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1. INTRODUCTION

The genius of James Clerk Maxwell led to a simple system of equations, known

to us as Maxwell's equations, describing the propagation of electromagnetic waves

and, combined with constitutive relations and boundary conditions, the interaction

of electromagnetic energy with matter. As simple as these equations appear, their

importance is tremendous and accurate, eÆcient, and robust methods for solving

them are at the heart of the modeling and design of emerging technologies such

as very low observable vehicles, ground/foliage penetrating radars, phase sensitive

components, and high-speed electronics and electrooptics.

The simplicity of Maxwell's equations is indeed deceptive and solving them accu-

rately and eÆciently in realistic applications remains a signi�cant challenge which

continues to attract attention among computational mathematicians, physicists,

and engineers alike. What complicates the solution of Maxwell's equations is the

need to accurately model the wave-matter interaction, i.e., reection, refraction,

and di�raction processes, the vectorial nature of the boundary conditions, and the

size and geometric complexity one often encounters in applications. This imposes

requirements on the accuracy and performance of the computational tools well be-

yond that of existing standard techniques. The need to identify new approaches to

electromagnetic modeling and design is further emphasized by the growing inter-

est in very broad band signals and their interaction with large and geometrically

complex objects, often involving regions of inhomogeneous, anisotropic, lossy, or

even nonlinear materials. Additional complications often involve random surfaces

and materials which become of increasing importace as the frequency of the waves

increase in applications as and in modeling e�orts.

The classical integral based solution techniques [17], as unchallenged as they are

for pure scattering problems, are less appealing for broadband applications and

problems including penetration, complex materials, and random e�ects. Finite

element techniques [69, 120] can, at signi�cant cost, successfully address some of

these concerns but does so assuming monochromatic waves. This suggests that

one turns the attention to time-domain methods for solving Maxwell's equations.

Indeed, the strength of this approach has been successfully demonstrated over the

last few decades, beginning with the 2nd order accurate Yee scheme [132]. As

simple as this scheme is, it continues to be the main workhorse of computational

electromagnetics in the time-domain [116, 117].

It is easy to identify several reasons for the success of the Yee scheme but its

most appealing quality is perhaps its simplicity. Furthermore, the use of the stag-

gered grid improves the accuracy somewhat and can be shown to ensure that the

divergence of the initial conditions in homogeneous regions is preserved exactly in

agreement with Maxwell's equations [132].

The limitations of the Yee scheme are, however, equally straightforward to iden-

tify. Apart from the 2nd order accuracy, limiting the electric size and duration of

problems one can consider, the embedding of the computational geometry poses the

most signi�cant problem by requiring one to approximate boundaries and interfaces

by a staircased curve. While this may seem adequate for many problems it never-

theless a�ects the overall accuracy and essentially reduces accuracy of the scheme

to �rst order. Techniques for overcoming this are plentiful in the literature, see e.g.
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[70, 91, 116, 133, 59]. Most of these methods, however, sacri�ce the simplicity of

the original Yee scheme to achieve the improved accuracy which remains, at best,

second order.

However, as the problems increase in size and the geometries in complexity,

one begins to encounter the limits of the second order scheme. In particular the

accumulating dispersion errors becomes a major concern, see, e.g., [104]. Ways to

overcome this problem are, however, few and well known { decrease the grid size

or increase the order of the scheme. As the former quickly becomes impractical for

large scale problems it is only natural to turn the attention to the development of

high-order accurate methods for solving Maxwell's equations in the time-domain.

As we shall discuss in Sec. 3, high-order methods are characterized by being able

to accurately represent wave propagation over very long distances, using only a

few points per wavelength. For three-dimensional large scale computations, this

translates into dramatic reductions in the required computational resources, i.e.,

memory and execution time, and promises to o�er the ability to model problems

of a realistic complexity and size.

This comes at a price, however. The simplicity of the schemes is sacri�ced some-

what for the accuracy, in particular when combined with a need for geometric

exibility. This increased complexity of the scheme is perhaps the main reason

for the rather slow acceptance of high-order methods among practitioners of com-

putational electromagnetics. Although the need for high-order accurate schemes

was realized by some practitioners early on [92], acceptance of this is still far from

wide spread. Evidence of this is the lack of contributions discussing high-order time-

domain methods in recent overviews of state-of-the-art techniques in computational

electromagnetics [41, 83].

It is the purpose of this review to rectify this by o�ering an overview of a number

of recent e�orts directed towards the development of high-order accurate methods

for the time-domain solution of Maxwell's equation. By high-order we shall refer

to methods with a spatial convergence rate exceeding two. The question of which

order of accuracy is suitable for large scale applications is an interesting question

in itself and can be analyzed as a cost-bene�t question [30, 124, 39]. While the

answer naturally has some problem dependence, the general conclusion is that

schemes of spatial order four to six o�ers an optimal balance between accuracy

and computational work for a large class of applications. It is therefore natural to

focus on methods that have the potential to reach this level of accuracy.

Unavoidably, the discussion is colored by our own interests and experiences and

some smaller current developments have not been included in this discussion, most

notably perhaps multi-resolution time-domain methods [117]. These methods do

display high-order accuracy under certain circumstances, but are notoriously diÆ-

cult to use for geometrically complex problems. As this remains one of the major

concerns, we have chosen not to include a discussion in this review. A good starting

point for such methods is [117].

While more selective overviews are available [117, 19] we shall strive to bring

most current e�orts into the discussion. We hope this, one on hand, will be helpful

as a starting point to the practitioner seeking alternatives to standard techniques

and, on the other hand, can serve as a updated review of an emerging and rapidly

evolving �eld to the interested computational mathematician.
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What remains of this review is organized as follows. In Sec. 2 we recall Maxwell's

equations in the time-domain, discuss boundary conditions, various simpli�cations,

and standard normalizations. Section 3 is devoted to an overview of the by now

classical phase-error analysis as a way of motivating the need to consider high-

order accurate methods in time-domain electromagnetics, in particular as problems

increase in size and complexity. This sets the stage for Sec. 4 where we discuss

extensions of the Yee scheme and other more complex �nite di�erence schemes.

It will become apparent that a major challenge in the development of high-order

methods is in fact not to achieve the high order accuracy but rather to do this in

ways that enables geometric exibility. An interesting development in this direction

is the emerging embedding techniques which we discuss in some detail.

In Sec. 3 it emerges that higher order schemes allow a signi�cant reduction of

the degrees of freedom without sacri�cing accuracy. For some applications it may

be natural to consider the ultimate limit, leading to global or spectral methods

as discussed in Sec. 5. As tempting as this approach is, the need for geometric

exibility again enters as a major concern. We discuss in some detail the elements

of spectral multi-domain methods, which combine the accuracy of global methods

with the geometric exibility of a multi-element formulation.

The need to decompose the computational domain into multiple elements to

maintain accuracy and geometric exibility is not unique to computational elec-

tromagnetics and it is only natural that much work has focused on transferring

successes from other branches of science into the time-domain solution of Maxwell's

equations. An example of this is discussed in Sec. 6 where recent e�orts on the de-

velopment of high-order �nite volume methods, recovered by considering Maxwell's

equations as a system of conservation laws, is outlined. A parallel and more ex-

tensive e�ort focuses on the development of �nite element methods for solving

Maxwell's equations in the time-domain. This, as discussed in Sec. 7, is more

involved and requires attention to a number of issues, e.g., proper form of the

equations, proper variational statement, and element types. We shall discuss some

possibilities and recent developments before turning the attention to discontinuous

element schemes which we discuss in some detail due to their attractive proper-

ties for problems such as Maxwell's equations. As we shall see, the �nite element

formulations are in general the mathematically most complex but also result in for-

mulations which appear most promising at this point in time, assuming { naively {

that the associated grid-generation is a minor issue. We conclude, in Sec. 8, with a

brief discussion of issues related to high-order time stepping and discrete stability,

before o�ering a few concluding remarks in Sec. 9.

2. MAXWELL'S EQUATIONS IN THE TIME-DOMAIN

We concern ourselves with the direct solution of Maxwell's equations on di�er-

ential form

@ ~D

@~t
= ~r� ~H + ~J ;

@ ~B

@~t
= � ~r� ~E ; (1)
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~r � ~D = ~� ; ~r � ~B = 0 ; (2)

in the three-dimensional domain, 
, with the charge distribution, ~�(~x; ~t). The

electric �eld, ~E(~x; ~t), and the electric ux density, ~D(~x; ~t), as well as the mag-

netic �eld, ~H(~x; ~t), and the magnetic ux density, ~B(~x; ~t), are related through the

constitutive relations

~D = ~" ~E ; ~B = ~� ~H :

The permittivity tensor, ~", and the permeability tensor, ~�, are in general anisotropic

and may depend on space and time as well as the strength of the �elds themselves.

The current, ~J , is typically assumed to be related to the electric �eld, ~E, through

Ohms law, ~J = ~� ~E, where ~� measures the �nite conductivity, although more com-

plex relations are possible.

In the subsequent discussion, we shall generally assume that the materials can be

assumed isotropic, linear, and time-invariant. In that case the constitutive relations

take the form

~D = ~"0"r ~E ; ~B = ~�0�r ~H :

Here ~"0 = 8:854� 10�12 F/m and ~�0 = 4� � 10�7 H/m represent the vacuum per-

mittivity and permeability, respectively, and "r(x) and �r(x) refers to the relative

permittivity and permeability, respectively, of the materials.

It is worth while pointing out, however, that most of the methods discussed in

the following can be extended to include much more complex and even nonlinear

materials with limited additional e�ort required.

Taking the divergence of Eq.(1) and applying Eq.(2) in combination with Gauss'

law for charge conservation shows that if the initial conditions satisfy Eq.(2), and

the �elds are evolved according to Maxwell's equations, Eq.(1), the solution will

satisfy Eq.(2) at all times. Hence, one generally views Eq.(2) as a consistency

relation on the initial conditions and limit the solution to the time-dependent part

of Maxwell's equations, Eq.(1), although the validity of doing so remains somewhat

controversial [65, 72]

To simplify matters further, we consider the non-dimensionalized equations by

introducing the normalized quantities

x =
~x
~L

; t =
~t

~L=~c0
;

where ~L is a reference length, and ~c0 = (~"0~�0)
�1=2 represents the dimensional

vacuum speed of light. The �elds themselves are normalized as

E =
~Z�10

~E
~H0

; H =
~H
~H0

; J =
~J ~L
~H0

;

where ~Z0 =
p
~�0=~"0 refers to the dimensional free space intrinsic impedance, and

~H0 is a dimensional reference magnetic �eld strength.
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With this normalization Eq.(1) takes the form

"r
@E

@t
= r�H + J ; �r

@H

@t
= �r�E ; (3)

which is the form of the equations we shall consider in what remains. The compo-

nents of the �elds are subsequently referred to as E = (Ex; Ey; Ez)T and likewise

for H and J .

To solve Maxwell's equations in the vicinity of boundaries, penetrable or not, we

shall need boundary conditions relating the �eld components on either side of the

boundary. Assuming that a normal unit vector, n̂, to the boundary is given, the

boundary conditions on the electric �eld components take the form

n̂� (E1 �E2) = 0 ; n̂ � (D1 �D2) = �s ;

where Ei and Di, i = (1; 2), represent the �elds on either side of the interface and

�s represents a surface charge. Equivalently, the conditions on the magnetic �elds

are given as

n̂� (H1 �H2) = Js ; n̂ � (B1 �B2) = 0 ;

where Js represents a surface current density.

In the general case of materials with �nite conductivity, no surface charges and

currents can exist, and the relevant conditions become

n̂� (E1 �E2) = 0 ; n̂� (H1 �H2) = 0 ; (4)

expressing continuity of the tangential �eld components. The normal components

of the ux densities must likewise satisfy

n̂ � (D1 �D2) = 0 ; n̂ � (B1 �B2) = 0 ; (5)

i.e., they are continuous, while the normal components of the �elds themselves are

discontinuous.

For the important special case of a perfect conductor, the conditions take a special

form as the perfect conductor supports surface charges and currents while the �elds

are unable to penetrate into the body, i.e.,

n̂�E = 0 ; n̂ �B = 0 : (6)

2.1. The Scattered Field Formulation

For scattering and penetration problems involving linear materials it is often

advantageous to exploit the linearity of Maxwell's equations and solve for the scat-

tered �eld, (Es;Hs), rather than for the total �eld, (E;H). These are trivially

related as
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E = Ei +Es ; H =Hi +Hs ;

where (Ei;Hi) represents the incident �eld, illuminating the scattering object.

A particularly useful illumination is the vacuum plane wave of the form

Ei = A exp

�
i2�

L

�

�
k̂ � x� �t

��
; Hi = k̂ �Ei :

Here k̂ = (k̂x; k̂y; k̂z)
T is normalized wave vector and � the normalized frequency.

One can think of L=� as a normalized inverse wavelength of the illuminating wave.

For monochromatic plane wave illumination, it is customary to take L = � to

simplify matters.

Assuming that (Ei;Hi) represents a particular solution, e.g., the plane wave

solution give above, to Maxwell's equations, one recovers the scattered �eld formu-

lation

"r
@Es

@t
= r�Hs + �Es � �"r � "ir

� @Ei

@t
+ (� � �i)Ei ; (7)

�r
@Hs

@t
= �r�Es � ��r � �ir

� @Hi

@t
; (8)

where "ir(x), �
i
r(x), and �i(x) represents the relative permittivity, permeability

and conductivity of the media in which the incident �eld is a solution to Maxwell's

equations, e.g., in the above case of a plane wave vacuum �eld illuminating the

object we have "ir = �ir = 1, and �i = 0. To simplify matters we have assumed

Ohms law, J = �E.

In this formulation, the boundary conditions along a dielectric interface are

n̂� (Es
1 �Es

2) = 0 ; n̂� (Hs
1 �Hs

2) = 0 ; (9)

for the tangential components, while the conditions on the scattered �eld compo-

nents becomes

n̂�Es = �n̂�Ei ; n̂ �Bs = ��rn̂ �Hi ; (10)

in the case of a perfectly conducting boundary. The general conditions on normal

components can likewise be derived directly from Eq.(5).

2.2. Maxwell's Equations in One and Two-Dimensions

For completeness, let us also state Maxwell's equations in the one- and two-

dimensional cases. In the former case we simply have
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"r
@Ez

@t
=

@Hz

@x
+ Jz ; �r

@Hz

@t
=

@Ez

@x
: (11)

Both �eld components are tangential to a material interface and, thus, always con-

tinuous { but not smoother than that. At a metallic boundary, Ez vanishes. This

set of equations is well suited for testing new schemes as it captures essential fea-

tures of Maxwell's equations, e.g., two-way wave propagation and loss of smoothness

across material interfaces.

To model e�ects of polarization, reection/refraction at interfaces, di�raction etc

we need to consider two dimensional problems. In this case Maxwell's equations

separate into two independent cases { polarizations { with the transverse electric

(TE) form being

"r
@Ex

@t
=

@Hz

@y
+ Jx ; (12)

"r
@Ey

@t
= �@Hz

@x
+ Jy ;

�r
@Hz

@t
=

@Ex

@y
� @Ey

@x
;

by assuming that Ez = 0 and @
@z = 0. The other polarization, known as the

transverse magnetic (TM) form, is given as

�r
@Hx

@t
= �@Ez

@y
; (13)

�r
@Hy

@t
=

@Hz

@x
;

"r
@Ez

@t
=

@Hy

@x
� @Hx

@y
+ Jz ;

by taking Hz = 0.

Boundary conditions and scattered �eld forms can be derived as for the general

case discussed previously.

3. THE CASE FOR HIGH-ORDER METHODS IN CEM

To come to an appreciation of the need for high-order methods in time-domain

electromagnetics, let us briey recall the question of phase-errors associated with

�nite-di�erence methods, as �rst presented in the pioneering work of Kreiss and

Oliger [80].

Consider, as the fundamental component of Maxwell's equations, the scalar wave

equation

@u

@t
= �c@u

@x
; u(x; 0) = eikx ;

in the domain x 2 [0; 2�] and subject to periodic boundary conditions. Here k =

2�=� is the wavenumber. To begin with, we consider only the e�ect of the spatial
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approximation and restrict the discussion to �nite di�erence methods. One should

keep in mind, however, that the conclusions reaches remain qualitatively true also

for the other high-order accurate schemes discussed subsequently.

We introduce an equidistant grid

xj =
2�j

N
= jh ; j 2 [0; N � 1] ;

such that u(xj ; t) = uj . Using a 2m'th order explicit central di�erence approxima-

tion to the spatial derivative of u(x; t) yields the semi-discrete scheme

du

dt

����
xj

= �c
mX
n=1

� �2(�1)n(m!)2

(m� n)!(m+ n)!

�
1

2n
Dnuj ;

where

Dn =
En � E�n

h
; Enuj = uj+n ; (14)

represents the central di�erence and shift operator, respectively.

The exact solution to this semi-discrete equation is

u(x; t) = eik(x�cm(k)t) :

Here cm(k) is termed the numerical wave speed. Clearly we wish that c ' cm(k)

over as large a range of the wavenumber, k, as possible. A measure of this, the

phase error, is de�ned as

em(k) = jk(c� cm(k))tj :

The analysis of the phase error allows us to answer questions about the proper

choice of schemes for a speci�ed phase error and the overall eÆciency of high-order

methods.

To continue, let us introduce non-dimensional measures of the actual scheme. In

particular, we introduce

p =
�

h
=

2�

kh
; � =

ct

�
;

which are nothing else than the number of points per wavelength, p, and the number

of wave-periods, �, we wish to advance the wave. The phase-error thus becomes

em(p; �) ' ��

�m

�
2�

p

�2m

;

where �m is a constant speci�c to the truncation error of the di�erent schemes, e.g.

�1 = 3, �2 = 15, �3 = 70 [80] etc. If we term the maximal acceptable phase-error,

"p, we recover the lower bounds

pm(�; "p) � 2� 2m

r
��

�m"p
/ 2m

r
�

"p
; (15)
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on the number of points per wavelengths, pm(�; "p), required to ensure a speci�ed

error, "p, after � periods of propagation. We note that the required number of points

per wavelength depend on the acceptable accuracy, "p, but also on the number of

periods, �, needed to complete the computation, i.e. the e�ect of the phase-error

accumulates over time.

Assume now that we wish to propagate a wave in a d-dimensional box with side

lengths �. Clearly, considering general problems of size L� simply scales all results

with Ld.

The memory needed to store the �elds is proportional to

Memory / (pm)
d /

�
�

"p

� d
2m

:

Furthermore, the work needed to advance the solution to the �nal time, t, scales as

Work / (2mpm)
d t

�t
/ (2m)d�

�
�

"p

� d+1

2m

:

The strong dependence on 2m, i.e., the order of the scheme, suggests that using

high-order schemes (m > 1) is advantageous when measured in memory usage

and/or required computational work in the following situations

� "p � 1, i.e., when high accuracy is required.

� � � 1, i.e., when long time integration is needed.

� d > 1, i.e., for multi-dimensional problems.

� pm < 10, i.e., eÆcient discretizations of large problems.

These are clearly situations of relevance to the modeling of electromagnetic phe-

nomena. While this analysis does not include e�ects of grid-anisotropy on the

wave-propagation, this is only to bene�t of the low-order schemes which will su�er

most from such phenomena. Furthermore, the popular use of staggered grids will

not improve the eÆciency of the low-order methods qualitatively [127].

Thus, the use of high-order accurate methods promises to enable the accurate and

eÆcient modeling of transient electrically large problems over long times. It is the

purpose of what remains to discuss a number of recently developed computational

methods that aims at ful�lling these promises.

4. HIGH-ORDER FINITE DIFFERENCE SCHEMES

The most widely used computational technique for solving Maxwell's equations in

the time-domain, the �nite-di�erence time-domain (FDTD) method, can be traced

to a scheme introduced by Yee [132]. It utilizes the special structure of Maxwell's

equations and introduces a spatially staggered equidistant grid in which the problem

of interest is embedded.

Let us introduce ui = u(xi) as a grid function de�ned on an equidistant grid,

xi, with grid size, h. Using the notation of Eq.(14), the familiar 2nd order central

�nite di�erence scheme is

dui
dx

= 1
2D1ui :
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To recover a semi-discrete approximation to Eq.(11) we de�ne a set of staggered

grids, xi and xi+1=2, shifted space by h=2, on which E and H are collocated,

respectively. This yields

"(xi)
dEz

i

dt
= D1=2H

z
i ;

�(xi+1=2)
dHz

i+1=2

dt
= D1=2E

z
i+1=2 :

We assume, for simplicity, no currents, i.e., Jz = 0. Approximating the temporal

integration by a staggered-in-time leap-frog scheme yields

"(xi)
En+1
i �En

i

�t
= D1=2H

n+1=2
i ;

�(xi+1=2)
H
n+1=2
i+1=2 �H

n�1=2
i+1=2

�t
= D1=2E

n
i+1=2 ;

which is indeed the classic Yee scheme, proposed in [132]. Here En
i = Ez(xi; n�t)

and similarly for Hz. In regions with smoothly varying materials, this scheme is

2nd order accurate in space and time.

The success of the Yee scheme, combined with the realization that 2nd order

accuracy may well be insuÆcient for many applications, has spawned much recent

work in the development of higher order accurate schemes of a similar nature. To

highlight the problems associated with such extensions, let us consider a simple

example.

Consider the one-dimensional problem,

"r(x)
@Ez

@t
=

@Hz

@x
;
@Hz

@t
=

@Ez

@x
;

de�ned in the domain x 2 [�L;L] and with a material interface positioned at

x = a; jaj < L and metallic walls at jxj = L, i.e., Ez(�L; t) = 0. The permittivity

is assumed to be piecewise constant as

"r(x) =

(
"
(1)
r �L � x � a

"
(2)
r a < x < L

:

One easily derives the exact solution of this problem, essentially consisting of a set

of standing waves, as illustrated in Fig. 1. The exact solution is given in [24].

In Fig. 1 we show an example of the solution and the results obtained using a

straightforward 4th order extension of the Yee scheme, discussed in Sec. 4.1. For

the simple homogeneous problem we see the expected 4th order convergence. A

4th order explicit Runge-Kutta scheme is used to advance in time, and the global

discrete L2-norm measures the error, i.e.,

kukh =
 
h

NX
i=0

u2i

!1=2

; h =
2L

N
;
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FIG. 1. Metallic cavity problem, L = 1, "r = 1 and the �nal time for computation is
T = 2�. In a) we show the solution at T = 2� and in b) we con�rm the expected 4th order global
convergence as a function of number of points, N .

and Æu signi�es the di�erence between the computed and the exact solution.

While such straightforward extensions of the Yee scheme performs well for homo-

geneous problems with grid-conforming geometries, these schemes also inherit the

problems associated with the Yee-scheme, i.e., the need to staircase general geome-

tries and the inability to correctly enforce physical jump-conditions, Eqs.(4)-(5), at

material interfaces.

While a consequence of such staircasing is accuracy reduction , i.e., one is solving

a problem that is O(h) di�erent, is well established in the literature (see e.g. [24]),

it appears less appreciated that the physical interface conditions at a material

interface are equally important. To emphasize this point, we show in Fig. 2 results

for the cavity problem discussed above, assuming, however, that for x 2 [0; L] the

cavity is �lled with an "
(2)
r = 2:25 material. While the solution remains continuous

across the material interface, it does not remain smooth, i.e., using a di�erence

scheme across the interface is poised to have a reduced accuracy as is also con�rmed

in Fig. 2. The popular use of averaging of the material coeÆcients [116, 19] restores

O(h2) accuracy only.
One should keep in mind that the situation may well be worse for multi-dimensional

problems where the averaging technique is much less e�ective due to the likely ex-

istence of discontinuous �elds. Indeed, one can construct simple tests where even

the Yee scheme fails to converge due to this [24].

Thus, the formulation of high-order �nite-di�erence methods entails not only the

derivation of the high-order accurate �nite-di�erence stencils but also techniques to

treat the embedded geometries to the order of the scheme. The latter is considerably

more complex than the former as some of the approaches discussed in the following

illustrate.

4.1. Extensions of the Yee Scheme

It is a simple matter to derive a direct higher order accurate �nite di�erence

stencil on a staggered grid, i.e., we have the explicit 4th order scheme
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FIG. 2. Metallic cavity problem, L = 1, "
(1)
r = 1:0; "

(2)
r = 2:25, and the �nal time for

computation is T = 2�. In a) we show the solution at T = 2� and in b) we illustrate the global
convergence as a function of number of points, N , using a straightforward 4th order scheme as
well as one making use of an averaged material parameter.

"(xi)
dEz

i

dt
= 1

24

�
27D1=2 �D3=2

�
Hz
i ; (16)

�(xi+1=2)
dHz

i+1=2

dt
= 1

24

�
27D1=2 �D3=2

�
Ez
i+1=2 :

This appears to have been considered �rst in the context of electromagnetics in [29]

as a direct extension of the Yee scheme, i.e., using a second order accurate scheme

in time. Subsequent works using this approach include [101, 100, 117]. Results,

combining this with the Yee scheme in subgridded areas, are obtained in [36, 37].

Close to metallic boundaries one can use 3rd order closures of the form

"(xi)
dEz

i

dt
=
�23Hz

i�1=2 + 21Hz
i+1=2 + 3Hz

i+3=2 �Hz
i+5=2

24h
; (17)

which suÆces to ensure global 4th order accuracy [43]. This is the scheme used on

the examples shown in Figs. 1 and 2. A stable 4th order closure is proposed in

[134].

While one may continue such developments and de�ne stencils of arbitrary order,

such methods has little practical value as the corresponding one-sided closures tend

to be unstable [114, 44]. We shall therefore restrict the attention to the 4th order

scheme above, as has been done in most of the current literature.

Attempting to overcome the problems exposed above the solution escapes the

obvious, e.g., using a high order approximation to the material properties [117,

135] may improve matters quantitatively but not make a qualitative di�erence,

i.e., the convergence rate typically remains 2nd order. Furthermore, the extension

of such techniques to multi-dimensional problems, where higher order geometric

information, e.g., curvature, would need to enter the model to maintain design

accuracy, remains elusive.
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FIG. 3. De�nition of grid, numbering and various parameters for solving the one-dimensional
Maxwell's equations in a PEC cavity �lled with two materials.

Initiated in [24] in the context of Maxwell's equations, steps in a di�erent direc-

tion has recently been taken. The central idea is to use the staggered grid scheme,

Eqs.(16)-(17), in homogeneous regions away from boundaries and then locally mod-

ify the scheme close to boundaries and interfaces. This latter part must be done in

a geometry conforming way to overcome the staircasing problem and must include

the physically correct jump conditions. As shown in [24] such schemes, termed

embedding schemes, allow one to fully restore 2nd order accuracy in a modi�ed Yee

scheme, thus overcoming problems of staircasing and the e�ect internal boundaries

in a uni�ed way. As the scheme is modi�ed locally only, it maintains the simplicity

and computational eÆciency of the original formulation as most of the additional

work, i.e., computing the local stencils, is done in a preprocessing stage.

The extension of these ideas to 4th order embedding methods is far from triv-

ial and questions remain unanswered. To illustrate the potential of such methods,

however, let us return to the cavity problem above but allow the material inter-

face to be positioned anywhere inside the cavity, i.e., we do not require geometric

conformity.

We shall use Fig. 3 to highlight the elements of the scheme. Everywhere away

from the internal material boundary we use the 4th order staggered grid method

given in Eqs.(16)-(17). Also, grid-points not directly adjacent to the interface, e.g.,

E
(1)
N�1 and H

(2)
1=2 is updated using the one-sided 3rd order scheme, Eq.(17), reaching

into the homogeneous region. The critical question is naturally to update the points

directly next to the interface, i.e., H
(1)
N�1=2 and E

(2)
0 . The idea put forward in [24] is

to form extrapolated valued, Hmat and Emat, from the left and right, respectively,

and use these in combination with the physical jump-conditions to complete the

scheme.

Using the notation of Fig. 3, we de�ne the extrapolated �elds as

Hmat =
(7� 2L)(5� 2L)(3� 2L)

48
H

(1)
N�1=2 �

(7� 2L)(5� 2L)(1� 2L)

16
H

(1)
N�3=2

+
(7� 2L)(3� 2L)(1� 2L)

16
H

(1)
N�5=2 �

(5� 2L)(3� 2L)(1� 2L)

48
H

(1)
N�7=2
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and

Emat =
(7� 2R)(5� 2R)(3� 2R)

48
E
(2)
0 � (7� 2R)(5� 2R)(1� 2R)

16
E
(2)
1

+
(7� 2R)(3� 2R)(1� 2R)

16
E
(2)
2 � (5� 2R)(3� 2R)(1� 2R)

48
E
(2)
3

Note that due to the geometry of the problem, L + R = 1
2 . The schemes to

update H
(1)
N�1=2 and E

(2)
0 are then given as

dH
(1)
N�1=2

dt
=

46

h(1 + 2L)(3 + 2L)(5 + 2L)
Emat � 15� 16L

4h(1 + 2L)
E
(1)
N�1

+
5� 12L

2h(3 + 2L)
E
(1)
N�2 �

3� 8L
4h(5 + 2L)

E
(1)
N�3 ;

and

"(2)
dE

(2)
0

dt
= � 46

h(1 + 2R)(3 + 2R)(5 + 2R)
Hmat +

15� 16R
4h(1 + 2R)

H
(2)
1=2

� 5� 12R
2h(3 + 2R)

H
(2)
3=2 +

3� 8R
4h(5 + 2R)

H
(2)
5=2 :

It is worth emphasizing that the stencils do not collapse even if the interface is

positioned very close to or at a grid point. This is a consequence of the staggered

grid which is essential to ensure this and yield a scheme with a uniformly bounded

time-step restriction.

As an illustration of the performance of the scheme we show in Fig. 4 results

obtained for the problem discussed in relation to Fig. 2, although allowing the

interface to be positioned away from a grid point also. In such a situation the

unmodi�ed scheme would yield only O(h) convergence due to staircasing. However,
as shown in 4, the embedded scheme recovers full accuracy regardless of the position

of the material interface.

Albeit less general, similar ideas exploiting locally modi�ed explicit schemes have

also been developed in [134]. There the position of the interface is restricted to

coincide with the grid points but the physical jump-conditions are enforced as

above. A slight generalization along similar lines is found in [126] where such

ideas are combined with smooth curvilinear mappings. In [102] it is discussed how

the embedding can be utilized as a separator between di�erent grids rather than

di�erent materials, thus allowing for subgridding.

While the embedding schemes are appealing and appears to o�er a good balance

between computational complexity and obtainable accuracy, much development

remains to be done to make these methods a viable alternative. In particular, the

stable and accurate treatment of curved interfaces and metallic boundaries remains

a challenge.

In [121, 122] a related, yet slightly di�erent approach is taken. Motivated by [118],

the authors apply dispersion-relation-preserving (DRP) 4th order explicit schemes

to solve Maxwell's equations in two [121] and three [122] spatial dimensions. Such

schemes are derived by extending the stencil beyond the minimum 5 points. The
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FIG. 4. Same problem as in Fig. 2, however solved using the 4th order embedding scheme.
In a) we illustrate the global convergence of Ez while b) illustrates the same for Hz.

additional degrees of freedom for de�ning the stencil is used to optimize its wave-

propagation characteristics, e.g., by minimizing the phase-error. While such an

approach is highly accurate wave-propagation, the wide stencil makes it diÆcult to

terminate the stencil and, thus, deal with complex geometries.

4.2. Compact Schemes and SBP Schemes

The problems with stability and accuracy of the straightforward 4th order exten-

sion of the Yee scheme, Eq.(16), discussed above has lead to a number of alternative

developments. These have mostly focused on implicit computations of the deriva-

tives, i.e.,

P
d

dx
u = Qu : (18)

Here u represents the grid-vector and the two matrices, P and Q, are constructed

to ensure accuracy and/or stability of the approximation.

A classical example of such methods are the compact schemes, see e.g. [84] for

an introduction. These were introduced in the context of Maxwell's equations in

[117, 106, 135].

Let us for illustration continue the use of a staggered grid as above. Then, the

classical 4th order compact scheme for computing derivatives is [117]�
1

2
�xD1 + 11

�
dui
dx

= 12D1=2ui ;

i.e., it is an implicit scheme, involving the solution of a tridiagonal matrix. Its

main appeal lies in a very compact stencil, using only nearest neighbor values, and

better accuracy than explicit schemes discussed above. Furthermore, away from

boundaries and interfaces, the scheme conserves divergence due to the staggered

grid.

Close to boundaries special stencils are needed as for the explicit scheme. In

[135, 117] a fully implicit closures is proposed on the form
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26
du1=2

dx
� 5

du3=2

dx
+ 4

du5=2

dx
� du7=2

dx
= 24D1=2u1=2 :

Combining these expressions yields

P =
1

24

2
666666666664

26 �5 4 �1 : : : 0

1 22 1 0 : : : 0

0 1 22 1 0 : : 0

: : : : : : : :

: : : : : : : :

0 : : : 1 22 1 0

0 : : : 0 1 22 1

0 : : : �1 4 �5 26

3
777777777775

;

and

Q =
1

�x

2
666666666664

�1 1 0 0 : : : 0

0 �1 1 0 : : : 0

0 0 �1 1 0 : : 0

: : : : : : : :

: : : : : : : :

0 : : 0 �1 1 0 0

0 : : : 0 �1 1 0

0 : : : 0 0 �1 1

3
777777777775

;

we recover the 4th order semi-discrete compact scheme for the one-dimensional

Maxwell's equations as

"r
dEz

h

dt
= P�1QHz

h ; �r
dHz

h

dt
= P�1QEz

h :

We have introduced the vectors of grid-functions

Ez
h =

�
Ez
0 (t); E

z
1 (t); ::; E

z
N�1(t); E

z
N (t)

�T
;

Hz
h =

h
Hz

1=2(t); H
z
3=2(t); ::; H

z
N�3=2(t); H

z
N�1=2(t)

iT
;

and similarly for the vectors of materials

"r = ["r(x0); "r(x1); ::; "r(xN�1); "r(xN )]
T

;

�r =
�
�r(x1=2); �r(x3=2); ::; �r(xN�3=2); �r(xN�1=2)

�T
:

Since P is banded its inversion is cheap. Results in [117, 135] con�rm the expected

accuracy and stability of the scheme for the one-dimensional Maxwell equations and

the two-dimensional TM-form, Eq.(13), assuming simple grid conforming bound-

aries and homogeneous materials. Dispersion-relation-preserving compact schemes

are discussed in [84].
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Although the compact scheme achieves higher order spatial accuracy using a nar-

row stencil, it su�ers from the same problems as the Yee scheme and its straightfor-

ward extensions discussed above scheme, i.e., diÆculties with accurately represent-

ing boundaries and material interfaces. The implicit nature of the compact scheme,

however, makes it diÆcult to utilize local remedies as for the explicit scheme since

any such local adjustment has a global impact. Initial work in this direction is

reported in [119], in which the compact stencil is locally modi�ed to allow for a

non-conforming Dirichlet boundary condition as required in the two-dimensional

TM-form, Eq.(13). The scheme, however, requires one to physically moves the grid

points, thus introducing severe sti�ness for cases where the boundary is close to

a grid-point of the equidistant grid. More general types of boundary conditions,

e.g., magnetic boundaries, are not treated. In related work [117, 135] the problem

of material interfaces is addressed by using high-order smooth approximations to

material parameters. While this visually improves on the accuracy, a rigorous anal-

ysis was not done and the computational results restricted to cases where all �eld

components are continuous.

Using a nonstaggered grid, it is proposed in [106] to terminate the compact

stencils with explicit schemes. While it is found experimentally that one needs to

use a �lter to avoid instabilities, full three-dimensional scattering results have been

reported. The accuracy of this approach is not known.

The formulation of the compact schemes, leading to the operators P and Q given

above, is done with accuracy in mind. The equally important question of stability

must then be addressed subsequently. This is known to be a task of considerably

complexity and often requires special techniques to impose boundary conditions,

see e.g. [12, 13].

The complementary approach to this is the direct construction of stable high-

order schemes. Such schemes, known as summation-by-parts (SBP) schemes, were

originally proposed in [81], and developed further in [113, 96, 97]. The discrete

operators, P and Q, are derived to mimic the integration-by-parts property of

the divergence operator, leading to the conditions that P be symmetric, positive

de�nite, and Q almost skew-symmetric, i.e., Q + QT = diag[�1; 0:::; 0; 1]. Both P

and Q are typically banded, with examples given in [81, 113].

Imposing boundary conditions in this type of schemes is a bit more complex

as modifying the operators directly may destroy the SBP-property. The stan-

dard approach is thus to impose the conditions weakly through a simultaneous-

approximation-term (SAT) as

du

dx
; u(1) = g ) P�1

du

dx
= Qu�T [u(1)� g] :

Here T = diag[0; 0::::; 0; � ] where � � 1 ensures stability. Since the boundary

conditions are imposed as an additional term, more complex boundary operators

can be imposed in a similar way.

SBP schemes for Maxwell's equations are discussed in [95], showing the expected

accuracy and stability for the two-dimensional TE-form, Eq.(12), in simple grid-

conforming geometries. The scheme preserves divergence in regions of homogeneous

materials. Treatment of material interfaces is done in a way similar to that discussed
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in Sec. 4.1, i.e., by treating the di�erent regions separately and using the physical

jump-conditions to connect the regions.

As for the compact scheme, the SBP methods have problems treating geomet-

rically complex problems due to the implicit nature of the schemes. Furthermore,

the SBP property is delicate and even the use of simple curvilinear mappings may

destroy this property, thus ruining the stability. It is worth while mentioning that a

2nd order accurate scheme, using the SAT-approach, for arbitrary embedded metal-

lic boundaries has been proposed in [1]. It is conceivable that similar ideas can be

adapted to a 4th order scheme, although the analysis promises to be complex.

4.3. Fictitious and Overlapping Grid Methods

In the straightforward extensions of the Yee scheme discussed in Sec. 4.1 it was

proposed to use extrapolations and strongly enforce the jump-conditions. Methods,

taking this approach one step further by using the equation repeatedly at the inter-

face also, were recently proposed in [25, 26] for one- and two-dimensional problems

in electromagnetics. Similar ideas have been proposed previously in the context of

acoustics and elasticity but apparently never implemented [136, 137].

These schemes employ a standard high-order explicit �nite di�erence scheme on

a nonstaggered grid in regions with homogeneous materials. Close to boundaries

and interfaces, however, a di�erent procedure is taken, much in the spirit of Sec.

4.1, albeit using a di�erent approach.

To illustrate the central idea, consider again the one-dimensional Maxwell's equa-

tions, Eq.(11), on the form

@q

@t
= A(x)

@q

@x
; q =

�
Ez

Hz

�
; A =

�
0 "�1r (x)

��1r (x) 0

�
:

For simplicity we restrict the attention to the case of a material interface at x = xmat

across which we have that q is continuous, i.e.,

q(x�mat; t) = q(x
+
mat; t) :

Using the equation themselves, however, we also have that

A(x�mat)q
(1)(x�mat; t) = A(x+mat)q

(1)(x+mat; t) ; (19)

i.e., we have conditions on the �rst spatial derivatives, q(1), of q across the interface.

One can of course repeat this argument as often as needed to obtain

A(x�mat)
pq(p)(x�mat; t) = A(x+mat)

pq(p)(x+mat; t) :

We assume that we solve Maxwell's equations on a simple equidistant grid, xj ,

although it could also be staggered.

Consider the situation in Fig. 5, where the two regions of di�erent materials are

separated at xmat which do not have to coincide with a grid point. Everywhere

away from the interface, we shall use whatever explicit �nite-di�erence preferred,

cf. Sec. 4.1. To update the values of q at points close to the interface, e.g., x
(1)
N
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FIG. 5. Illustration of ghost grids and numbering used in overlapping grid methods.

and x
(2)
0 , we shall assume the existence of ghost-points, x

(1)
N+m and x

(2)
�m, m = 1::M .

Clearly, if the values of q were known at these points, one could update q at x
(1)
N

and x
(2)
0 using standard �nite di�erence stencils.

We can, however, use the additional constraints, Eq.(19). One can approximate

the one-sided derivatives as central di�erences

q(p)(x�mat) '
N+MX

j=N�M

v
(p)
j q(x

(1)
j ) ; q(p)(x+mat) '

MX
j=�M

w
(p)
j q(x

(2)
j ) ;

where v
(p)
j are the weights corresponding to computing derivatives using values left

of the interface and w
(p)
j using values from right of the interface. These can be

found on closed form using Lagrange polynomials as in Sec. 4.1, or computed as

discussed in [32]. Note that p = 0 corresponds to interpolation at xmat.

There are a total of 2M unknown ghost-values, implying that we will need 2M

constraints, Eq.(19), to recover these, typically resulting in a scheme of O(h2M )

close to the interface, e.g., if a 4th order scheme is used in the interior, one needs

4 additional constraints to compute the 4 ghost values. Clearly, one can initialize

all operators in a pre-processing stage as they depend on the weights only which

again depends on the order of accuracy and position of interface. In the original

work [25] this is taken to the limit by using maximal accuracy, i.e., a global spectral

method, everywhere in each region of homogeneous material. This requires addi-

tional attention to positions of the grids close to the interfaces. We refer to [25] for

the details.

To illustrate the performance of such an approach we show in Fig. 6 computa-

tional results obtained by solving the one-dimensional Maxwell's equations, Eq.(11).

The problem is very similar to that considered earlier, although the domain is con-

sidered periodic rather than truncated by a metallic cavity and the initial condition

is a Gaussian pulse in one domain. As the pulse propagates, it experiences multiple

reections and transmissions at the interfaces. The �gure clearly illustrates the

importance of correctly treating the material interfaces, in particular for problems

requiring long time integration.

In [26] these ideas are extended to two-dimensional problems, simpli�ed by as-

suming that the material interface can be smoothly mapped to align with a co-

ordinate axis. In that case, the modi�cations needed to maintain accuracy re-

mains essentially one-dimensional. The only additional complication is that deriv-

ing conditions, Eq.(19), for the multi-dimensional case introduces cross-derivatives
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FIG. 6. Computational results for a pulse undergoing multiple reections at a material

interface ("
(1)
r = 1:0 and "

(2)
r = 4:0 as obtained using di�erent schemes. The computations are

terminated where the results are visibly bad. While the Yee scheme quickly looses the correct the
solution, also the standard 4th order �nite di�erence performs poorly after only 10 periods. The
overlapping scheme (BPS) uses a global scheme in each domain and performs very well after long
time. The results marked CSE are obtained using a spectral multi-domain scheme (Sec. 5.2). The
�gure is courtesy of T. Driscoll and B. Fornberg.

for M > 1. Thus, only one ghost-point in used and the stencils become one-sided

as needed.

For smooth interfaces, it is proposed to used an overlapping patch or grid, con-

forming to the interface and employ the ghost-point approach to update the solution

at the interface. The solution at the patch is smoothly blended, using a partition-

of-unity approach, with the solution at an underlying equidistant grid to obtain the

global solution. An example of a grid is shown in Fig. 7. Computational examples

on this and other simple grids can be found in [26].

While the use of �ctitious (or ghost-) points has shown promise, many issues

remain open, in particular related to the extension of such techniques to more gen-

eral two- and three-dimensional problems, as well as problems involving non-smooth

geometries. Furthermore, the stability of these methods has not been analyzed.

5. SPECTRAL METHODS

The classical phase error analysis, Sec. 3, as well as the results discussed above

suggest advantages in going to even higher order accurate schemes to further reduce

work and memory requirements while maintaining the accuracy.

A straightforward execution of such ideas, however, introduces issues related

to computational eÆciency when computing with very wide stencils, as well as

diÆculties associated with �nite computational domains and complex geometries.

In the following we shall discuss techniques proposed to overcome these concerns

while maintaining the accuracy and eÆciency of the very high-order schemes.
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FIG. 7. Example of a overlapping grid approach, used to extend the ghost-point approach
to two-dimensional problems. The �gure is courtesy of T. Driscoll and B. Fornberg.

5.1. Global Methods

If we maintain the typical scenario when using a high-order �nite di�erence

scheme and assume that we have a simple equidistant grid, one can imagine using

a stencil spanning the whole computational grid, i.e., a global method. The prob-

lems with this straightforward approach are several, e.g., the computational cost

and the development of stable and accurate means of dealing with the ends of the

computational domain.

The bene�ts of overcoming such problems are, however, quite substantial as can

be realized by recalling Eq.(15). Letting m increase we see that one could expect

that the required number of points per wavelength becomes independent of accuracy

and integration time. In other words, once this requirement is ful�lled, the scheme

solves the wave propagation problem exactly. As was shown in [80], this intuition

holds with the requirement being only two points per wavelength.

One way of overcoming some of the problems to harvest the advantages of using

a global scheme was �rst proposed in [86] in the context of Maxwell's equations.

At �rst, one assumes that the solution is spatially periodic to overcome the prob-

lems with terminating the computational domain and designing large, one-sided

stencils. A further advantage of this assumption is the well known result [80, 31]

that the in�nite order �nite di�erence scheme for a periodic problem is nothing else

than a pseudospectral Fourier method. In other words, the O(N2) computation of

derivatives

du

dx

����
xj

=

NX
k=0

Djku(xk) ;
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where D is a dense di�erentiation matrix, can be done through a Fourier series as

du

dx

����
xj

=

NX
n=0

(in)~un exp(inxj) ; ~un =
1

N + 1

NX
j=0

u(xj) exp(�inxj) ;

where xj = 2�j=(N + 1) represent the equidistant grid points. The bene�t of this

formulation is that both summations can be done in O(N logN) operations by

using the Fast Fourier Transform.

The assumption of periodic solutions may, at �rst, seem to severely limit the use

of such methods. The central idea in [86], however, was to surround the computa-

tional domain with an absorbing layer, a perfectly matched layer (PML) [4, 5, 117].

Assuming that the absorption of waves is suÆciently eÆcient, the solution on the

outer boundary almost vanishes, thus achieving the periodicity. This approach has

been used successfully to model large scale three-dimensional wave-propagation and

scattering problems, see e.g. [87], using a little as 2 points per wavelength. See

also [85] for a comparison between PSTD and classical Yee schemes for scattering

problems.

As eÆcient and simple as this approach is, it has a number of limitations. The

need to completely surround the computational problem with an absorbing layer

essentially limits the attention to open space problems, although one could deal

with simple interior problems by choosing a particular basis. The most severe

limitation is, however, the very same as that of the simple extensions of the Yee

scheme, i.e., an inability to handle interior interfaces and boundaries.

This is emphasized by the simple approximation result that [11]

ku� uNk � N�qku(q)k ;

where uN represents the Fourier approximation of u, and u(q) reects the q'th

derivative. Clearly, if u is very smooth, i.e., ku(q)k is bounded for high values of

q, the convergence is very fast and the function is well represented with only few

points per wavelength. Unfortunately, it is the other limit that is relevant regarding

the solution of Maxwell's equations for problems involving interior boundaries and

interfaces. In such cases a best case scenario is that q � 1, i.e., one can not expect

better than local �rst and global second order accuracy even for problems where

material interfaces are aligned with the grid. For curvilinear interfaces, where the

�elds may be discontinuous, the situation is worse and the combined impact the

lack of smoothness and staircasing will be signi�cant.

Due to the global nature of the approximation and the need to use the Fast

Fourier Transform for computational eÆciency, it is diÆcult to see how to overcome

these shortcomings, e.g., straightforward local modi�cations of the stencils as for

the �nite di�erence schemes are not possible, and the bene�ts of using local smooth

mappings is limited for problems with even moderate geometric complexity [11].

5.2. Multi-Domain Formulations

The most signi�cant restriction of the global methods discussed is the inability to

correctly deal with problems in complex geometries. While several techniques were

discussed for the 4th order �nite di�erence schemes in Sec. 4, these methods are only
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now emerging and much work is still needed. Furthermore, it is unclear whether

such techniques allows one to formulate schemes beyond 4th order accuracy.

Thus, it seems natural to consider alternatives, allowing one to maintain global

high-order accuracy even in situations with geometric complexity. The main obser-

vation to make is that the eÆciency of a high-order method is closely related to the

smoothness of the solution. When internal interfaces and boundaries are present,

the global smoothness is generally reduced and one does not bene�t as much from

using high-order methods as one could expect. However, the solution often remains

smooth in regions of smoothly varying or constant material parameters, with these

regions being separated by well de�ned geometric features.

The only practical way to take advantage of this is to leave the simple equidis-

tant grids behind and consider the formulation of high-order accurate schemes using

body-conforming grids. For general geometries, one can not hope, however, to ac-

complish this with simple globally mapped grids but must consider a multi-element

or multi-domain formulation in which the computational domain is composed as a

union of non-overlapping elements.

Such an approach introduces a couple of issues that needs careful attention, e.g.,

how does one compute derivatives at the individual elements to high order and

how does one connect the local element wise solutions to form the global solution

in a stable manner. The resolution of the questions has been the topic of recent

research [71, 129, 130, 131] pawing the way for high-order accurate scheme without

the problems of the �nite-di�erence scheme. In the following we shall discuss the

elements of this formulation in some more detail.

5.2.1. The Local Scheme

We shall assume that the computational domain, 
, is split intoK non-overlapping

elements. This is done in a way such that interfaces are aligned with the geom-

etry, i.e., returning to the one-dimensional cavity problem discussed previously, a

straightforward splitting is into two elements, corresponding to each of the two

regions of di�erent materials.

As we will now need to represent solutions and derivatives of solutions on �nite

domains, it is well known that we must abandon the use of a simple equidistant

grid in each domain. Indeed, we must use a grid that clusters close to the ends

of the element. A suitable choice could be the mapped Chebyshev Gauss Lobatto

nodes (see e.g. [31, 39])

i = 0::N : xi = a+
1� cos(i�=N)

2
(b� a) ;

where the element spans [a; b] and N + 1 are the number of grid points in the

domain.

Following the basic approach of a �nite di�erence method, one can now form

elementwise Lagrange interpolation polynomials on the form

li(x) =
(�1)N+1+j(1� �(x)2)T 0N (�(x))

N2ci(�(x) � �(xi))
;

where Tn(�) = cos(n arccos �) represents the n'th order Chebyshev polynomial,

c0 = cN = 2, and ci = 1 otherwise. The scaled variable, �(x), is given as
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FIG. 8. Illustration of the curvilinear mapping used in the multidomain formulation

�(x) = 2
x� a

b� a
� 1 :

With this, we can represent the local element wise solutions as

uN(x) =

NX
i=0

u(xi)li(x) ;

and compute the pointwise derivatives in a similar fashion as for �nite di�erence

schemes, i.e., by a matrix-multiply as

du

dx

����
xj

' duN
dx

����
xj

=

NX
i=0

u(xi)Dji ;

where the di�erentiation matrix, D, has the entries [39]

Dji =
dli(xj)

dx
=

8>>>><
>>>>:

� 2N2+1
6 i = j = 0

cj
ci

(�1)i+j

xj�xi
i 6= j

� xi
2(1�x2

i
)

0 < i = j < N

2N2+1
6 i = j = N

:

Thus, with this we can represent solutions and evaluate derivatives with spectral

accuracy, provided the solution is suÆciently smooth on the element [11].

The extension of this to multidimensional problems utilizes tensor products, i.e.,

a two dimensional function is represented as

uN (x; y) =

NX
i=0

NX
j=0

u(xi; yj)li(x)lj(y) ;

and likewise for a three-dimensional �eld. The computation of derivatives follows

the approach above.

While this allows the accurate computation of spatial derivatives, it also assumes

that u(x; y) is de�ned on a rectangular grid. This restriction we can overcome by
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considering a curvilinear representation. In other words, we assume the existence

of a smooth non-singular mapping function, 	, relating the (x; y; z)-coordinate

system to the general curvilinear coordinate system (�; �; �) as illustrated in Fig. 8.

To establish a one to one correspondence between the unit cube, I � R
3, and the

general curvilinear hexahedral, D, we construct the local map for each sub-domain

using trans�nite blending functions [38]. We refer to [48] for a thorough account

of this procedure within the present context. Thus, we have Cartesian coordinates,

(x; y; z) 2 D, and the general curvilinear coordinates, (�; �; �) 2 I.

On curvilinear form, Maxwell's equations take the form

Q
@q

@t
+A(r�)@q

@�
+A(r�)@q

@�
+A(r�)@q

@�
= 0 ; (20)

with the state vector, q = (E;H)T , and the material matrix, Q = diag("r; "r; "r; �r; �r; �r).

The general operator, A(n), depending on the local normal vector, n = (nx; ny; nz),

obtained from the metric through the mapping, 	, is given as

A(n) =

2
66666664

0 0 0 0 nz �ny
0 0 0 �nz 0 nx
0 0 0 ny �nx 0

0 �nz ny 0 0 0

nz 0 �nx 0 0 0

�ny nx 0 0 0 0

3
77777775

:

We show in Fig. 9 as an example a simple two-dimensional holographic waveguide

coupler and the geometry conforming multi-domain grid. The mapped Chebyshev

grid in each element allows accurate computation of derivatives while the body

�tted grid ensures that the solution is smooth inside each element, hence taking

advantage of the accuracy of the high order scheme.

5.2.2. Connecting the Elements

Having the ability to accurately and eÆciently compute derivatives in a general

curvilinear hexahedral and, thus, solve Maxwell's equations in such a domain, we

must now focus on the question of how to assemble these local solutions to recover

a global solution in a time-stable and accurate manner. Clearly, care has to be

exercise here as Maxwell's equations supports counter propagating waves, consisting

of both electric and magnetic �elds, i.e., one can not simply enforce continuity across

the interfaces.

The central observation to make, utilized in the context gasdynamics also [76,

77, 48], is that Maxwell's equations, written as in Eq.(20), is a strongly hyperbolic

system. In other words, we can diagonalize the matrix Q�1A(n) as

STQ�1A(n)S = crjnj

2
66666664

�1 0 0 0 0 0

0 �1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
77777775

:
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FIG. 9. On top we show a sketch of a di�ractive waveguide coupler and below a multi-domain
spectral grid used to model such a geometry.

Here cr = (�r"r)
�1=2 is the local speed of light and jnj the length of the normal.

The entries of S can be found in [131] and a simpli�ed two-dimensional form in

[129].

Let us �rst consider the case where two neighboring elements can be assumed to

have smoothly varying materials. If we compute the characteristic functions, R =

STq, then the entries in the above diagonal matrix tell exactly how these functions

are propagating, e.g., R1 and R2 propagates antiparallel to n, R5 and R6 propagates

parallel to n, while R3 and R4 signi�es a non-propagating DC component. With

this one knows exactly which information propagates where at any point of the

boundary of the an element. Furthermore, what leaves one element, i.e., R5 and

R6, must correspond exactly to what enters the neighboring element through R1

and R2. Thus, R5 and R6 provides the boundary conditions needed to solve the

neighboring solution. The non-propagating characteristic waves can be required to

be continuous.

At a material interface, the situation can be dealt with in two di�erent ways.

One can either rescale the characteristic variables to account for the abrupt change

in the materials or one can abandon the characteristic variables and simply enforce

the physical jump-conditions on the �elds, e.g., continuity of the tangential �elds.

5.2.3. A Few Examples

To illustrate the performance of the multi-domain spectral scheme discussed in

the above, let us consider a few examples.
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FIG. 10. Illustration of plane waveguide test case. The grid shows the general layout with
the high-index waveguide just below x = 0 and N = 16 modes in each domain. On the right is
a snapshot of the Hz component at an arbitrary time illustrating the total �eld region as well as
the surrounding scattered �eld region (marked by an S).

As a �rst one, consider simple two-dimensional TM polarized wave propagation in

a planar multi layer waveguide, as illustrated in Fig. 10. The waveguide is 6� long

waveguide where the core layer has a thickness of d2 = � and an index of refraction

n2 = 1:45, the cladding layers both have n1 = n3 = 1:4, while the thickness of the

two cladding layers are d1 = �, and d3 = 4�, respectively. The total �eld region,

in which the computation is conducted, as well as the surrounding scattered �eld

region with the absorbing layers are shown in Fig. 10. A 4th order Runge-Kutta

scheme is used to advance in time and a PML to truncate the computational domain

(see [51] for details).

TABLE 1

Error in the computation of the plane waveguide solution at t = 10.

N Nppw �t L1(H
z) L1(H

x) L1(E
y)

12 4.3 3.1E-2 5.0E-2 3.6E-1 2.5E-1

16 5.7 2.1E-2 1.1E-3 8.5E-3 6.0E-3

20 7.1 1.4E-2 6.9E-6 4.8E-5 3.9E-5

24 8.5 1.1E-2 2.2E-6 1.5E-5 1.1E-5

As a validation of the expected spectral accuracy, we list in Table 1 the global

L1 error measured after 10 periods. Not only do we �nd spectral convergence but

also that less than 6 points per wavelength (Nppw) yields an acceptable accuracy

for many applications.

As a second example, considered in more detail in [130], we consider scattering by

an axisymmetric three-dimensional metallic scatterer, in this case a rocket-shaped

nonsmooth object. In Fig. 11 we illustrate the body-conforming grid and Fig. 12

shows a comparison of the bistatic radar-cross-section (RCS) for di�erent polar-
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FIG. 11. Typical multi-domain grid for the solution of scattering by a three-dimensional
axisymmetric missile.
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FIG. 12. On the left is shown the RCS(�,0) for a missile subject to axial illumination by
a horizontally polarized plane wave and one the right the results under vertical polarization. A
reference solution is marked by \+".

izations as compared with results obtained using a contemporary integral equation

solver. The results are essentially identical.

As a �nal example, let us consider a three-dimensional problem, in this case

plane wave scattering by a ka = 5:3 di-electric sphere. The sphere consists of

a nonmagnetic material with �r = 3 [131]. Excellent results for the radar-cross-

section, obtained with about 8 points per wavelength on the surface of the sphere,

is shown in Fig. 13 along with a segment of the grid.

The multidomain scheme has by now been implemented and tested for a vari-

ety of problems, including three-dimensional waveguide and di�ractive optics [23],

quasi-three-dimensional [138] and fully three-dimensional scattering [131, 139], and

propagation in lossy media [131, 28]. Excellent parallel performance is demon-

strated in [23].

As exible and versatile as the multi-domain spectral approach is, these bene�ts

do come at a price, most notably the problems of constructing a high-order body

conforming block structured grid. Furthermore, for highly curved elements one

has to be careful to avoid instabilities caused by aliasing, and to resolve both the

solution and the geometry suÆciently accurate. For nontrivial problems is it often

advantageous to use a high-order �lter [129, 51, 39] to improve robustness, although

care has to be taken not to adversely impact the accuracy.
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FIG. 13. On the left is shown an example of a three-dimensional curvilinear grid for
scattering by a ka = 5:3 dielectric sphere with �r = 3, and �r = 1. On the right is shown
the computed bistatic radar-cross-section (RCS) (full lines) as compared with the exact solution
(dashed line) computed using a Mie series.

6. HIGH-ORDER FINITE VOLUME SCHEMES

The need for geometric exibility is shared with many other diciplines and it is

tempting to try and take advantage of such related developments. Given the wave

nature of the solutions, it is natural to turn the attention towards methods from

gasdynamic where one of the most remarkable and successful developments has been

the �nite volume methods, combining the geometric exibility of an unstructured

grid with the ability to handle nonsmooth solutions.

The �nite volume method is based on a discretization of the conservation law

@u

@t
+r � f(u) = 0 ;

where u is the solution and f(u) represents a ux, often of a nonlinear character.

Introducing a grid with grid points, xi 2 
, centered in the individual control

volumes, D, we integrate over the control volume and invoke Gauss' theorem to

recover

A(D)
dui
dt

+

I
@D
n̂ � f(u) dx = 0 ;

where A(D) represents the area/volume of D, ui the cell-averaged solution value,

i.e.,

u =

Z
D
u(x) dx ; (21)

and n̂ an outward pointing normal vector at the boundary of D.

To put this into the context of Maxwell's equations, one needs only realize that

Eqs.(7)-(8) can be written as
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Q
@q

@t
+r � F (q) = S ; (22)

where Q represents the materials, q = [E;H]T , and the ux, F = [F 1;F 2;F 3]
T

has the components

F i(q) =

� �êi �H
êi �E

�
; (23)

where ê�, � = (x; y; z), represents the three Cartesian unit vectors.

The close connection between gas dynamics and electromagnetics has been ex-

plored in a series of papers [108, 107, 109, 33, 110, 35], devoted to the development

of high-order accurate �nite volume methods on structured and locally orthogonal,

but unstructured grids.

So far, everything in the above discussion remains exact. However, as we only

have cell-centered solution values, ui, evaluating the uxes, f(u), which depend on

the solution, along the circumference of the element can not be done in a straight-

forward manner. This problem, being one of reconstruction in contrast to the

approximation of derivatives as discussed so far, is at the heart of the �nite volume

method and is where the approximation enters.

As shown in [47], if one can evaluate the local uxes to O(hn), then the truncation
error of the cell averaged solutions, u, are also O(hn), i.e., we can focus on the

scheme for reconstructing the local uxes.

Borrowing directly from the successes in computational uid dynamics, one could

again use the notion of characteristic waves, discussed in Sec. 5.2, and form the edge

based solution by upwinding from both sides of the edge. Assuming for simplicity

a locally Cartesian grid, as done in [108, 33], one expresses the edge uxes as

f(xi+1=2) = F (uL; uR) = F+(uL) + F�(uR) ;

where F+(u) and F�(u) corresponds to the downwind, i.e., positive eigenvalues,

and F+(u) to the upwind, i.e., negative eigenvalues, components of the character-

istic waves discussed in Sec.5.2. This ux splitting is non unique with suggestions

given in [107, 109] in a general curvilinear formulation.

Given the linearity of the uxes, the accuracy of the reconstructed solution values,

i.e., uL and uR reconstructed from the left and right of edge, determines the overall

accuracy. Assuming a locally equidistant grid, it is proposed in [108, 33] to use the

MUSCL uxes

uLi+1=2 =

�
1 +

1

6
(r+ 2�)

�
ui ; uRi+1=2 =

�
1� 1

6
(2r��)

�
ui+1 ;

where r = E0 � E�1 and � = E1 � E0 where Ei is the shift-operator de�ned

in Eq.(14). This approach is based on local Taylor expansions and is accurate to

O(h3), i.e., the scheme can be expected to be third order accurate on a locally

uniform grid. Alternatives to the upwinded reconstructions are discussed in [108].
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The numerical dispersion and grid-anisotropy for this method is discussed in

[107, 109, 33] and simulations using curvilinear, orthogonal grids are shown in

[110].

As discussed above, at the heart of the �nite volume scheme is the need to recon-

struct the local solution, using only cell averaged values. The approach discussed

above is essentially limited to 3rd order accuracy by the MUSCL ux. An alterna-

tive is discussed in [33] and introduce the new one-dimensional variable

V (x) =

Z x

0

u(s) ds ;
dV

dx
= u(x) ;

i.e., if one can evaluate the pointwise derivative of V (x) accurately, one can recon-

struct the local pointwise value of u(x) accurately. However, from the de�nition of

u, Eq.(21), it follows directly that

V1=2 = 0 ; Vi+1=2 = Vi�1=2 + hui ;

assuming a simple one-dimensional equidistant grid. The extension to multiple

dimensions involves tensor-product grids. With the grid function Vi+1=2 computed,

we can now use any of the �nite di�erence technique discussed in Sec. 4 to compute

the local derivative of Vi+1=2 to recover ui+1=2 and, consequently, the local ux.

Clearly, the order of this approach will depend on the scheme chosen to evaluate

the derivative of V (x). In [33, 35, 34] it is advocated to use an implicit compact

stencil, similar to the ones discussed in Sec. 4.2. Other techniques discussed in

Sec. 4 could equally well be used. Dispersion errors of the compact schemes are

discussed in [33] and errors associated with stretched grids are addressed in [35].

Dispersion optimized compact reconstructions are introduced in [34].

As appealing and simple as the �nite volume schemes are, they su�er from short-

coming similar to those of the �nite di�erence schemes discussed previously, e.g., an

inability to accurately deal with material interfaces and complex geometries. This

is caused by the high-order reconstructions essentially being based on logically

Cartesian grids. Furthermore, the compact reconstruction essentially assumes local

smoothness of the solutions, which may not be the case across material interfaces.

Exploiting embedding techniques may be a way of overcoming this.

7. FINITE ELEMENT SCHEMES

Through the above discussions it has become clear that the need to accurately and

systematically handle geometric complex problems is perhaps the most signi�cant

challenge when developing new methods. This realization is, however, not unique

to electromagnetics and much work has been done to address this problem in other

areas of computational science.

The ability to e�ectively and accurately handle this problems remains one of

the main reasons for the remarkable success of �nite element methods in solid and

uid mechanics (see [63] and references therein), leading to its widespread use and

availability of numerous commercial software environments.

The use of �nite elements for solving Maxwell's equations has, however, been

relatively slow, in spite of early e�orts [111, 15, 112]. This can be attributed

partly to the need to address numerous technical questions, e.g., element types,
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equation form and correct variational statements, and partly to the failure of the

most straightforward formulations. The success of the �nite di�erence methods for

many problems combined with it simplicity also made the �nite element formulation

less attractive.

With the growing need to solve geometrically complex large scale problems, the

last last decade has seen a increasing interest in the exibility o�ered by �nite ele-

ment schemes, although most of the developments has been for problems formulated

in the frequency domain [69, 120].

Only more recently has �nite element schemes for the time-domain solution of

Maxwell's equations received more attention [82], focusing almost exclusively on low

order formulations. The development of high-order accurate �nite element methods

for the time-domain solution of Maxwell's equation remains an emerging �eld at

this point in time, although some of the results we shall discuss in the following

show illustrate its potential.

7.1. Continuous Finite Element Techniques

When formulating a �nite element scheme for solving Maxwell's equations, one

encounters a number of questions, the �rst one being on which form to consider the

equations themselves.

On one hand one could consider solving the equations on �rst order form, Eq.(3),

"r
@E

@t
= r�H + J ; �r

@H

@t
= �r�E : (24)

The treatment of these �rst order non-self-adjoint operators is, however, often a

source of signi�cant problems in classical �nite element formulations.

An attractive alternative, and one that is most often used, is obtained by com-

bining the two �rst order equations to recover the selfadjoint curl-curl form

"r
@2E

@t2
+r� 1

�r
r�E =

@J

@t
: (25)

Both equations are subject to appropriate boundary conditions, i.e., continuity of

tangential �eld components at material boundaries, Eq.(4), and vanishing tangen-

tial electric �elds at conductors, Eq.(6).

For both Eq.(24) and Eq.(25), some condition at the far �eld is also needed if

the domain is open [82]. This latter formulation is often preferred, partly because

of the self-adjoint operator, natural for the formulation of standard �nite element

schemes, and partly because of the decoupling between the �elds, thus reducing

the number of unknowns. However, this formulation also comes with a number of

pitfalls as we shall discuss shortly.

Let us �rst, however, consider schemes for the �rst order form and introduce the

inner product

(u;v)
 =

Z



u � v dx :

The variational form of Eq.(3) then follows as
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d

dt
("rE;�)
 = (r�H;�)
 + (J ;�)
 ;

d

dt
(�rH;�)
 = � (r�E;�)
 ;

� is test function, which can be a scalar or a vector valued function. To seek

the semi-discrete numerical scheme, assume that the computational domain, 
, is

partitioned into K non-overlapping elements, D, on which the test functions has

support.

Let us �rst consider the simplest case in which the test function is a scalar nodal

element, much as is done in classical �nite elements [63]. Thus, we assume that the

numerical solutions are given as

E�
h (x; t) =

X
i

E�
i (t)�i(x) ; H�

h (x; t) =
X
i

H�
i (t)�i(x) ;

where � = (x; y; z), (E�
i ; H

�
i ) represents the unknowns, being nodal values or ex-

pansion coeÆcients, and �i(x) are the locally de�ned basis functions which are

assumed continuous. Although not generally necessary, in the Galerkin form con-

sidered here, the trial and test functions are the same.

Inserting the numerical solutions into the variational statement, yields the semi-

discrete form as

M" d

dt
Ex
h = SyHz

h � SzHy
h +MJxh (26)

M" d

dt
E
y
h = SzHx

h � SxHz
h +MJyh

M" d

dt
Ez
h = SxHy

h � SyHx
h +MJzh

M� d

dt
Hx

h = SzEy
h � SyEz

h

M� d

dt
H

y
h = SxEz

h � SzEx
h

M� d

dt
Hz

h = SyEx
h � SxEy

h

where (E�
h ;H

�
h) represents the global degrees of freedom. We likewise have the

globally de�ned mass matrices

M"
ij = (�i; "r�j)
 ; M�

ij = (�i; �r�j)
 ;Mij = (�i; �j)
 ;

as well as the di�erentiation matrix

S�ij =

�
�i;

@�j
@�

�



:

For the harmonic case, it was shown in [89], however, that this most obvious form

harbors spurious vector modes which may lead to convergence to wrong solutions.
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This was attributed to a lack of enforcing the constraint of divergence free �elds.

Another interpretation of this is the inability to properly represent the nulls pace

of the curl-operator [115].

This topic of spurious solutions to Maxwell's equations has received signi�cant

attention in the literature [89, 98, 65], primarily in the context of frequency do-

main solutions. An introductory overview is given in [115]. In the time-domain

these problems appear to be much less signi�cant and controllable through the

smoothness of the initial conditions [65, 72].

Nevertheless, the solutions proposed to overcome problems of spurious modes

in frequency domain schemes have generally been used also in the development

of schemes for the time-domain. While several solutions are known, the by far

most popular is the use of a vectorial basis in the formulation of the �nite element

schemes, i.e.,

E(x; t) =
X
i

Ei(t)N i(x) ; H(x; t) =
X
i

Hi(t)N i(x) ; (27)

where (Ei; Hi) are scalars and N i(x) represents the vectorial basis.

The main motivation for seeking vector basis functions is the observation that

the boundary conditions for Maxwell's equations are vectorial, i.e., it is natural

when seeking a conforming discretizations to utilize vector basis functions. Such

basis functions, often known as curl conforming elements, should satisfy funda-

mental properties of the solutions to Maxwell's equations, e.g., support tangential

continuity of the solutions. This allows for imposing tangential continuity between

elements with di�erent materials as well as impose boundary conditions in a natu-

ral way. Furthermore, the use of such elements guarantee the absence of spurious

modes in frequency-domain �nite element schemes [7]. An introduction to vector

elements and how they avoid the spurious modes is given in [115].

Such vector elements, known as edge-elements [6], Nedelec elements [93, 94],

Whitney forms [6, 56, 57], and curl/div conforming vector elements [40, 2], have

a number of interesting properties. In particular, they are constructed to provide

a discrete analog to the continuous vector algebra and to enforce only minimal

continuity across element boundaries, i.e., the curl conforming elements enforce

tangential continuity while the div-conforming elements enforce normal continuity.

Albeit at considerable technical e�ort, edge elements can be constructed to arbitrary

high-order, of modal/hierarchic [94, 125, 2] as well as interpolatory type [40], and for

simplices as well as quadrilaterals and hexahedrals. A general abstract construction

is discussed in [56, 57, 58] and elements suitable for nonuniform order is derived in

[22].

Using curl conforming elements, the semi-discrete form of Eq.(24) becomes

M" d

dt
Eh = SHh +MJh ; M� d

dt
Hh = �SEh ; (28)

where (Eh;Hh) again represents the global degrees of freedom. The globally de-

�ned mass matrices are given as
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M"
ij = (N i; "rN j)
 ; M�

ij = (N i; �rN j)
 ;Mij = (N i;N j)
 ; (29)

as well as the sti�ness matrix

Sij = (N i;r�N j)
 :

While use of these elements e�ectively eliminates the spurious modes and adds a lot

of structure to the solutions, they do overcome another impact of the conforming

�nite element scheme, i.e., the need to invert a global, albeit sparse, mass matrix,

even if explicit time-stepping is used. As the order of the scheme increases, more

degrees of freedom is needed on each element, quickly rendering this inversion

prohibitive.

An approach to circumvent this has been developed in [20] where it was demon-

strated that one can use mass lumping to diagonalize the mass matrices without

sacri�cing the accuracy, even on curvilinear elements. This makes the scheme fully

explicit at the semi-discrete level and competitive with alternative methods. Unfor-

tunately, this approach is successful only when using quadrilateral and hexahedral

Nedelec-type elements as discussed in depth in [20, 19]. The computational results

are limited to two dimensional problems. A dispersion analysis of the semi discrete

scheme is also included in [20], displaying properties as for the �nite di�erence

scheme discussed in Sec. 3.

While the development of the curl-conforming Nedelec elements presents a major

advancement, it comes at a slight price. Not only are these families of elements

complex but they also have a signi�cantly higher number of degrees of freedom as

compared to the classical nodal elements. This is summarized in Table 2, illus-

trating that the curl-conforming elements typically have d-times more degrees of

freedom, d being the dimension of the problem. However, as one needs d scalar

�elds, the di�erences are signi�cant for low order elements only.

An alternative to the use of curl-conforming elements, while avoiding to rein-

troduce the problem of spurious modes, is to change the variation statement to

account for the divergence constraint, e.g., as a penalty term

d

dt
("rE;�)
 = (r�H;�)
 + (J ;�)
 + (r � "rE;�)
 ;

d

dt
(�rH ;�)
 = � (r�E;�)
 + (r �H ;�)
 :

Similar forms has been shown to successfully eliminate the spurious modes [65,

64], using the general language of least squares stabilized low order �nite element

scheme. As promising as this approach appear, we are unaware of any high-order

results using this.

While the developments of high-order �nite element schemes for the �rst order

system remains limited, there has been more recent activity regarding the devel-

opment of �nite element schemes for Maxwell's equations on the curl-curl form,

Eq.(25).
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TABLE 2

Degrees of freedom for nodal and curl elements of order n.

Nodal Element Curl Element

Quadrilateral (n+ 1)2 2(n+ 1)(n+ 2)

Hexahedral (n+ 1)3 3(n+ 1)(n + 2)2

Triangle 1
2
(n+ 1)(n+ 2) (n+ 1)(n+ 3)

Tetrahedron 1
6
(n+ 1)(n+ 2)(n+ 3) 1

2
(n+ 1)(n+ 3)(n+ 4)

Assuming again the use of scalar nodal �nite elements, the strong variational

form for Eq.(25) is

d2

dt2
("rE; �)
 +

�
r� 1

�r
r�E; �

�



=
d

dt
(J ; �)
 ;

resulting in the semi-discrete Galerkin form

M" d
2

dt2
Ex
h + Sy;xEy

h � Sy;yEx
h � Sz;zEx

h + Sz;xEz
h = M

d

dt
Jxh

M" d
2

dt2
E
y
h + Sz;yEz

h � Sz;zEy
h � Sx;xEy

h + Sx;yEx
h = M

d

dt
J
y
h (30)

M" d
2

dt2
Ez
h + Sx;zEx

h � Sx;xEz
h � Sy;yEz

h + Sy;zEy
h = M

d

dt
Jzh

where

S�;�ij =

�
�i;

@

@�

1

�r

@

@�
�j

�



;

and the remaining operators are de�ned as above. It is, however, more common to

balance the smoothness between the trial and test functions and consider the weak

form

d2

dt2
("rE; �)
 +

I
@


�
n̂� 1

�r
r�E

�
� dx�

Z



r� � 1

�r
r�E dx =

d

dt
(J ; �)


with a semi-discrete form very similar to that above, Eq. (30).

As for the �rst order schemes discussed above, much attention has been paid

to the problems of spurious modes in the frequency-domain form of the curl-curl

equations. Indeed, it was in these schemes that the problems with spurious solutions

was �rst observed [111].

This has lead to several di�erent approaches to overcomes this, following ideas

similar to those discussed above. The straightforward approach is to employ high-

order curl-conforming elements to eliminate the possibility of spurious modes. As-

suming solutions of the form in Eq.(27), this yields the semi-discrete scheme

M" d
2

dt2
Eh � SEh = M

d

dt
Jh ;
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where Eh and Jh represents the vectors of global electric �elds and currents, the

global mass-matrices are de�ned in Eq.(29), and the sti�ness matrix has the entries

Sij =

�
r�N i;

1

�r
r�N j

�



:

As demonstrated recently in [67, 68], this formulation allows for the development

of high-order accurate schemes for the time-domain solution of the curl-curl equa-

tions. The e�ort demonstrates the viability of such an approach for solving full

three-dimensional time-dependent problems, in combination with perfectly matched

layers [66] or a global boundary elements technique [68]. Although the available

results remain fairly simple they nevertheless demonstrate the potential of such an

approach.

The alternative approach, modifying the variational statement to include the

divergence constraint, takes the from [88]

d2

dt2
("rE; �)
 +

I
@


�
n̂� 1

�r
r�E

�
�x�

Z



r�� 1

�r
�E dx+

+

Z



(r � "rE)r� dx�
I
@


n̂
1

"r�r
r � "rE� dx =

d

dt
(J ; �)
 :

A related approach is discussed in [65, 64], derived using a least squares stabi-

lized �nite element scheme, thus avoiding the direct penalization. In [8, 99, 9] it

is proposed to solve Maxwell's equations using vector and scalar potentials, like-

wise eliminating spurious modes. We are unaware of attempts to combine such

formulations with high order elements.

7.2. Discontinuous Finite Element Techniques

As promising as the continuous �nite element formulation is, it su�ers from a

number of problems which are not easily overcome. As we have already discussed,

the need for a conforming discretization not only complicates matters but also

results in the need to invert a global mass matrix at every time step. While this

mass matrix is sparse and typically well conditioned the work associated with this

inversion increases for higher order methods, becomes signi�cant for large scale

problems and may become a bottleneck for parallel computations.

Recently, however, formulations which eliminate these issues has appeared. While

they can be derived for Maxwell's equations on both �rst order form, Eq.(24), as

well as for the curl-curl form, Eq.(25), all recent work has focused on the former.

We shall thus seek solution to Eq.(24) in a general domain, 
 considered as the

union of non-overlapping body-conforming elements, D. To simplify the derivation

we shall furthermore consider Maxwell's equations on conservation form, Eq.(31),

as

Q(x)
@q

@t
+r � F (q) = S(qi;x) : (31)

Recall that q represents the state vector, the ux F is given in Eq.(23), Q reects

a diagonal matrix with material parameters and S signi�es the sources, e.g., the

incoming �elds and/or the current.
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To formulate the scheme we assume that there exists an approximate solution,

qh, on the form

qh(x; t) =
X
i

qi(t)�i(x) ; (32)

within each element. Similarly, we assume that F h and Sh are polynomial repre-

sentations of the ux and of the source, respectively. Note that we do not place

any global constraints on the basis, �i, i.e., it is in general discontinuous and non-

conforming.

To seek equations for the unknowns, we require the approximate solution to

Maxwell's equations, qh, to satisfy

Z
D

�
Q
@qh
@t

+ r � F h � Sh) �i(x) dx

=

I
@D

	i(x)n̂ � [F h � F �] dx : (33)

We emphasize that the integration is over the local element, D, and not the full

domain, 
, in contrast to the to continuous �nite element schemes discussed in Sec.

7.1.

Here �i and 	i represent sequences of N test functions, F � signi�es a numerical

ux and n̂ is an outward pointing unit vector de�ned at the boundary of the

element. If the numerical ux is consistent, the scheme is clearly consistent. On

the other hand, boundary/interface conditions are not imposed exactly but rather

weakly through the penalizing surface integral. In this multi-element context, the

formulation is inherently discontinuous and yields, through its very construction, a

highly parallel local scheme.

Let us de�ne the local inner product

(u;v)D =

Z
D
u � v dx ;

and the local mass matrices operators

M"
ij = (�i; "r�j)D ; M�

ij = (�i; �r�j)D ; Mij = (�i; �j)D ; (34)

the discrete di�erentiation operator

S�ij =

�
�i;

@

@�
�j

�
D

; (35)

where � = (x; y; z). The boundary integration operator is de�ned as

Fij =

I
@D

	i�j dx : (36)
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With this, we can write the semi-discrete form of Maxwell's equations as

M" d

dt
Ex
h � SyHz

h + SzHy
h �MSE;xh = FPE;x

h (37)

M" d

dt
E
y
h � SzHx

h + SxHz
h �MSE;yh = FPE;y

h

M" d

dt
Ez
h � SxHy

h + SyHx
h �MSE;zh = FPE;z

h

M� d

dt
Hx

h � SzEy
h + SyEz

h �MSH;xh = FPH;x
h

M� d

dt
H

y
h � SxEz

h + SzEx
h �MSH;yh = FPH;y

h

M� d

dt
Hz

h � SyEx
h + SxEy

h �MSH;zh = FPH;z
h :

Here (E�
h ;H

�
h), � = (x; y; z), represents the local degrees of freedom, SE;� and

SH;� represents the components of the sources discussed in Sec. 2, and we have

introduced the penalizing boundary uxes, PE;�
h and PH;�

h for Eh and Hh, re-

spectively. We shall de�ne these shortly.

One notes immediately that relaxing the continuity of the elements decouples the

elements and results in a block-diagonal global mass matrix which can be inverted

in preprocessing. The price paid for this is the additional degrees of freedom needed

to support the local basis functions. For high-order elements, this is, however, only

a small fraction of the total number of degrees of freedom.

The coupling of the local solutions to recover the global solution is accomplished

through the numerical uxes, F �. In this regard, one can view these methods

as a high-order generalization of the �nite volume schemes discussed in Sec. 6,

albeit without the complications of wide stencils and complex procedures for the

reconstruction of the pointwise solution.

Given the linearity of Maxwell's equations, it is natural to use upwinding, simi-

lar to the patching through characteristics discussed for the spectral multidomain

schemes in Sec. 5. This is given on the form [90]

PE
h = Z

�1
n̂� �n̂� [Eh]� Z+[Hh]

�
; (38)

PH
h = Y

�1
n̂� �n̂� [Hh] + Y +[Eh]

�
: (39)

Here [q] = q� � q+ measures the jump in the �eld values across an interface.

Superscript '+' refers to �eld values from the neighbor element while superscript '-'

refers to �eld values local to the element. To account for the potential di�erences in

material properties in the two elements, the local impedance, Z�, and conductance,

Y �, is de�ned as

Z� =
1

Y �
=

r
��

"�
;

and the sums
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Z = Z+ + Z� ; Y = Y + + Y � ;

of the local impedance and conductance, respectively.

Choosing the test functions, �i, 	i and the numerical ux, F �, one has a large

degree of freedom when designing di�erent schemes. Focusing on Galerkin schemes,

in which case 	i(x) = �i(x) = �i(x), it is worth realizing that following integration

by parts in Eq.(33) this scheme becomes the much studied discontinuous Galerkin

method [18, 3]. This is, however, only one among many di�erent formulations in

the same family of discontinuous element/Penalty methods. We refer to [50, 52, 53]

where other choices are studied in the general context of conservation laws and

problems of wave-propagation.

To complete the scheme one needs to specify basis element type and an associated

basis �i(x), most often of polynomial nature. and de�ne the unknown coeÆcients,

qh, for functions de�ned on the elements.

Using general curvilinear quadrilaterals, as in [78, 79], it is natural to use a

tensor-product interpolating basis as is done for the spectral multi-domain schemes

discussed in Sec. 5.2. The advantage of this is, apart from its simplicity, that one

recovers a diagonal local mass matrix by using polynomials de�ned at quadrature

points. This results in schemes that are very similar to those in Sec. 5.2, the

main di�erence being whether the characteristic conditions on the boundary uxes

are imposed weakly or strongly. A non-conforming extension of such schemes is

discussed in [79] and the dispersion characteristics of such schemes are discussed in

[61]. Extensions to problems with nonuniform grids are analyzed in [62], con�rming

that such discontinuous formulations are well suited for wave-propagation.

In [123, 54, 55] the development of a Galerkin scheme on nodal tetrahedral ele-

ments is initiated, aimed at demonstrating the potential of using a discontinuous

element formulation for solving very large geometrically complex three-dimensional

problems in time-domain computational electromagnetics.

Choosing the appropriate form of the local basis on the tetrahedron is less a

question of formulation and more a question of performance as measured by eÆ-

ciency and accuracy of the �nal scheme. An immediate candidate is the monomial

basis, �i(x) = x�1y�2z�3 with j�j � n. As is well known, however, this will lead to

extremely illconditioned operators as the basis becomes almost linearly dependent

for high polynomial order and prohibits the stable and accurate computation at

high order.

The way to overcome such conditioning problems, we �rst follow the approach

of Sec. 5.2, and introduce a smooth curvilinear mapping, 	 : D ! I, between the

general element, D, and a canonical tetrahedron, I, on which we seek an orthonormal

basis. Such a basis has been known for a long time [103, 75, 27]. This leaves

the question of how to compute the expansion coeÆcients, q. Clearly, with an

orthonormal basis at hand, it may seem natural to use this as the local basis. The

impact of doing so, however, is that all modes are needed to evaluate qh pointwise.

This lack of separation between inner modes and boundary modes is not optimal

for the discontinuous formulation where the ux term depends on the uxes at the

boundary of D only. To overcome this issue one could seek to give up the strict
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orthonormality of the basis to achieve a separation between inner and boundary

modes. Such a basis is developed in [73] and provides an approach, albeit rather

complex, to achieve arbitrarily high order accuracy.

Using a nodal element, however, one can de�ne qh as an interpolating polynomial,

i.e., we require that

8i : qh(x(�i); t) =
X
j

qj(t)�j(�i) ;

where �j(�) is the orthonormal basis on I and �i are prede�ned grid-points in I. The

number of nodes, N , is simply that required for completeness, as listed in Table 2.

On vector form this yields the requirement that

qh = Vq ; Vij = �j(�i) ; (40)

where V is a multidimensional Vandermonde matrix. The genuine multivariate

Lagrangian polynomials are

qh(x(�); t) =
NX
i=1

qh(x(�i); t)Li(�) ; VTL = � ;

where the latter expression for evaluation of the Lagrange polynomials follows from

the interpolation property. Here L = [L1(�); ::; LN(�)]
T and the basis is given as

 = [�1(�); ::; �N (�)]
T .

The �nal issue in need of attention is the choice of the nodal points, �i, within

I. As is well known, the success of high-order Lagrangian interpolation is critically

dependent on the correct distribution of the nodes. This is a problem that has

received some attention recently and nodal distributions, enabling the construction

of well behaved unique Lagrange polynomials up to order 18 on the triangle [49]

and up to order 10 on the tetrahedron [16, 53].

The nodal distributions are characterized by having exactly N nodes. Further-

more, the nodal set includes the vertices, the edges, and the faces of the tetrahe-

dron. The number of nodes on each face is exactly that is required to support a

two-dimensional multivariate polynomial, i.e., N2d = (n + 1)(n + 2)=2 nodes on

each face. Same characteristics are shared by the nodes on the triangles.

In this setting it is more natural to recast the scheme in physical space. The

only di�erence with Eq.(37) is that (E�
h ;H

�
h) then represents the N -long vectors

of nodal values in each element, Sh the nodal values of the source function, and

PE
h and PH

h the nodal values of the numerical ux as de�ned in Eqs.(38)-(39).

The discrete, pointwise operators, are given as

Mij =

Z
D
LiLj dx ; S�ij =

Z
D
Li

@Lj
@�

dx : (41)

The form of the boundary operator, F, is simpli�ed as a consequence of the unique-

ness of the Lagrange polynomial and the structure of the nodal points, i.e., inte-

gration of the three-dimensional Li over the surface is equivalent to the sum of
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the integration of the two-dimensional Lagrange polynomials de�ned by the nodal

distribution on the faces. This implies that

Ffaceij =

I
face

l2Di l2Dj dx ; (42)

F =
X
faces

RT
face(V

�1
2D)

TFfaceV�12DRface :

Here l2Di represents the two-dimensional Lagrange polynomials de�ned by the

nodes on each of the 4 faces, V2D is the associated Vandermonde matrix similar

to the three-dimensional form, Eq.(40), and Rface is an N2d �N which serves to

extract those nodes situated at each face of the element.

To reiterate the importance of this separation between internal and boundary

nodes, we note that the operation count for evaluating the scheme, Eq.(37), assum-

ing no separation, is O(6N2) for each variable. For the nodal scheme, or a modal

scheme with a similar separation, the work scales like O(2N2 + 4NN2d). Hence,

the relative saving in operations scales as

Work with Nodal Basis

Work with Simple Modal Basis
=

1

3
+

2

n+ 3
:

This clearly becomes increasingly important as the order of the approximation, n,

increases, although even for n = 3 do we �nd a 1=3 reduction.

One of the main advantages of the nodal element is the ease by which one can re-

lax the restriction on tetrahedra having straight faces only. Clearly, this will impact

the evaluation of the discrete operators, Eqs.(41)-(42), by requiring speci�c opera-

tors for each element and suÆcient accuracy in the integration to evaluate entries

in the operators. However, the evaluation of the boundary uxes is straightforward

in a nodal representation even as the normal vectors, n̂, vary along the faces.

The details of the nodal based discontinuous element scheme and its eÆcient

implementation can be found in [54, 55], including a complete convergence analysis

and alternative divergence preserving formulations.

The discontinuous element formulation can be expected discussed to allow a

highly eÆcient parallel implementation on contemporary large scale distributed

memory machines. As a veri�cation of this, we list in Table 3 the relative parallel

speedup for a single large scale application, demonstrating superlinear scaling. Sim-

ilar and more extensive studies, given in [54], con�rm this high parallel eÆciency

for a variety of applications.

TABLE 3

Relative time for a 245.000 element grid with 6'th order elements

as a function of the number of processors.

Number of Processors 64 128 256 512

Relative time 1.00 0.48 0.24 0.14
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FIG. 14. On the left is shown details of the body conforming grid used to compute
scattering by a two-dimensional PEC cylinder. The right shows the rapidly converging bistatic
radar-cross-section when increasing the order, n, of the scheme.

Let us conclude this discussion with a few examples. Advancement in time is

done using a low-storage 4th order explicit Runge-Kutta method [14] and the com-

putational domain is terminated with a combination of stretching of the grid and

characteristic boundary conditions at the outer boundaries.

As a �rst, simple two-dimensional problem, we consider TM-polarized plane wave

scattering by a ka = 15� metallic cylinder . In Fig. 14 we show both a fraction of the

grid, illustrating the body conforming high-order nodal grid, and the bistatic RCS

computed using a �xed, very coarse grid, and achieving convergence by increasing

the order of the scheme.

As an example of a more challenging three-dimensional problem, consider plane

wave scattering by a perfectly conducting conesphere, consisting of a 60.5 cm long

cone with half angle of 7 deg, capped smoothly with a spherical cap of radius 7.49
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FIG. 15. On the left we show a details of the body conforming grid used to compute
scattering by a large PEC conesphere. The surfaces are triangulated for visualization based on
the nodes of the high-order elements. On the right we show computed bistatic radar-cross-section
(RCS) for vertically polarized plane wave illumination at the tip and compared with results using
integral equation based frequency domain solver (CFIE).
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FIG. 17. Application of an unstructured grid discontinuous element high-order method to
the solution of electromagnetic scattering a military aircraft. The frequency of the incoming plane
wave is 600 MHz. On the left is shown a part of the triangulated surface grid and on the right
is shown one of the magnetic �eld components on the surface of the plane. The computation is
performed with 4th order elements and approximately 245.000 tetrahedra to �ll the computational
volume.

methods such as explicit 3rd or 4th order Runge-Kutta methods [10, 46]. Interest-

ing alternatives to these classical approaches are low-storage Runge-Kutta methods

[10, 14], limiting the need for additional stages, and dispersion optimized Runge-

Kutta schemes [60], designed for propagating waves over long distances.

Using a spatial high-order �nite di�erence scheme, many practitioners continue to

use the 2nd order accurate Leapfrog scheme, used also in the classical Yee scheme

[132], often choosing the time-step under error constraints rather than stability

constraints. This approach is used in e.g. [119, 135, 134]. In [126] a deferred

correction technique using a backward di�erentiation method is used to achieve 4th

order.

The situation is very similar when using �nite volume or �nite element discretiza-

tions of the �rst order Maxwell's equations where 2nd order Leapfrog schemes

[20, 19] or explicit Runge-Kutta methods [33, 34, 35] remain the main workhorses.

For the �nite element discretizations of the curl-curl equations, leading to an equa-

tion of 2nd order in time, the standard choice is the Newmark scheme [63], generally

chosen to be 2nd order accurate and either implicit or explicit [66, 68]. Interesting

alternatives could be Nystr�om methods to enable a higher order accuracy. As the

�nite element discretization of the curl-curl form always requires a matrix inversion,

implicit schemes seems most attractive as they come at little additional cost.

The conditions for discrete stability naturally depends on both the details of

the spatial and the temporal discretization as well as the form in which Maxwell's

equations are stated. However, combining any of the semi-discrete schemes dis-

cussed here with an explicit time-integration scheme generally yields a condition

for discrete stability as

�t � C min



p
"r�rh :
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What separates the di�erent schemes is partly the value of the constant C, typi-

cally of O(1), but most importantly what the grid size, h, means. Naturally, for

the extensions of the Yee scheme discussed in Sec. 4 or the high-order �nite vol-

ume schemes in Sec. 5, h maintains its simple meaning due to the equidistant

grid. However, for the more complicated multi-domain/multi-element schemes, the

geometric exibility comes at a price since typically one has

h / l

n2
;

where n represents the order of the approximation and l the smallest edge length of

the elements. This illustrates that one should strive to use a large elements as pos-

sible to avoid prohibitively small time-steps and, thus, very long computing times.

Some attempts to slightly improve on this are discussed in [25, 31, 51] although one

has to be careful not to increase the time-step at the expense of accuracy. Ulti-

mately, this emphasizes the need to support curvilinear body-conforming elements

in the formulation as one must aim to resolve the solutions and not the geometry

since the latter may result in unnecessarily small stable time steps.

As applications become increasingly complex, the geometries themselves often re-

quires small cells and, thus, small time steps. Techniques to overcome this remain

active research areas. Fully implicit time-stepping is of course an option but may be

prohibitive for large scale problems where the sti�ness is localized to small regions

of the grid. More interesting alternatives include the use of non-conforming dis-

cretizations [22, 79], explicit-implicit Runge-Kutta methods [74] enabling splitting

on the grid, and time-accurate local time-stepping methods [21].

9. CONCLUSIONS AND OUTLOOK

Looking through the list of references accompanying this review, one quickly

realizes that most references directly related to the high-order accurate time-domain

solution of Maxwell's equation are less that 5 years old. This is both a testament

to the timeliness of this review as well as the activity experienced in this research

area over the last few years.

However, learning about the various e�orts also emphasizes that much work re-

mains to be done. The simplicity of the �nite di�erence bases embedding schemes,

avoiding grid generation and allowing the treatment of complex, even moving,

boundaries in a simple manner, is also its Achilles Heel, i.e., it is diÆcult to imag-

ine higher than 4th order accuracy and many issues related to stability of general

interfaces remains open. However, 4th order may well suÆce for many problems of

moderate size and complexity. Indeed, if stable and robust versions of such meth-

ods could be developed, they may well have the potential to succeed the current

golden standard { the Yee scheme.

Currently, however, there seems to be no robust alternative to multi-element

schemes, be they spectral multi-domain schemes, high-order time-domain �nite el-

ement schemes, or discontinuous �nite element schemes. Each of these formulations

have their own advantages and disadvantages although, at this particular point in

time, the development of the discontinuous element formulations, Sec. 7.2, appear

to be most advanced.
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Many issues continue to require serious attention. Apart from the plentiful the-

oretical questions, e.g., semi-discrete and fully discrete stability, smoothness of the

solutions around non smooth geometries and its impact on the convergence rate,

the importance of the divergence constraints in time-domain schemes etc, many is-

sues with a potential for immediate impact remains open. Perhaps most evident is

the need to consider alternatives to the widely used explicit time-stepping schemes.

For large scale geometrically complex problems this is becoming a bottleneck.

Another area that continues to require attention is the development of accu-

rate and eÆcient means to truncate the computational domain. This becomes of

increasing importance as the accuracy requirements increase. Perfectly matched

layer methods [4, 5] have received much attention in the last decade and continues

to be a viable solution. Their cost for large scale problems is, however, a concern.

Global boundary conditions, e.g., [45, 42, 105], deserves serious attention as does

the recently demonstrated use of time-domain integral equations [68] as a means to

truncate the computational domain when using high-order accurate methods.

High-order accurate multi-element techniques are currently limited by low-order

grid generation, i.e., most commercial grid-generation software does not support

higher order descriptions of boundaries and interfaces. To fully ripe the bene�ts

of the high-order accuracy, this must be overcome, e.g., through a more dynamic

interface between the model description and the grid generation. This problem is,

however, not unique to electromagnetics and there is currently signi�cant research

activity to overcome this restriction and enable high-order model description and

grid-generation.

Adaptive solution techniques as well as accurate and eÆcient means to treat

randomness in the geometries, materials, and solutions, are both areas which have

received only very limited attention in the past. Nevertheless, advances in these ar-

eas have the potential for a dramatic impact as applications continues to emphasise

higher frequencies and more complex signals form and materials.

While it took the insight of Maxwell to realize the beautiful simplicity of elec-

tromagnetic wave propagation, the recent advances in high-order accurate methods

for such phenomena suggests that less can do when it comes to solving them com-

putationally. As complex as these problems are, the advances over the last decade

are substantial and encouraging, although the applications continue to surpass the

computational capabilities in complexity and size. Nevertheless, the gap is slowly

narrowing, and the continued emphasis on high-order accurate methods for the

time-domain solution of Maxwell's equations may eventually enable the develop-

ment of robust, accurate, and eÆcient computational tools, powerful and versatile

enough to address the electromagnetic problems of tomorrow.
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