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The dynamics of tilted dipole vortices in the equivalent barotropic vorticity (or
Hasegawa—Mima) equation is studied. A recent theory is compared with numerical simulations
and found to describe the short time behavior of dipole vortices well. In the long time

limit the dipoles are found to either disintegrate or relax toward a steady eastward propagating
dipole vortex. This relaxation is a consequence of nonviscous enstrophy loss by the

dipole vortex.

I. INTRODUCTION

The existence of steadily propagating dipole vortex so-
lutions to the Euler equation was first noted by Lamb.!
Later Stern’ showed the existence of a similar solution
(which he labeled “modon”) on the B plane, and Larichev
and Reznik® extended it to the equivalent barotropic vor-
ticity equation.* Since then dipole vortices have been the
subject of a large number of studies. We note in particular
that they appear naturally in various laboratory experi-
ments, for instance in a turbulent wake field in a thin soap
film,> or after injecting a jet into a rotating fluid.® The
westward propagating dipole vortex has. also been pro-
posed by McWilliams as a model of atmospheric blocking.
However, as will be seen below, this dipole vortex is un-
stable, implying that it is unlikely to be the cause of block-
ing.

The same equation as the equivalent barotropic vortic-
ity equation can be derived for nonlinear drift waves in a
magnetized plasma with a density gradient.® In the plasma
physics community the equation is known as the
“Hasegawa—Mima equation.” It has, in the last decade,
been realized that exact dipole vortex solutions exist in a
large class of nonlinear equations, which describe various
types of plasma motion. Since dipole vortices have the abil-
ity of carrying trapped particles over long distances, they
may be important for understanding anomalous transport
across the magnetic flux surfaces, corresponding to trans-
port in the north—south direction in geophysical flows.

In the presence of the 8 effect, there are two different
kinds of stationary dipole vortices: those propagating west-
ward, ie., in the same direction as, but faster than the
linear Rossby waves, and those propagating eastward. The
numerical solutions by Makino ez al,,’ who studied tilted
dipole vortices (i.e., launched with some angle to the east—
west axis), revealed an important difference between the
two classes. While the trajectory of the tilted eastward
propagating vortices was gently oscillatory, the westward
propagating ones executed a cycloid motion with large ex-
cursions from the original latitude. The latter case was,
however, just mentioned in passing by the authors, and
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they did not draw attention to the fact that it implies that
the steady westward propagating dipole is unstable.

Verkley'® obtained stationary dipole vortices in a uni-
form westerly flow on a sphere, and found that they are
unstable by solving the linear eigenvalue problem numeri-
cally. Since these vortices are in resonance with the linear
waves, his solutions contain a global pattern of standing
Rossby-Haurwitz waves, and are rather different from the
localized dipole vortices studied here.

Zabusky and McWilliams'! proposed to model dipole
vortices by two point vortices with different sign, and stud-
ied this system for the eastward, oscillating case. This point
vortex model exhibits the same qualitative difference be-
tween eastward and westward propagation as the numeri-
cal simulations, and predicts that the westward pro?agat-
ing dipole is unstable, as was pointed out by Hobson.'? The
existence of this instability has been confirmed by direct
numerical simulations.'>!?

Recently, a general equation of motion for dipole vor-
tices was proposed by Nycander and Isichenko.!* It is re-
lated to the point vortex model, but the dynamics is some-
what different, and the coefficients of the equation are
defined directly as integrals over a dipole vortex with ar-
bitrary smooth profile.

In the present work the motion of dipole vortices prop-
agating in arbitrary directions will be studied by direct
numerical simulations. In Sec. II the basic equation and
the Nycander—Isichenko!* theory is reviewed. Section I
deals with the evaluation of the theory and the study of the
long time behavior of the vortices. Since tilted dipole vor-
tices are not exact steady solutions, they gradually lose
energy and enstrophy to the surrounding fluid. The effect
of this on the motion will be the subject of Sec. IV. In Sec.
V a brief conclusion is given.

Il. THEORY

The equivalent barotropic vorticity equation (or the
Hasegawa—Mima equation) is

] L)
5 (6—V9)—B 5 —[4,7°$]=0, (1

where ¢ represents the perturbation of the fluid depth, [ , ]
the Jacobian, and f3 is proportional to the gradient of the
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Cariolis parameter. The maximum phase velocity of linear
Rossby waves propagating in the x direction is —f in di-
mensionless units. Note that in plasma physics the varia-
tion of the density is usually assumed to be in the x direc-
tion, whereas here it is taken to be in the p direction. The
X axis is pointing east and the y axis north.

It is straightforward to show that on an infinite domain
Eq. (1) conserves energy,

1 ) '
E=; [ 18+ (9)1ax ay, )

and enstrophy (or pseudomomentum, in the terminology
of McIntyre and Shepherd!®),

1
Q=3 f (¢—V2¢)%dx dy. (3)

The potenfial vorticity is a Lagrangian invariant

C=V’¢—¢+By, (4)

being conserved for each individual fluid element, moving
with the velocity v=2XV¢.

In 1976, Larichev and Reznik® found an exact dipole
vortex solution to Eq. (1);

Pr Jilkr) (& _
¢(r:9)=UP‘ am—r ?—I-I sin @ r<a,
Ki(pr) |
¢(r’6)=_UaK,(pa) sinf, r>a, (5)
where
U+B
2__

Here p?> 0 is necessary to ensure that the solution in Eq.
(5) is localized, i.e., U < — or U> 0. Thus the dipole and
the linear waves cover complementary parts of the velocity
space. Also J; and K are the first-order Bessel and modi-
fied Bessel function, respectively, e is the radius of the
circular separatrix, and U is the propagation velocity; « is
found as the first solution to the equation

Kz(pd) . J2(Ka)
paK,(pa)~  kali(ka)’

(7

ensuring continuity of V¢ at r=a, and ¢ is continuous up
to second derivatives, while higher-order derivatives are
discontinuous at r=a.

It is seen from Egs. (5)—(7) that for U< —B, p*<1
and for U>0, p2>1 so that the westward propagating
dipole vortex is smoother and less localized than the east-
ward propagating dipole vortex. For |U|»B, p*~1 and
the dipole shape becomes independent of the direction of
propagation.

In this paper, the focus with be on dipole vortices
launched at different angles, a, with respect to the x axis.
The main dynamics of such dipoles, as explained qualita-
tively by Makino et al.,” may be understood from the con-
servation of potential vorticity in the trapped fluid inside
the separatrix. When the dipole starts propagating—say, to
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the northeast—the vorticity of the dipole halves must de-
crease according to Eq. (4), so that the cyclone (situated
northward) becomes weaker and the anticyclone stronger.
The dipole therefore swings around southward and starts
increasing the vorticity and eventually reaches the original
latitude. The southeastward motion continues until the cy-
clonic part of the dipole becomes so strong that the dipole
swings around and starts propagating to the northeast
again. As a result we obtain an oscillatory motion. By
using similar arguments it is easy to realize that a westward
propagating dipole is unstable to smalil perturbations.u’”'

By quantifying these arguments, Nycander and
Isichenko'* recently derived a simple and approximate
equation of motion: for the velocity U of dipoles propagat-
ing in arbitrary directions:

aw s
*d—t=UXZ}’/3U"", (8)
d

where S =ma” is the area of the dipole inside the separatrix,
y is the y coordinate of the center of the dipole vortex, and
P;=|P,| is the magnitude of the dipole moment,

P f ($—V2d)r dx dy, )

with r=0 in the center of the dipole vortex. Equation (8)
is obtained by noting that the radius of curvature of the
trajectory is equal to the ratio between the dipole moment
and the monopole moment (i.e., the integral of ¢ — V2¢) of
the dipole vortex, and also that the monopole moment
varies linearly with the y coordinate of the vortex. The
latter is a consequence of the conservation of potential vor-
ticity inside the separatrix. It is assumed that the internal
structure of the dipole remains unchanged, implying that S
and P, are constant, and that the radius of curvature of the
trajectory is much larger than the diameter of the dipole.
This is justified if B/U<«1.

Equation (8) describes similar (but not identical) dy-
namics as the point vortex model.! 11216 Note, however,
that the coefficients of Eq. (8) are directly defined by the
properties of a dipole with an arbitrary smooth profile,
while the connection between the parameters of the point
vortex model and a smooth dipole vortex is less clear.

Equation (8) may be integrated, and the oscillation
frequency, w, obtained,

T BS 1/2 1
0=U3 ( ) IOk

7, (10)

where K is a complete elliptic integral of the first kind with
the argument k= [sin(a/2)|, where a is the maximum
angle between the trajectory and the x axis. Here a=0 for
an exactly eastward propagating‘steady dipole.

The maximum displacement in the north-south direc-
tion, y,, is found to be

y=+ (Py/BS)?2 sin(a/2), (11)

and the displacement along the east-west direction, L,
during one full oscillation, here referred to as the oscilla-

‘tion length, is
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L,=4(Py/BS)?[2E(k,m/2) —K(k)], (12)

where E is an elliptic integral of the second kind.

This theory assumes that the dipole vortex does not
lose any of its enstrophy to the surrounding fluid. How-
ever, Nycander and Isichenko'* identified two possible
mechanisms of such a loss. The first one is caused by the
outer fluid elements being displaced in the north—south
direction by the vortex as it passes by. Because of the con-
servation of potential vorticity they then acquire some am-
plitude of ¢—V?¢. The second mechanism is driven by the
pulsation of the two dipole halves, causing fluid elements
to be trapped and untrapped regularly. Fluid elements that
are released at a different meridional position than where
they were trapped then acquire some amplitude of ¢
—V? $. Consequences of this enstrophy loss will be dis-
cussed further in Sec. IV.

lll. NUMERICAL RESULTS

The dynamic behavior of tilted dipoles has been inves-
tigated by numerical solution of Eq. (1). The code is based
on a pseudospectral spatial approximation scheme in a pe-
riodic domain of size (L, L,)=(1515) with (M,N)
=(128,128) modes. All simulations are done with a dipole
diameter of 2, corresponding to about 17 wavelengths per
dipole diameter. A simple measure of the fidelity of the
code is the ability of reproducing the speed of a translating
dipole. It has been found that with seven wavelengths per
dipole diameter the speed is reproduced with an error less
than 5%. Similar demands for spatial resolution were also
found by Carnevale ez al.!” With.17 wavelengths per dipole
diameter, as in our simulations, the error is less than 0.5%.

A third-order Adams-Bashforth predictor—corrector
method is used as time integration and a zero-padding
scheme is used to remove aliasing errors. As initial value is
used the exact solution in Eq. (5) rotated o degrees. The
simulations were done on an IBM 3090/VF, situated at the
Technical University of Denmark, with a typical running
time for each time unit in Eq. (1) of 8 CPU sec with 20
time steps and 867 active modes.

A. Cutting facility

Before the detailed presentation of the numerical re-
sults, a problem will be addressed which is caused by the
periodic boundary conditioris used in the numerical calcu-
lations. A nonstationary propagating dipole loses energy
and enstrophy to a wake field, which finally evolves into
linear waves propagating westward. Because of the peri-
odic boundary conditions the dipole and the linear waves
eventually collide and some interaction will occur. It was
observed that this may have a strong impact on the behav-
ior of the dipole. This problem has been noticed previously
by Makino et al.,’ although no solution was found.

Since the linear waves mainly consist of long wave-
length waves, viscosity has only a marginal effect on them.

The technique implemented here is to multiply ¢ by a
cutting function at regular time intervals. The cutting func-
tion is defined as
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1, if r< Feuts
- _ 2
fcut(r) exp( _ m ), otherwise,
g

with #=0 at the center of the dipole structure; r,, must be
chosen large enough to ensure that the dynamics of the
dipole vortex is not significantly affected. The Gaussian
truncation is used to avoid steep gradients, which may
introduce numerical ringing.

. In order to fully remove the linear waves the trunca-
tion must be done with a maximum time interval of

L ~2r.
Lowt < J;]T[;u’

where L, is the length of the periodic domain in the east—
west direction.

The two constants ., and o are chosen empirically,
using the rugged invariants energy and enstrophy as diag-
nostics. For an eastward propagating steady dipole with
initial parameters U=0.1, ¢=1.0, $=0.05, the temporal
behavior of the invariants has been studied with a param-
eter scan in 7., (=2.5q, 3.0a, 3.5a, 4.0a) and o(=1.0, 2.0,
4.0). To ensure an insignificant effect of ringing, under the
constraint of a minimal spatial extension of the total cut-
ting function, the optimum choice of parameters was found
to be r;=3.5a, 0=1.0. This set of parameters will be used
in all simulations unless otherwise stated.

Repeated cutting decreases the energy of a steady di-
pole vortex by approximately 1% and the enstrophy by
8%, i.e., the effect of the cutting is to smoothen the struc-
ture. It is noteworthy that the dipole vortex responds to the
cutting by becoming more localized, -which is done by
slightly decreasing the propagation velocity U. After some
time the energy and enstrophy then stop decreasing, al-
though the cufting continues.

As a final test of the cutting scheme, the trajectory of
an oscillating dipole has been compared with the trajectory
of a similar dipole simulated in an elongated box without
cutting. Only the horizontal dimension was expanded,
since the dipole vortex in average propagates in this direc-
tion. The trajectory is defined as the motion of the center of

(13)

‘the dipole vortex. The center is found by doing a two-

dimensional (2-D) Taylor expansion around the position
of minimum and maximum ¢ in order to avoid problems
with the discrete configuration space, and then determining
the point halfway between the two. The result is shown in
Fig. 1. Until the time shown by the vertical dashed line, the
dipole vortex in the elongated box has not yet had time to
interact with the linear waves. The trajectory obtained with
the cutting facility applied in the smaller box shows good
conformity with the trajectory obtained in the elongated
box. We conclude that the cutting scheme does not affect
the dynamics significantly, and facilitates the study of long
time behavior of dipole vortices. The trajectory obtained
from a simulation in a small box without the cutting illus-
trates the need for the cutting facility.

As an additional check we also repeated the simulation
in a small box with double resolution. The trajectory was
then indistinguishable by eye from the one shown in Fig, 1.
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FIG. 1. Trajectories of dipoles illustrating the effect of the cutting
scheme. Initial parameters were U=0.1, a=1.0, B=0.05, a=30". The
solid line is the trajectory obtained in the elongated box (M=512,
L,=60) and the dotted line is the trajectory obtained in a smaller box
with the cutting applied. The dashed line is the trajectory obtained in a
small box without cutting, illustrating the need for this scheme.

B. Short time behavior

Simulations of oscillating dipoles have been performed
with a=1.0, U=0.1, r_,,=4.0a in the cutting function and
0.01<3<0.35. The reason for choosing 7, slightly bigger
than found in Sec. III A is that the dipole becomes slightly
less localized when S decreases (the optimum choice of
7eut=3.5a was found for £=0.05).

In most simulations no viscosity was included in Eq.
(1), but a few test runs were performed with a hypervis-
cosity term proportional to V°4 and large enough to re-
move ripples in the vorticity field. The results were found
to be almost unaltered by this dissipative term.

Simulations were performed to test the assumption of
constant dipole moment by applying the cutting shortly
after a quarter of a period, and calculating the dipole mo-
ment. The dipole moment was found to change less than
0.5% for different values of B and a. .

To test Egs. {10)—(12), the dipole behavior was sim-
ulated for different values of 8 and a. The three character-
istic parameters o, y,, L, were determined at the first max-
imum of the oscillation—after a quarter of a period. The
maximum was determined by making a parabolic fit to the
center point and the two surrounding points. The esti-
mated parameters were then found by extrapolation to a
whole period. The reason for using only a quarter of a
period is that the theory above assumes negligible loss of
energy and enstrophy, which may best be approximated by
“only analyzing the short time behavior.

In Fig. 2, the simulated oscillation frequency is com-
pared with Eq. (10). We observe good agreement between
theory and simulations for B/U<1 except for a<30°. In
Fig. 3 the maximum amplitude of the oscillation is plotted
and compared with the estimate from Eq. (11), and Fig. 4
shows the comparison between simulations and the oscil-
lation length from Eq. (12). In the limit 8/U<]1, the fig-
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FIG. 2. Oscillation frequency, , obtained from Eq. (10) compared with
computed results. O:8=0.01, @:8=0.05, A:3=0.20, A:3=0.35. Disin-
tegrating dipole vortices are encircled. Here and in all subsequent figures
a=1.0 and U=0.1.

ures show good correspondence between simulations and
theory even for a very large initial angle. However, there is
some unexpected deviation for small angles. This will be
discussed below.

In the region B/U > 1, the qualitative dependence of
the oscillation frequency, w, on the angle is correct, but the
exact value is seen to be too low. This may be explained by
energy loss causing the dipole vortex to decrease its prop-
agation velocity. The good agreement for y, and L, sup-
ports this assumption.

Some of the dipoles disintegrate shortly after a quarter
of a period, as marked in Figs. 2-4. The large deviation for
B/7U» 1 and large initial propagation angle are most likely
connected to processes causing the disintegration.

In order to investigate the rather unexpected deviation
between the numerical results and the theory in the limit of

FIG. 3. Maximum vertical displacement, y, obtained from Eg. (11)
compared with computed results. O:x=5°, ® :a=30", A:a==60", A:x
=90°. Disintegrating dipole vortices are encircled.
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FIG. 4. Oscillation length, L,, obtained from Eq. (12) compared with
computed results. Symbols as in Fig. 3.

B/U<«1 and a<90° a detailed study of this region has been
done. The result is shown in Fig. 5. The deviation is not an
effect of the cutting, since for S=0.05 the dipole vortex
propagates more than a quarter of an oscillation before
being perturbed by the cutting.

One may speculate that the deviation is caused by
some internal transient process. It has been observed from
scatter plots that the internal reorganizing process has a
stronger effect when « is small, causing the functional de-
pendency of I' on ¢+ Uy inside the separatrix to become
weakly nonlinear after a quarter of an oscillation. This idea
is supported by the fact that calculating the oscillation
frequency of the dipole after several oscillations yields in-
creased agreement with the theory as shown in Fig. 5.

As has been shown, the above theory seems to agree
well within the given limits. However, as will become evi-
dent in the next section, the energy and enstrophy losses
have a strong impact on the long time behavior of the
dipole, implying that the theory is only valid for the first

0.05
] 8=0.05
tk e
) L4 ®
0.04 . ® k ® ®
f o0
0.03
3 N
0.02— 0.01
le) Q O O 0
O
- (@]
0.01 ho o ©
000 T T T T — T T T T
0 15 30 45 60 75

FIG. 5. Magnification of Fig. 2. * mark the results obtained after several
oscillations.
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60 80 100

FIG. 6. Trajectories for initially eastward propagating dipole vortices,
i.e, Uin Eq. (5) is positive; B=0.05.

few oscillations. After these the dipole vortex has changed
significantly, and the theory fails to describe the trajectory
of the oscillating dipole based on the initial conditions.

C. Long time behavior

After having studied the short time dynamics of tilted
dipoles, which, at least in part of the parameter space,
seems to be strongly affected by initial transient effects, the
focus will now be on the behavior of the dipole vortex after
several oscillations. One might then expect the internal
energy to be distributed in the most favorable way, and
some regular behavior to appear.

Simulations have been done with parameter scans in 3
and a in order to investigate the long time evolution of
eastward propagating dipoles launched at the angle a. The
simulations are done with a=1.0, U=0.1, and r ,;=3.5a.

Figure 6 shows trajectories for dipoles with =0.05
and different initial angle. The most interesting feature is
that they all relax to almost steady, eastward propagating
dipoles, independently of the initial conditions. In this final
state the distance between the two poles has increased with
approximately 5%, the propagation velocity has gone
down to about 80% of the initial value, and the enstrophy
has decreased by about 7%.

For a large initial angle the trajectory is approximately
sinusoidal, as one might expect. However, for smaller
launch angles the initial part of the trajectory is rather
irregular, indicating that the dipole in this phase is affected
by the internal reorganization process.

Figure 7 shows trajectories for dipoles with «=30° and
different values of 8. Again we observe the similarity in the
long time behavior, independently of the initial conditions.
Apparently the steady dipole propagating eastward is an
attracting solution.

Simulations of dipoles with a very large initial launch
angle are shown in Fig. 8. We observe that if the angle is
too large, the dipole soon disintegrates. Thus there seems
to be only two possible outcomes of a dipole vortex initially
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FIG. 7. Trajectories for initially eastward propagating dipole vortices;
a=130"

propagating at some angle. Either the dipole ends up as a
steady eastward propagating dipole or it disintegrates. In
order to examine the basin of attraction of the eastward
propagating solution, we have plotted the result of a num-
ber of simulations on the (@, B/U) plane in Fig. 9. The
simulations are done with a=1.0, U=0.1, r,;=3.5a. The
maximum time for all simulations is T',,, =400, since it is
observed that the disintegration happens before this time.
(It is accelerated by the cutting.)

Simulations have also been done to investigate the long
time evolution of westward propagating dipoles initially
rotated by 8 degrees (6=180—a) away from the negative
x axis. The simulations are done with a=1.0, U= -0.1,
B=0.05, and r,,,=4.0a in the cutting facility.

Figure 10 clearly illustrates the linear instability of the
westward propagating dipole, as discussed in the previous
section. It is noteworthy that an initially westward propa-
gating dipole may swing around and end up as an eastward
propagating dipole. Comparing Fig. 6 and Fig. 10, it is also

40

FIG. 8. Trajectories for initially eastward propagating dipole vortices.
The indicated time is the approximate time of disintegration; 5=0.01.
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FIG. 9. Basin of attraction for initially eastward propagating dipole vor-
tices. O symbolized disintegrated dipoles, while ® symbolizes that in the
long time limit the dipole vortex relax toward a steady eastward propa-
gating dipole vortex. The result will be similar for negative angles due to
the symmetry relation of Eq. (1).

evident that the westward propagating dipole is much less
affected by the internal effects, which cause the irregular -
initial trajectories of the eastward propagating dipoles.

Similarly, as for the eastward propagating dipole vor-
tex, we may calculate the ultimate fate of the tilted west-
ward propagating dipole. This is shown in Fig. 11. The
difference in the dynamical behavior of the two types of
dipoles is possibly caused by the fact that the westward
propagating dipole vortex is less localized than the east-
ward propagating dipole vortex. It was observed that in the
limit of B/U<1 (~10"2-10"%) the dynamical behavior of
the perturbed dipoles is independent of the initial direction
of propagation. This is not surprising, when it is remem-
bered that in this limit p~1, and the structure is indepen-
dent of the sign of U.

FIG. 10. Trajectories for initially westward propagating dipole vortices,
i.e., U is negative. Here §=180—q is the angle between the initial prop-
agation direction and the negative x axis; 5=0.05.
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FIG. 11. Ultimate fate of initially westward propagating dipole vortices.
Symbols as in Fig. 9.

IV. CONSEQUENCES OF ENSTROPHY LOSS

As pointed out in Sec. II, the vortex gradually loses
enstrophy to the surrounding fluid by nonviscous pro-
cesses. This means that the amplitude ¢— V¢ must de-
crease in magnitude. Because of the conservation of poten-
tial vorticity, the cyclonic part must then move a little
northward and the anticyclonic part a little southward. For
a northeastward propagating dipole this induces a clock-
wise torque around the center of the dipole vortex and as a
result we observe that the propagation angle decreases.
Similar arguments may be adopted to explain why the
westward propagating dipoles swing around and finally be-
come eastward propagating. The enstrophy loss also causes
the two dipole halves to be pulled slightly apart implying a
small decrease in the propagation velocity. This corre-
sponds well with the speculations used in Fig. 2 to explain
the deviation between the Nycander—Isichenko' theory
and the simulations for 8/U> 1. :

To express the effect of enstrophy loss on the propa-
gation angle quantitatively, we calculate the change in en-
strophy of the dipole vortex when it is rotated o degrees
from exactly eastward, which is the position of minimum
enstrophy. A first-order perturbation of Eq. (3) yields

6Q=2f g6q dx dy=23f gdy dx dy, (14)

s s
where g=¢— V24, 8y is the vertical displacement of each
fluid element due to the rotation, and the integral is taken
over the surface inside the separatrix. Comparing with Eq.
(9) we see that the right-hand side of Eq. (14) is just the
change of the y component of the dipole moment. Thus,

8Q=2BP%(1— cos a), (15)

where P‘;}‘ is the dipole moment inside the separatrix. This
expression is analogous to the change of the potential en-
ergy (W) of an electrical dipole in an external homoge-
neous electrical field E. For this dipole W= —p-E, where
p is the dipole moment of the electrical dipole.
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Using that P‘;}‘ ~ (2a)US and that the total enstrophy
is Qg~ (2aU) 23, the relative change of enstrophy is ob-
tained

60 B

Q—o~26(1—cosa). (16)
This equation may be used to obtain a qualitative under-
standing of the unexpected deviation observed in Fig. 5,
since it shows that in the limit of /U<1 only minor rel-
ative changes in the enstrophy may cause a significant
change of the propagation angle.

Simulations have been done to test Eq. (15). The cut-
ting scheme selectively removes the enstrophy from the
surrounding fluid (without it the code would conserve the
total enstrophy of the flow). Since this fluid was initially
quiescent, its enstrophy must originally have come from
the dipole vortex. The cutting scheme can therefore be
used for estimating the enstrophy lost by the dipole to the
surrounding fluid. It was found that Eq. (15) overesti-
mates the loss of enstrophy when «a is large. However,
results have been obtained indicating that large launch an-
gles excite internal oscillations in the dipole vortex, with a
frequency a few times larger than the oscillation frequency
o of the trajectory. This effect may account for the differ-
ence between Eq. (15) and the actual enstrophy loss, since
the free energy obtained by decreasing the angle is partly
lost to the surrounding fluid and partly used to excite the
internal oscillations.

For small propagation angles Eq. (15) is found to un-
derestimate the enstrophy loss, which we cannot explain.
On the other hand, the loss is very small in this limit.

Nycander and Isichenko'* assumed that if the change
of enstrophy was small compared to the total enstrophy of
the dipole vortex, the dynamics would be unaltered. How-
ever, Eq. (15) shows that the characteristic enstrophy
needed to affect the dynamics is of the order of 2BPY,
which can be much smaller than . This explains why
interactions between a dipole and low-amplitude linear
waves may significantly affect the dipole trajectory as seen
in Fig. 1. Similarly, we may expect that the enstrophy
needed to split the dipole vortex into two vortices is of the
order of 28P}, so that this quantity is analogous to a
“binding energy.”

V. CONCLUSIONS

It has been shown that the theory of Nycander and
Isichenko'* describes the short time behavior of the oscil-
lating dipole vortex quite well. However, since the dynam-
ics of the nonstationary dipole is strongly affected by non-
viscous loss of energy and enstrophy, the theory fails to
describe the long time dynamics of the dipole vortex. It has
also been shown that in part of the parameter space the
short time vortex behavior is strongly affected by initial
transient effects, caused by an internal reorganizing pro-
cess.

In the long time limit dipoles launched at some finite
angle are found to either end up as steady eastward prop-
agating dipoles or disintegrate shortly after the initial pe-
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riod. Thus, the steady eastward propagating dipole vortex
is an attracting solution. Our explanation of this is that
eastward propagation is the minimum enstrophy state of
the dipole vortex. The long time behavior can be inter-
preted as a relaxation toward this state, caused by enstro-
phy loss to the surrounding fluid. However, no definite
quantitative confirmation of this has been obtained.

McWilliams” and others!® have attempted to model
atmospheric blocking, which is a midlatitude phenomenon
characterized by unusual long time persistence of nearly
stationary pressure cells, as a steady westward propagating
dipole vortex. However, as has been seen in this work, the
westward propagating dipole vortex is unstable and very
sensitive to changes of enstrophy for small angles. The
e-folding time of this tilt instability can be estimated theo-
retically as 2a/p, i.e., the diameter of the vortex divided by
the mazimum phase speed of Rossby waves, and in our
simulations it is approximately two-thirds of this value.
This is typically only a couple of days. (Verkley obtained
3.6 days for typical atmospheric parameters, but it should
be remembered that the nature of his solution is different in
that it contains a global pattern of standing waves.) The
typical time scale of blocking events, on the other hand, is
a few weeks.”!®!% It is also clear that in order to observe
dipole vortices in the atmosphere one should look for east-
ward propagating dipoles propagating at a speed being the
sum of the dipole velocity and the mean westerly wind
speed.
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