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Abstract We discuss the basics of discontinuous Galerkin methods (DG) for CEM
as an alternative of emerging importance to the widely used FDTD. The benefits
of DG methods include geometric flexibility, high-order accuracy, explicit time-
advancement, and very high parallel performance for large scale applications. The
performance of the scheme shall be illustrated by several examples. As an exam-
ple of particular interest, we further explore efficient probabilistic ways of dealing
with uncertainty and uncertainty quantification in electromagnetics applications.
Whereas the discussion often draws on scattering applications, the techniques are
applicable to general problems in CEM.

1 Introduction

The simplicity, robustness, and reasonable accuracy of the classical finite-difference
time-domain (FDTD) method [14] for solving the time-domain Maxwell’s equations
has propelled this method to become the method of choice among engineers and
scientist solving Maxwell’s equations in the time-domain. The last decade has seen
an explosion in applications and developments, many driven by the very influential
texts by Taflove [11, 12].

By now it is also clear, however, that the FDTD methods have severe limitations,
e.g., its inherent 2nd order accuracy severely limits its ability to correctly represent
wave motion over long distances unless the grid is prohibitively fine. Furthermore,
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the simplicity of the method, on one hand its very strength, also becomes its most
severe restriction by prohibiting the accurate representation of problems in complex
geometries.

For the accurate and efficient modeling of large scale EM applications the short-
comings of low order methods render them impractical due to the need for fine
grids to avoid prohibitive error accumulation. However, this understanding of the
very source of the limitations also suggest that a high-order time-domain solution
technique may offer the efficiency and accuracy required for future large scale CEM
modeling capabilities. High-order methods are characterized by being able to accu-
rately represent wave propagation over very long distances, using only a few points
per wavelength and with an error accumulation rate that is significantly reduced as
compared to 2nd order accurate schemes [9]. For three-dimensional applications,
this translates into dramatic reductions in the required computational resources, i.e.,
memory and execution time, and promises to offer the ability to model problems of
a realistic complexity and size.

In the following we discuss some of the basic elements of discontinuous Galerkin
methods with an emphasis on time-domain electromagnetics. As we will see, these
recent developments have paved the way for overcoming many of the restrictions as-
sociated with classical high-order methods. In contrast to high-order schemes based
on classical finite element techniques, the approach taken here leads to fully explicit
schemes.

2 The Discontinuous Galerkin Method

The time-dependent Maxwell’s equations in the scattered field formulation are given
as

ε
∂Es

∂ t
= ∇×Hs +σEs +SE , (1)

µ
∂Hs

∂ t
= −∇×Es +SH , (2)

where, Es and Hs denote the scattered electric and magnetic fields, ε(x) and µ(x)
are the local permittivity and permeability, σ(x) is the conductivity of the media
and SE and SH are source terms. Here we have not explicitly written the divergence
constraints assuming that the initial conditions satisfy these constraints. Taking the
divergence of equations (1)-(2) verifies that if the initial conditions satisfy the diver-
gence constraints then the solution to Maxwell’s equations (1)-(2) will also satisfy
the divergence constraints.

Let the incident field (Ei,Hi) be a solution to Maxwell’s equations in a media
with permittivity, permeability, and conductivity—ε i(x), µ i(x), σ i(x), respectively.
Along a perfect electric conductor (PEC), the boundary conditions on the total elec-
tric field Et = Ei +Es and the total magnetic field Ht = Hi +Hs are



DG-FEM and Uncertainty Modeling for EM 3

n̂×Et = 0, Ht · n̂ = 0, (3)

where n̂ is the outward pointing normal vector at the surface.
We now briefly describe the computational methods used for solving Maxwell’s

equations (1)-(2) in the physical space. A discontinuous Galerkin method is used
as this offers a number of advantages over widely used alternatives (see [8] for a
thorough discussion) and we shall simply sketch its main components. First, we
rewrite Maxwell’s equations (1)–(2) in conservation form

Q
∂q
∂ t

+∇ ·F(q) = S, (4)

where

q =
(

E
H

)
, Fi(q) =

(
−ei ×H
ei ×E

)
, (5)

signify the state vector q and the components of the tensor F and ei denotes the
Cartesian unit vectors. On the right-hand side of (4), S = [SE ,SH ] is the source term,
which depends on the incident field, and the material matrix Q is a diagonal matrix
with values (ε,ε,ε,µ,µ,µ) on its diagonal. We assume that the computational do-
main, Ω , is tessellated by triangles in two spatial dimensions and tetrahedrons in
three spatial dimensions, similar to what is done in a finite element/finite volume
method.

Given an element D of the tessellation, we represent the local solution qN re-
stricted to D is given as

qN(x, t) =
N

∑
i=1

q̃i(t)Li(x), (6)

where q̃i reflects nodal values, defined on the element. The function Li(x) signifies
an nth order Lagrange polynomial (N = (n+1)(n+2)/2 for triangles and N = (n+
1)(n + 2)(n + 3)/6 for tetrahedrons), associated with grid points on the reference
element as illustrated in Figure 1 (see [8] for details).

Fig. 1 Examples of nodal sets on the equilateral triangle for orders 4, 6, and 8.

The discrete solution, qN , of Maxwell’s equations is required to satisfy



4 J. S. Hesthaven, T. Warburton, C. Chauviere, and L. Wilcox∫
D

(
Q

∂qN

∂ t
+∇ ·F(qN)−SN

)
Li(x)dx (7)

=
∮

∂D
n̂ · [F(qN)−F∗]Li(x)dx.

In (7), F∗ denotes a numerical flux, the expression of which is given as

− [n̂×H− (n̂×H)∗] =− 1
2{{Z}}

n̂×
[
Z+(H−−H+)−αn̂× (E−−E+)

]
,

and

[n̂×E− (n̂×E)∗] =
1

2{{Y}}
n̂×

[
Y +(E−−E+)+αn̂× (H−−H+)

]
,

for the equations for the electric and magnetic fields, respectively. Here n̂ is an
outward pointing unit vector defined at the boundary ∂D of the element D. Using
standard notation, {{A}} signify the average across the interface.

In both cases, we have the possibility of the piecewise constant material coeffi-
cients, represented by

Z± =
1

Y± =

√
µ±

ε±
,

as the local impedance and conductance, respectively. The parameter α is a free
parameter with 0 ≤ α ≤ 1. For α = 0 the scheme is energy conserving but has
a potential for nonphysical solutions in rare cases [8]. For α > 0, the scheme is
slightly dissipative.

Note that this is an entirely local formulation where the fluxes are responsible
for coupling of the elements and interchange of information to ensure that the union
of the local solutions provides the global solution. Relaxing the continuity of the
elements decouples the elements, resulting in a block-diagonal global mass matrix
which can be trivially inverted in preprocessing. After discretization of the operators
and evaluation of the integrals appearing in (7), the problem can be rewritten in
matrix-vector form (see [8])

QM
dqN

dt
+S ·FN −MSN = Fn̂ · [FN −F∗]. (8)

The matrices M, S, and F represent the local mass-, stiffness-, and face-integration
matrices, respectively, the exact entries of which only depend on the metric of the
element. The local nature of the scheme allows for the use of an explicit solver for
the time discretization of (8) and this is done using an explicit fourth-order Runge–
Kutta method. Purely local time advancements are also possible.

The analysis of the scheme given above is complete and one can prove both
stability and high-order accuracy is the solution is smooth enough [8]. In particular,
for the dissipative upwind flux α = 1, one can generally expect optimal accuracy of
like ‖q−qN‖ ≤Chn+1 for h being a measure of the cell size.
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To illustrate the performance of the scheme, we consider plane wave TM scatter-
ing of a ka = 20π metallic cylinder. As simple as the case is, it allows for a thorough
validation through the exact solution. We use 950 elements and an high-order local
boundary condition [4]. A snapshot of Ez is shown in Fig. 2.

To measure the accuracy of the solution we compute the error in Ez as a function
of time for increasing resolution. The results are shown in Fig. 2. For 5th order poly-
nomials (n = 5) there are 8-10 points per wavelength. The results confirm exponen-
tial convergence as expected. This is also a indication of the excellent performance
of the high order local boundary conditions which introduces errors well below the
approximation error.
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Fig. 2 On the left is shown plane wave TM scattering of a ka = 20π metallic cylinder. The snapshot
is for Ez. On the right we show the error in Ez for plane wave TM scattering by a ka = 20π metallic
cylinder as a function of time for increasing resolution.

As a considerably more challenging problem, let us consider scattering by a per-
fectly conducting business card sized metallic plate as illustrated in Fig. 3. The hor-
izontally polarized plane wave impinges at the metallic plate at an almost grazing
angle, causing the excitation of strong waves along the edges of the metallic plate
as well as along the length of the plate. These waves contribute significantly to the
scattering process and need to be resolved to accurately predict the far field scatter-
ing. In Fig. 3 we also show the comparison between the experimentally measured
monostatic RCS [13] and a number of particular computed data points. We observe
good agreement over the full azimuthal range with results well within the exper-
imental error. We note in particular the good agreement in the backscatter region
where the scattering is dominated by traveling waves.

Many further examples and validation tests can be found in [5–7].
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Fig. 3 In a) we show the geometry for the plane wave scattering by a metallic business card while
b) shows the comparison between monostatic RCS experimental results [13] (full line) for hori-
zontal polarization of the illuminating field and particular computed data points (·).

3 Modeling Uncertainty in CEM

While computational methods have become increasingly refined and accurate, their
reliance on exact data, e.g., complete descriptions of geometries, materials, sources
etc, are emerging as a bottleneck in the modeling of problems of realistic complex-
ity. For instance, if one attempts to model an experiment, a classic computational
approach requires knowledge to a degree of detail which is unrealistic and often im-
possible to obtain, e.g., one can not hope to control all elements of an experiment,
measure all details of an initial condition or geometry, know the microstructure of
all materials etc.

The usual approach to deal with this lack of knowledge or uncertainty is to simply
assume some mean parameters and compute the corresponding solution. If the solu-
tion is robust to parameter variation, this is indeed a reasonable approach. However,
for general problems where the sensitivity of parts of the solution can be significant,
a solution based on mean parameters is not likely to match very well with experi-
ments and, thus, is not a good predictive tool. We would like to be able to model the
impact of the uncertainty, assumed to have certain properties derived from experi-
ments or otherwise, on the computed results, essentially resulting in an ensemble of
possible solution values with an associated probabilities which would immediately
enable the computation of statistical moments, e.g., means and variances.

As an advanced application of the computational framework presented above,
let us here pursue this goal and present a systematic, accurate, and efficient way of
addressing this type of problem, built on top of high-order accurate discontinuous
Galerkin methods for solving the time-domain Maxwells equations.

The key result on which we shall rely is due to Wiener (1938) (see also Cameron
and Martin [1] ) and shows that the Chaos expansion can be used to approximate
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any functional in L2(Ω ,P) where P is a Gaussian measure on Ω . For such random
processes X(θ), the Chaos expansion reads

X(θ) = a0H0 +
d

∑
i1=1

ai1H1(ξi1(θ))+
d

∑
i1=1

i1

∑
i2=1

ai1i2H2(ξi1(θ),ξi2(θ))+ ..., (9)

where ξ = (ξ1(θ), ...,ξd(θ)) represents d independent Gaussian variables with zero
mean and unit variance, each depending on the random event θ , and Hn are the
multivariate Hermite polynomials. Clearly the number of terms in the expansion (9)
grows as

P =
(n+d)!

n!d!
, (10)

where n is the length of the Hermite expansion and d is the dimension of the
Gaussian random space. To model the impact of uncertainty on the propagation of
electromagnetic waves, we include the randomness in the usual spatial-temporal
dimensions, i.e., the electric field and the magnetic field become E(x, t,θ) and
H(x, t,θ), reflecting that the fields are functions of d independent random variables,
(ξi1(θ), ...,ξid (θ)).

In the following we shall discuss in some detail how this can be utilized to con-
struct an efficient computational method. For simplicity of the discussion, we as-
sume in the sequel that one Gaussian variable suffices to represent the process (i.e.
d = 1). However, the formulation is general and applies to problems which require
many random variables to describe the stochastic processes.

Using the Chaos expansion we can express q(x, t,θ) = (E(x, t,θ),H(x, t,θ))T

as

q(x, t,θ) =
P

∑
i=1

qi(x, t)Ψi(θ). (11)

We can write the computational scheme, taking into account the randomness in a
general setting, as{

Q(θ)M
dqN

dt
+S ·FN −MS(θ)N = F n̂ · [FN −F∗]

qN(x, t = 0,θ) = f(x,θ)
, (12)

where the initial conditions are given by the function f = f(x,θ) and the unknown
vector qN is given by (11). As a first step, we discretize (12) in the random space
using a Galerkin approach. Multiplying (12) by a test function Ψk(θ), replacing qN
by its Chaos expansion and using orthogonality under the Gaussian measure, we
obtain

∀k ∈ [1,P] :
P

∑
i=1

〈QΨi,Ψk〉M
dqi

N
dt

+ k!S ·Fk
N −MSk

N = F
P

∑
i=1

n̂ · [Fi
N −Fi∗]. (13)

The initial conditions in (12) also need to be projected on to the Chaos basis to give
an initial condition for each mode of qi

N in the Chaos expansion, i.e.
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∀i ∈ [1,P] : qi
N(x, t = 0) =

1
i!
〈f(x,θ),Ψi〉 . (14)

Considering Eq.(13) we observe that we have recast the general stochastic problem
into a system of P coupled deterministic problems which we can now discretize in
space/time as discussed in Sec. 2.
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Fig. 4 On the left we show one sample of a surface mesh for the sphere with a random radius and
the right illustrates the RCS with uncertainty in the radius of the sphere.

Once the vectors {qi
N}1≤i≤P of the system (13) have been computed, we have

available at every point in space an approximation to the probability density of the
solution of the system. If we assume that we seek the moments of the solutions or a
linear combination of them we can take advantage of the basis to obtain

〈q(x, t,θ),1〉=
P

∑
i=1

qi(x, t)δ1i = q1(x, t) , (15)

i.e., the average is simply the first mode in the Chaos expansion. In a similar way,
we can obtain the variance and higher moments. Often, however, we are interested
in the statistics of some derived, possibly non-linear, functional, F(q) of q(x, t,θ),
e.g., computation of the impact on the radar cross section (RCS) of the uncertainty
in the scattering problem. To achieve this we consider

F(q(θ)) =
P

∑
j=1

F(q(θ j))L j(θ) .

i.e.,, we simply need to evaluate the general functionals at the values of θ j and since
we have already obtained full probabilistic information in the expansions we can
use these results directly to obtain the required information and, thus, the proba-
bilistic information on F(q). All informations of interest, e.g., moments, can now
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be extracted from this in the same way as for the simple variables. Naturally, one
can evaluate the integrals using a classic Monte Carlo approach. This can be done
at little cost since it only requires evaluation of the expansions and not solution of
Maxwell’s equations.

For the first experiment we consider the scattering of a plane wave, with normal-
ized frequency ω = 1, from a PEC sphere. We assume the sphere has a uniformly
distributed random radius in the interval [0.9λ ,1.1λ ], where λ is the wavelength of
the incident field. For the spatial discretization we use fourth order elements and a
sample mesh is presented in Figure 4(restricted to the surface of the sphere) and we
show the average of the RCS and the possible variations around its average value.
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Fig. 5 On the left we show the surface mesh for the three-dimensional rocket and on the right the
RCS for the three-dimension rocket problem. Results are shown with the mean RCS as well as ±
one standard deviation.

For the second example we consider the scattering of a plane wave, with fre-
quency ω = 1, from a PEC rocket. The direction of the incident field is assumed
to be unknown but uniformly distributed in the interval [10,20] degrees. For this
calculation the physical space is discretized with degree five polynomials in each
element. Figure 5 shows the mesh (restricted to the surface of the rocket) and the
average of the RCS and the possible variations around its average value.

4 Final Remarks

The discontinuous Galerkin method is at this stage a robust, efficient, accurate and
thoroughly validated alternative to the more classic FDTD method. It overcomes
many of the problems with both FDTD methods and alternatives such as finite-
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volume and finite element methods. Furthermore, large scale software [10] is avail-
able for download and use and there are several examples of successful third party
use. In this paper we have focused on PEC objects but there is nothing special about
these. The method is entirely general and can accomodate general materials, includ-
ing anisotropic and nonlinear materials as needed. Furthermore, the efficiency of the
method has been demonstrated on large problems already.

We have also discussed the combination of these techniques with more recent
developments to enable the modeling of PEC objects with random shapes and un-
certainties in the incident field. The approach described can, however, equally well
be used to account for others types of uncertainties as well as in connection with
other computational techniques. For example, instead of being purely reflective, the
object can be a material with a random shape. In this case, it is necessary to mesh
the entire domain and define a permittivity ε that takes some value inside the ob-
ject and another value outside. For material objects, the shape of the objects can be
moved randomly in the same way as a PEC object. In [2, 3], the uncertainty in the
shape of a material object was studied. However, the approach used was limiting the
uncertainty to be modeled to a single random variable. Other types of uncertainties
were also studied (randomness of the source term to mimic a slight variation in the
frequency of the source, randomness of the permittivity).

The combination of these two methods offers a unique ability to model large scale
time-dependent EM problems at high accuracy and with the ability to accurately
and efficiently account of sources of uncertainty, leading to sensitivity estimates of
measures of interest, e.g., the radar cross section.
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