
Hence, if k = 2 is the most likely case, this will be computed first, followed
by the next most likely value of the discrete variable. The convergence of the
integral is used to decide whether additional instances are needed. We will
demonstrate the computational advantage of this simple idea in the following
section.

5. Applications to Electromagnetic Scattering Problems

To evaluate the benefits of the techniques discussed in the above for prob-
lems of a more practical character, we consider electromagnetic scattering by
a two-dimensional cylinder with holes where the size, the location, and ul-
timately, the number of holes, are considered as uncertain and described by
continuous and discrete random variables.
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The physical model is Maxwell’s equations

ε
∂E

∂t
= ∇×H, (19)

µ
∂H

∂t
= −∇× E, (20)

in the general three-dimensional domain Λ without sources. E is electric
field intensity, H is the magnetic field, ε and µ are the permittivity and the
permeability of the domain.

As an output measure of interest we use the Radar Cross Section (RCS)
defined as

RCSdb(φ) = 10 log

(
2π
|F(φ)|2

|Ei|2

)
, (21)

where Ei is the incident field and F(φ) is a function of E and H, computing
the scattered far field as a function of the polar angle, φ. In this particular
case, F(φ), is near-to-far-field transformation along some closed contour [20].

5.1. Nodal Discontinuous Galerkin Finite Element Method

Discontinuous Galerkin methods is a general and flexible way of solving
Maxwell’s equations. We follow the formulation in [12] and refer to [13] for
a more general and in depth account of these techniques.

We assume the computational domain Ω is approximated by K elements
Dk as

Λ ∼=
K⋃
k=1

Dk, (22)

where Dk is a two-dimensional simplex. In each element, we approximate E
and H by Lagrange polynomials as

[Eh,Hh] =
N∑
j=1

[E(xj, t),H(xj, t)]lj(x), (23)

where xj are the interpolation points. The number of nodes N is given as

N =
(n+ 1)(n+ 2)

2
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for the nth order polynomial in two dimensions. We insert the approximate
solution into Maxwell’s equation and require that the local residual is or-
thogonal to all nth order polynomials. Integrating by part twice, this yields
the scheme∫

Dk

(ε
∂Eh

∂t
−∇×Hh)li(x)dx = −

∫
∂Dk

n̂k × (Hk −H∗)li(x)dx, (24)∫
Dk

(µ
∂Hh

∂t
+∇× Eh)li(x)dx =

∫
∂Dk

n̂k × (Ek − E∗)li(x)dx, (25)

where [E∗,H∗] denote the numerical flux of the corresponding vector quanti-
ties and n̂ is the unit outward normal vector along ∂Dk. The numerical flux
is responsible for the coupling of the elements, for the stability of the scheme,
and for the imposition of boundary conditions. We use an standard upwind
flux with the explicit form given in [12]. We use a low storage Runge-Kutta
scheme [12] for the temporal integration.

It should be noted that the method used to solve Maxwell’s equations in
this work is less important since the focus is on the efficiency of the techniques
dealing with the stochastic elements of the problem.

The computational setup of the problem is a plane wave that impinges on
a 2-D cylinder from some specific direction. The cylinder has an uncertain
number of holes in it and their sizes and locations may also be uncertain.
Examples of meshes of the computational model with different number of
holes, hole sizes and locations are shown in Fig. 4. The bistatic RCS has
an exact solution for the case of a plane wave impinging on a 2-D cylinder
without holes. We consider the case with ka = π where a is the radius and
k = 2π/λ is the wave number associated with wavelength of the incoming
wave. We employ a perfectly matched layer (PML) to absorb the reflected
wave in our computation [20]. The comparison of exact solution and numer-
ical solution is shown in Fig. 5, confirming the accuracy of the solver. A
complete analysis of the solution approach can be found in [12].

5.2. Low dimensional examples

To verify our algorithm, we first compare the results using the three meth-
ods for low-dimensional problems, i.e., we restrict the problem to having one
or two random parameters, all assumed to be uniformly distributed random
variables. The three methods are a standard Monte Carlo (MC) method,
Stroud’s method at second and third order, and the sparse grid method. For
all case we recover the mean of the RCS as
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(a) (b)

(c) (d)

Figure 4: Examples of meshes of the cylinder with different number of holes, hole size,
and hole location. a) has one hole, b) three holes, c) four holes, and d) six holes.

< RCS >=

Q∑
i=1

ωiRCSi, (26)

and the variance of RCS as

var(RCS) =

Q∑
i=1

ωi(RCSi− < RCS >)2, (27)

where the number of terms, Q, and the integration weights, ωi, depend on
the specific integration technique used.

We first consider the problem with one random parameter, taken to be a
cylinder with one hole of random size. The size of the hole is assumed to be
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Figure 5: Comparison between numerical and exact bistatic RCS for a ka = π metallic
cylinder.

in the range of ( π
12
, π

6
) in the polar angle. In Fig. 6 we show the mean RCS

computed using the four methods. The level of the sparse grid method is 6
(31 quadrature points) and the Monte Carlo method employs 2000 uniformly
distributed points. The difference between level 5 and level 6 results is of
order 10−3. The Stroud method of degree 2 and 3 yield the same results
since they are identical in this simple case. We observe excellent agreement
between the four methods and, in particular, observe excellent agreement
between the sparse grid result and the MC computation.

Next, we consider 2 random parameters; the hole size and the angle of
the incidence plane wave. The incident wave impinges from the left on the
cylinder and changes in the range of

(
35
36
π, 37

36
π
)
. The RCS mean and it

plus/minus one standard deviation computed using the sparse grid method
are presented in Fig. 7, illustrating the value of these techniques by enabling
the computation of sensitivities of output measures of interest. We use 5
levels in the sparse grid computation and estimate the error to be of the
order of 10−3 based on the extrapolation of the RCS.

5.3. Example of a higher dimensional problem

To simulate a more realistic random wave problem, we need to consider
higher dimensional problems. We achieve this in two different ways. In the
first example we assume the number of holes is deterministic but that their
size and illumination are uniformly distributed random variables.
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Figure 6: Mean RCS computed using four different sampling methods
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Figure 7: Mean RCS and sensitivity for a two-parameter random problem computed using
the adaptive sparse grid method.

In Fig. 8 we present the results for the cylinder with 2 to 4 holes ob-
tained with results obtained using the sparse grid method with 5 levels in
the integration. We note in particular the impact of the number of holes on
the sensitivity of the RCS.

To further add to the complexity, let us also assume that the number
holes is a discrete random variable with a Poisson probability distribution,
illustrated in Fig. 9. We assume that the number of holes is ranging between
one and nine but that their location is fixed.
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Figure 8: RCS computed for cylinders illustrated in Fig. 4, with 2 (left), 3(middle), and
4(right) holes with uniformly distributed hole size and angle of incidence of the illuminating
wave.

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Random Hole Number

P
ro

b
a

b
il
it
y

Probability of Random Hole Number

Figure 9: Poisson density associated with the number of holes in the cylinder.

The RCS mean and it sensitivity computed with the adaptive sparse grid
method is presented in Fig. 10. We use this case to demonstrate the value
of the approach discussed in Section 4.1. To illustrate this, we compute the
L2 error of the RCS with different numbers of holes and list the error as the
number of holes increases. Here the reference solution is assumed to be the
one where all variations of one to nine holes are accounted for, i.e., for each
discrete number of holes, the randomness is in the hole size is accounted for as
discussed previously and the moments in the discrete variables are computed
subsequently.

The results, simply reflecting the error in the L2-error or the mean on the
RCS, are shown in Table 5. As expected, we quickly see convergence with
as little as three to four holes and can terminate the computation and, thus
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Figure 10: RCS mean and sensitivity for problem with random number of holes and
uniformly distributed hole size.

saving substantially in the overall computational cost.

Hole Number L2 error of the mean RCS
1 4.2345
2 2.4427
3 1.0191
4 0.4481
5 0.1181
6 0

Table 5: The L2 error of the mean RCS as a function of the number of holes, assuming
that the number of holes is a Poisson distributed random discrete variable.

6. Concluding remarks

In the paper we have discussed the development of adaptive sparse grid
methods in the context of stochastic collocation methods for solving partial
differential equations with uncertainty. The emphasis has been on identifying
methods which delivers maximum accuracy at minimal cost.

We find that the combination of Gauss-Patterson quadratures and Smolyak
sparse grid constructions is an effective way to reach this and results in a
computationally robust approach. In particular we confirm, in agreement
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with related work, that the widely used Clenslaw-Curtis Smolyak based ap-
proach may have problems with convergence for certain high-dimensional test
functions. No such problem was observed with the Gauss-Patterson based
scheme. Similar behavior has also been observed by other authors [10] but
the detailed study of the cost vs accuracy question is a new direction of
research.

Furthermore, we demonstrate how the strict hierarchical structure of the
Smolyak sparse grid lends itself very well to the use of Richardson extrapo-
lation as an efficient estimator for the computed value of the integral at the
next level. This is important as it allows for significant savings in the overall
computational expense. We demonstrated that this is a robust and general
approach as illustrated for several standard test functions.

This suggests an accurate and fast adaptive sparse grid scheme and we
illustrated its use and flexibility by considering electromagnetic scattering
problems with the scatterer having randomized holes. We also demonstrare
a simple but effective way to deal with discrete random variables in an error
controlled manner. In combination with the adaptive sparse grid approach,
this yields substantial computational savings.

An immediate next step is to look more carefully at the theory of the
overall procedure and, in particular, the accuracy of the Richardson extrap-
olation procedure. We hope to report on this in the near future.
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