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Abstract

The classic Lebesgue ANOVA expansion offers an elegant way to represent functions

that depend on a high-dimensional set of parameters and it often enables a substantial

reduction in the evaluation cost of such functions once the ANOVA representation is

constructed. Unfortunately, the construction of the expansion itself is expensive due

to the need to evaluate high-dimensional integrals. A way around this is to consider an

alternative formulation, known as the anchored ANOVA expansion. This formulation

requires no integrals but has an accuracy that depends sensitively on the choice of a

special parameter, known as the anchor point.

We present a comparative study of several strategies for the choice of this anchor

point and argue that the optimal choice of this anchor point is the center point of a

sparse grid quadrature. This choice comes at no cost and, as we shall show, results in a

natural truncation of the ANOVA expansion. The efficiency and accuracy is illustrated

through several standard benchmarks and is shown to outperform the alternatives over

a range of applications.
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1 Introduction

The analysis-of-variation - ANOVA - expansion provides an elegant way to represent func-

tions that depends on a high-dimensional set of parameters. As such it has been used in

numerous applications during the last decade to represent and efficiently manipulate high-

dimensional problems and to enable one to take advantage of the inherent low-dimensional

interdependence, often found in many such problems. In [9] it was explored in the context

of high-dimensional integration methods, in [2] it was demonstrated in relation with param-

eterized partial differential equations and in [5] the ANOVA expansion was utilized to the

develop a sensitivity index to enable the effective reduction of parametric dimensionality

without impacting the accuracy of the predicted output function.

However, the classic ANOVA expansion is projection based and its construction requires

the use of high-dimensional integration, rendering its construction very expensive. To address

this challenge, an alternative formulation, named the anchored or Dirac ANOVA expansion,

has been proposed [9]. It was also considered in [7] under the name CUT-HDMR. It relies on

expressing a function u(α) as a superposition of its values along lines, planes and hyperplane

passing through an anchor point β = (β1, · · · , βp). As can be imagined, the choice of this

anchor point is closely tied to the overall efficiency and accuracy of the expansion and making

this choice correctly becomes a key element of the formulation. Unfortunately, there is no

known rigorous result of how to make this choice in a optimal way for general functions.

Recently, a number of techniques for making this choice have been proposed. A straight-

forward choice is to use an anchor point chosen randomly in the high-dimensional space.

While used widely it can not be expected to yield an optimal choice. In [17], it is suggested

that the optimal anchor point is found as the trial point whose output is closest to the mean

of the function, being computed from a moderate number of quasi-random samples. An

alternative, based on ideas of optimal weights in quasi Monte Carlo methods, is proposed

in [20] and shown to yield good results. Unfortunately, this approach is only rigorous for

functions that allow a dimensional variable separation. Both of these latter methods require

some computational work to identify the anchor point.

In this work, we propose to use the center point of a particular sparse grid quadrature

as the anchor point and offer a comparative study with the previously introduced methods
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mentioned above. An argument for this new approach is based on the structure of the

Smolyak sparse grid which is closely related to the anchored ANOVA expansion [9]. This

anchor point can be computed a minimal cost and we show that its use leads to a a very

natural truncation of the anchored ANOVA expansion when one is computing integrals of

the expansion. While most past work have assumed that the parameters are uniformly

distributed random variables, we also discuss the use of this approach when applied to cases

where the parameters are more general non-uniformly distributed random variables.

What remains of the paper is organized as follows. Section 2 introduces the ANOVA

expansion based on the Lebesgue measure and the Dirac measure, respectively. We also

discuss the structure of the Smolyak sparse grid in this part. Section 3 introduces four

strategies for the choice of the anchor point and in Section 4 we demonstrate the efficiency

and accuracy of the proposed anchor point through several examples. Section 5 contains a

few concluding remarks.

2 The ANOVA expansion

We begin by introducing the ANOVA expansion and its two different representations based

on different product measures. Without loss of generality, we take the integration domain D

to be [0, 1]p, and u ∈ L 2(D). Take t to be any subset of coordinate indices P = {1, · · · , p}

with |t| denoting the cardinality of t. Let also αt denote the |t|-vector that contains the

components of the vector α ∈ [0, 1]|t| indexed by t and take A|t| to denote the |t|-dimensional

unit hypercube defined as the projection of the p-dimensional unit hypercube Ap onto the

hypercube indexed by t. Assume dµ to be a probability measure on Ap. Then u can be

expanded in an ANOVA expansion as [7, 17]

u(α) = u0 +
∑
t⊆P

ut(αt), (1)

where ut(αt), t ⊆P is defined recursively through

ut(αt) =

∫
Ap−|t|

u(α)dµ(αP\t)−
∑
w⊂t

uw(αw)− u0 (2)
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starting with

u0 =

∫
Ap

u(α)dµ(α),

∫
A0

u(α)dµ(α∅) = u(α). (3)

Here dµ(αP\t) indicates integration over the coordinates except indices containing t. The

total number of terms in the ANOVA expansion is 2p.

The ANOVA expansion is a finite and exact expansion of a general high-dimensional

function [7, 17]. Furthermore, the individual terms in the expansion are mutually orthogonal,

i.e. ∫
Ap

ut(αt)uw(αw)dµ(α) = δtw (4)

and, as a natural consequence of this, each term except u0 has a zero mean∫
Ap

ut(αt)dµ(α) = 0, |t| > 0. (5)

The computational realization of the ANOVA expansion is achieved through the recursive

expression, (2), and the use of orthogonality (4).

2.1 The Lebesgue expansion

In the classic ANOVA expansion, one assumes dµ is a Lebesgue measure in Eq. (1) and

Eqs.(2)-(3) yield its realization through high dimensional integration.

Let us define the truncated ANOVA expansion of order s as

u(α; s) = u0 +
∑

t⊆P,|t|≤s

ut(αt). (6)

where ut(αt) and u0 are defined above.

The concept of an effective dimension of a particular integrand was introduced in [11, 12]

and also discussed in [13] as a way to reflect and utilize the observation that many high-

dimensional functions are effectively low-dimensional. It was also observed that the ANOVA

expansion was particularly well suited from bringing out this hidden low dimensional nature.

The effective dimension is the smallest integer ps such that∑
0<|t|≤ps

Vt(u) ≥ qV (u), (7)
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where q ≤ 1. Here Vt(u) and V (u) are defined by

Vt(u) =

∫
Ap

(ut(αt))
2 dα, V (u) =

∑
|t|>0

Vt(u), (8)

and can be thought of as a measure of the variability of u when considering a given set t.

The relationship between the accuracy of the truncated ANOVA expansion and the su-

perposition dimension is made clear through the following result [15, 16, 19]

Theorem 1 Assume that the function u(α) has superposition dimension ps based on q and

let u(α; ps) denote the truncated ANOVA expansion of order ps. Then

Err(α, ps) ≤ 1− q,

where Err(α, ps) is the normalized approximation error defined by

Err(α, ps) =
1

V (u)

∫
Ap

[u(α)− u(α; ps)]
2 dα.

This shows that if the superposition dimension is small, ps � p, the function can be well

approximated by using just a few terms in the ANOVA expansion. This allows one to reduce

the cost of computing the expansion and reduce the cost of the subsequent evaluation of the

expansion.

2.1.1 Sparse Smolyak grids

To control the computational cost of evaluating the required high-dimensional integrals,

(2) (3), a high-dimensional efficient quadrature rule need to be considered. Here we use

sparse grid methods based on the Smolyak construction [14]. These allow one to construct

sparse multivariate quadrature formulas based on sparse tensor products of one-dimensional

quadrature formulas.

Let us consider the numerical integration of a function u(α) over a p-dimensional unit

hypercube Ap = [0, 1]p,

I[u] :=

∫
Ap

u(α)dα. (9)

To introduce the algorithm, we choose a one-dimensional quadrature formula for a univariate

function u as
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Q1
l u =

n1
l∑

i=1

ωiu(α1
i ) (10)

where ωi represent the integration weights and α1
i reflect the quadrature points.

Now define a sequence

41
iu = (Q1

i −Q1
i−1)u (11)

with Q1
0u = 0 and for i ∈ N+. Smolyak’s algorithm for the p-dimensional quadrature formula

is then given as

Qp
l u =

∑
|k|1≤l+p−1

(41
k1
⊗ · · · ⊗ 41

kp)u (12)

for l ∈ n and k = (k1, · · · , kp) ∈ np. An alternative form of this last expression is

Qp
l u =

∑
l≤|k|1≤l+p−1

(−1)l+p−|k|1−1
(
p− 1

|k|1 − l

)
(Q1

k1
⊗ · · · ⊗Q1

kp)u. (13)

For other equivalent expressions, see [18].

Equation (13) clearly only depends on function values at a finite number of points. To

highlight the structure of the quadrature points, let

αki = {αki1 , · · · , α
ki
n1
l
} ⊂ [0, 1] (14)

denote the one-dimensional quadrature grid corresponding to Q1
ki
u, 1 ≤ ki ≤ p. The tensor

product in Eq. (13) depends on αk1 × · · · × αkp and the union of these

Ωp
l =

⋃
l≤|k|1≤l+p−1

(αk1 × · · · × αkp). (15)

is called the sparse grid, used to evaluate (13). If αk is a nested set, Ωp
l ⊂ Ωp

l+1 and Eq. (15)

simplifies

Ωp
l =

⋃
|k|1=l+p−1

(αk1 × · · · × αkp), . (16)

which is more compact than Eq. (15). In this work we use a sparse grid based on the

Gauss-Patterson quadrature points when possible. This is hierarchical and the most efficient

approach when one considers attainable accuracy for a given computational cost [6, 8].
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To illustrate the efficiency and accuracy of the Lebesgue ANOVA expansion and the

concept of the effective dimension, we consider a p-dimensional oscillatory function,

u1(α) = cos(2πω1 +

p∑
i=1

ciαi). (17)

proposed in [22, 23] as a suitable test function for high-dimensional integration schemes.

Both ci and ω1 are generated as random numbers and we consider p = 10 as a test case.
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Figure 1: On the left, we show the L2 and the L∞ errors of the 6th-order truncated Lebesgue

ANOVA expansion with increasing number of terms. The right shows the associated com-

putational time.

Figure 1 shows the accuracy and the computational cost of the Lebesgue ANOVA ex-

pansion measured in both the L2 norm and the L∞ norm. Clearly, the 4th-order truncated

expansion can represent the function well down to an accuracy below 10−10. However, this

accuracy comes at considerable computational cost due to the need to evaluate the high

dimensional integrals.

2.2 The Dirac expansion

Now assume that dµ is a Dirac measure located at the anchor point β = (β1, β2 · · · βp) ∈

[0, 1]p. This leads to what is known as the anchored or the Dirac ANOVA expansion.
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The recursive formula Eq. (2) and the initial formula Eq. (3) now takes the forms

ut(αt) = u(β1, · · · , βi1−1, α1, βi1+1, · · · , βi2−1, α2, βi2+1, · · · , βi|t|−1, α|t|, βi|t|+1, · · · , βp)

−
∑
w⊂t

uw(αw)− u0,

(18)

and

u0 = u(β1, β2 · · · βp). (19)

The computational realization of the anchored ANOVA expansion is considerably more effi-

cient than the Lebesgue ANOVA expansion as there is no need to evaluate high-dimensional

integrals in Eqs. (18)-(19).

To illustrate this representation, let us again consider the example in Eq. (17). In Fig.

2.2 we illustrate that errors are again reduced to below 10−12 with the 4th-order anchored

ANOVA expansion with the anchor point taken to be (0, 0, . . . , 0). With a comparable

accuracy, the anchored ANOVA expansion is achieved at a fraction of the time required for

the classic ANOVA expansion. For higher dimensional problems, the gain can be expected

to be even more significant.
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Figure 2: On the left, we show the L2 and the L∞ errors of the 6th-order truncated anchored

ANOVA expansion with an increasing number of terms. The right shows the associated

computational time.
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3 Strategies for choosing the anchor point

A key element in the anchored ANOVA expansion is the choice of the anchor point as this

directly impacts the accuracy of the ANOVA expansion and the truncation dimension and,

hence, the total cost of evaluating the expansion.

A number of strategies have been proposed for choosing the anchor point and we will

briefly summarize these below before arguing for an alternative approach.

A simple approach is to randomly choose a point as the anchor point. This is clearly

straightforward and with negligible cost. However, there are no guarantees for the accuracy

of this approach and, as we shall see, it generally leads to an ANOVA expansion of poor

quality,

In [17] it was suggested to chose an anchor point based on a moderate number of function

evaluations to estimate the mean, denoted ū, through a number of quasi-random trial points

in [0, 1]p. The anchor point is then chosen to be the trial point whose output is closest to the

mean of the function. This guarantees that the zero order term approximates the function

as accurate as possible but does not offer any guarantees for the quality of the higher order

terms. While there is a cost associated with the computation of the anchor point through

the sampling, an obvious advantage is that this generalizes to the case of non-uniformly

distributed parameters. In the following we shall refer to the mean anchor point as one

chosen using this approach.

In [20], an alternative approach for choosing the anchor point for a more restricted class

of problem of the type

u(α) =

p∏
j=1

uj(αj), (20)

was developed. This technique, based on analysis borrowed from quasi Monte Carlo methods,

is expressed by defining the dimensional weights γj, j = 1, · · · , p, as

γj =
‖uj − uj(βj)‖∞
|uj(βj)|

, u(β) 6= 0. (21)

where β = (β1, β2, · · · , βp) is the anchored point. With the goal to minimize γj, [20] proves

the following result.
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Lemma 2 Assume that the anchored-ANOVA expansion is truncated at order ṽ and that pṽ

satisfies
p∑

m=ṽ+1

∑
|S|=m

∏
j∈S

γj = (1− pṽ)(
p∏
j=1

(1 + γj)− 1). (22)

Then, the relative error in L∞-norm can be estimated as

‖u−
∑
|S|≤ṽ uS‖L∞
‖u‖L∞

≤ (1− pṽ)(
p∏
j=1

(1 + γj)− 1)(

p∏
j=1

|uj(βj)|
‖uj‖L∞

). (23)

Furthermore, for one-signed functions with the anchor point β = (β1, β2, · · · , βp) selected as

uj(βj) =
1

2
(max
[0,1]

uj(αj) + min
[0,1]

uj(αj)), (24)

the corresponding γj minimizes the weights in Eq. (21).

This method is limited to functions with separated variables, (20), and the computation

of (24), albeit one-dimensional in nature, can be costly. While developed for uniformly

distributed parameters, this approach can be extended to include more general distributions

by generalizing the theory with appropriate L1 norms. In the following, we shall refer to the

extremum anchor point as one chosen using this approach.

3.1 Anchor point as center of sparse grid quadrature

An intuitive alternative is to simply choose the centroid point in the parameter space. For

uniformly distributed parameters this can be expected to work well. However, for the more

general situation with non-uniformly distributed variables, it is reasonable to generalize this

choice of the anchor point to that of being the centroid of the lowest dimensional tensorial

Gaussian quadrature in the p-dimensional space. The quadrature should be chosen to reflect

the proper measure associated with the non-uniformly distributed parameter.

As simple as choosing the anchor as the centroid of the tensorial quadrature is, its uti-

lization is highlighted when recalling that one often seeks to be able to effectively compute

moments of the ANOVA expanded function using sparse grids. As we shall show in the

following theorem, there is a strong connection between between the anchored ANOVA ex-

pansion, the sparse grid Smolyak construction, and the anchor point based on the centroid.
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Theorem 3 Let u(α) be a p-dimensional integrable function which is represented by the

anchored ANOVA expansion located at the anchor point β = (β1, · · · , βp), chosen to be the

centroid of the Smolyak sparse grid. Then, all terms of order l + 1 ≤ p or higher are

identically zero when evaluated at the p-dimensional l + 1 level sparse Smolyak grid.

Proof: Let dµi, i = 1, 2, · · · , p be a Dirac measure on Ai and define the averaging

operator

(Γiu)(α) =

∫
Ai

u(α1, · · · , αp)dµi(αi) = u(α1, · · · , βi, · · · , αp). (25)

Let the identity be decomposed as

I =
∏
i

(Γi + (I − Γi)) =
∏
i

Γi +
∑
i

(I − Γi)
∏
i 6=j

Γj

+
∑
i<j

(I − Γi)(I − Γj)
∏
k 6=i,j

Γk + · · ·+
∏
i

(I − Γi)
(26)

Each term of (1) is generated by each of the components of this decomposition (26) [21],

u0 =
∏
i

Γiu,

u1 = (I − Γi)
∏
i 6=j

Γju,

...
...

...

ul = (I − ΓL1)(I − ΓL2) · · · (I − ΓLl
)
∏

M 6=L

ΓMu,

ul+1 = (I − Γ(L+1)1)(I − Γ(L+1)2) · · · (I − Γ(L+1)l+1
)

∏
N 6=(L+1)

ΓN u,

...
...

...

up =
∏
i

(I − Γi)

(27)

Without loss of generality, we consider the first term of the l+ 1 order term of the anchored

ANOVA expansion,

ul+1(α) = (I − Γ(L+1)1)(I − Γ(L+1)2) · · · (I − Γ(L+1)l+1
)

∏
N 6=(L+1)

ΓN u(α),

= (I − Γ(L+1)1)(I − Γ(L+1)2) · · · (I − Γ(L+1)l+1
)
∫
Ap−n u(α1, · · · , αp)dµ(αN ),

= (I − Γ(L+1)1)(I − Γ(L+1)2) · · · (I − Γ(L+1)l+1
)u(α1, · · · , αl+1, βl+2, · · · , βp).

(28)

where n = p− l − 1. Observe that Eq. (28) contains at most l + 1 variables (α1, . . . , αl+1).
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The l + 1 level sparse grid is given by (15)

Ωp
l+1 =

⋃
(l+1)≤|k|1≤l+p

(αk1 × · · · × αkp). (29)

Assume now that there are l + 1 variables that are not solely defined at the centroid. Then

ki ≥ 2, i = 1, · · · , l + 1

kj = 1, j = l + 2, · · · , p

|k|1 =
l+1∑
i=1

ki +
p∑

j=l+2

kj,

≥
l+1∑
i=1

2 +
p∑

j=l+2

1,

= 2× (l + 1) + p− (l + 1),

= p+ l + 1.

(30)

which contradicts |k|1 ≤ l + p in (29). Therefore, at least for one we have ki = 1, i =

1, · · · , l + 1, i.e., αi = βi must be the centroid.

Without loss of generality, let αl+1 be this one. Equation (28) becomes

ul+1(α) = (I − Γ(L+1)1) · · · (I − Γ(L+1)l+1
)u(α1, · · ·αl, βl+1, βl+2, · · · , βp).

= (I − Γ(L+1)1) · · · (I − Γ(L+1)l)[Iu(α1, · · ·αl, βl+1, βl+2, · · · , βp)

− Γ(L+1)l+1
u(α1, · · ·αl, βl+1, βl+2, · · · , βp)].

= (I − Γ(L+1)1) · · · (I − Γ(L+1)l)[u(α1, · · ·αl, βl+1, βl+2, · · · , βp)

− u(α1, · · ·αl, βl+1, βl+2, · · · , βp)].

= 0

(31)

It is not difficult to conclude that all m > l + 1 order terms of the expansion are zero by

repeating this argument. This completes the proof.

Apart from making the connection between the ANOVA expansion and the Smolyak

sparse grid clear, an important implication of this result follows for evaluation of the moments

of the anchored ANOVA expansion since one can decide exactly how many levels of the

sparse grid is meaningful for an expansion of a certain length. Note, however, that the above

result does not offer any measure of the accuracy of the expansion and, hence, the resulting

moment.

12



4 Numerical examples

In the following we consider a comparative study of the different approaches for choosing

the anchor point. We do this using standard high-dimensional test functions and also offer a

direct comparison of the accuracy of the anchored ANOVA expansion to that of the Lebesgue

ANOVA expansion for a high-dimensional system of ordinary differential equations.

4.1 Integration of high-dimensional functions

To measure the accuracy of the ANOVA expansion we define a measure of relative error of

an integral as

εtr =
|
∫
Ap u(α)dα−

∫
Ap utr(α)dα|

|
∫
Ap u(α)dα|

(32)

where utr(α) is the truncated ANOVA expansion.

We consider the classic test functions [22, 23] and one additional test example:

• Product Peak function: u2(α) =
p∏
i=1

(c−2i + (αi − ξi)2)−1,

• Corner Peak function: u3(α) = (1 +
p∑
i=1

ciαi)
−(p+1),

• Gaussian function: u4(α) = exp(−
p∑
i=1

c2i (αi − ξi)2),

• Continuous function: u5(α) = exp(−
p∑
i=1

ci|αi − ξi)|,

• Quadrature test example: u6(α) = (1 + 1
p
)p

p∏
i=1

(αi)
1
p .

where the parameters c = (c1, · · · , cp) and ξ = (ξ1, · · · , ξp) are generated randomly. The

parameter ξ acts as a shift parameter and the parameters c are constrained. See [22, 23] for

the details. Note that the test function u1 is defined in Eq.(17).

4.1.1 Uniformly distributed variables

In the first set of tests, we assume that all variables, αi, i = 1, 2, · · · , 10, are uniformly

distributed random variables defined on [0, 1]p. We use a 10-dimensional 7-level sparse grids

based on the one-dimensional Gauss-Patterson quadrature points to compute the integrals
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and consider this to be the exact solution. 6-level sparse grids are used to integrate the

anchored ANOVA expansion based on different choices of the anchor point.

In Fig. 3 we illustrate the relative error of the integrals recovered with different choices

of the anchor point. Note that for most cases, the accuracy reaches 10−6 with the exception

of the fifth test function where all choices lead to less accurate result. This is associated with

this particular test function, is caused by a limited smoothness in the random variables and

has also been reported by other authors [24].

While there are differences among the results, the choice of the centroid as the anchor

appears to be superior to the alternative techniques in all cases. We also note that the results

confirm the result in Theorem 3, i.e., with a 6-level sparse grid we should not expect any

additional improvements in the accuracy of the integrals when using more than 5 terms in

the ANOVA expansion,

4.1.2 Non-uniformly distributed elements

To further evaluate the accuracy and flexibility of using the center point of the associated

sparse grid, let us again consider the problems listed above but now assume that the variables

are beta-distributed variables with γ = 1/2 and τ = 1/3, [25, 26]. Here the standard

probability density of a beta-distributed random variable x is given as

f(x, γ, τ) = xγ(1− x)τ/B(γ, τ), 0 ≤ x ≤ 1, γ > 0, τ > 0. (33)

where B(γ, τ) is the normalizing beta function.

A 10-dimensional 6-level sparse grid is used to compute the integrals as the reference

solution and a 5-level sparse grid is applied to compute the integral of the anchored ANOVA

expansion. In Fig. 4 we show the results of the direct comparison with the alternatives that

are most immediately applicable. The overall conclusion remains the same as in the uniform

case above and confirms the accuracy and flexibility of the approach suggested here.

4.1.3 A higher dimensional problem

Let use again consider the oscillatory function, (17), but this time with more dimensions.

The sums of the coefficients of the function are given in Table 1. We assume 10−4 to be an

acceptable error in order to compare three different integration methods.
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Figure 3: Relative errors of the test functions computed using different strategies for choosing

the anchor point. All variables are assumed to be uniformly distributed. i) u1, ii) u2, iii) u3,

iv) u4, v) u5, vi) u6.

In Fig. 5 we show results that confirm that the anchored ANOVA expansion is the most

efficient method to integrate the test function until the dimension of the problem becomes

sufficiently high. When this happens naturally depends on the problem at hand, in particular

15



i)
0 1 2 3 4 5 6 7 8

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

order of ANOVA expansion

re
la

ti
v
e

 e
rr

o
r

 

 

center points

mean points

random points

ii)
0 1 2 3 4 5 6 7 8

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

order of ANOVA expansion

re
la

ti
v
e

 e
rr

o
r

 

 

center points

mean points

random points

iii)
0 1 2 3 4 5 6 7 8

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

order of ANOVA expansion

re
la

ti
v
e

 e
rr

o
r

 

 

center points

mean points

random points

iv)
0 1 2 3 4 5 6 7 8

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

order of ANOVA expansion

re
la

ti
v
e

 e
rr

o
r

 

 

center points

mean points

random points

v)
0 1 2 3 4 5 6 7 8

10
−3

10
−2

10
−1

10
0

10
1

order of ANOVA expansion

re
la

ti
v
e

 e
rr

o
r

 

 

center points

mean points

random points

vi)
0 1 2 3 4 5 6 7 8

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

order of ANOVA expansion

re
la

ti
v
e

 e
rr

o
r

 

 

center points

mean points

random points

Figure 4: Relative errors of the test functions computed using different strategies for choosing

the anchor point. All variables are assumed to be beta-distributed with γ = 1/2, τ = 1/3.

i) u1, ii) u2, iii) u3, iv) u4, v) u5, vi) u6.

the cost of evaluating the function, i.e., for more complex and expensive function evaluations

one can expect there to be further advantages in using the ANOVA expansion over a Monte

Carlo based technique.
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Table 1: Sums of coefficients of the Oscillatory function

p: number of dimension. bp =
p∑
i=1

ci.

p 5 10 15 20 25 30 35 40 45 50

bp 9.0 9.0 9.0 9.0 9.0 27 31.5 36 40.5 45
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Figure 5: Computational costs of computing the integral of the oscillatory function using a

sparse grids, the anchored ANOVA expansion with a sparse grid, and Monte Carlo method.

On the left are shown results based on a 5-level sparse grid and on the right a 4-level sparse

grid is used. The computational cost of the Monte Carlo is estimated from 15-dimensional

and 40-dimensional test functions, respectively.

4.2 Higher dimensional ODE

Let us finally consider a more complex problem and also use this to compare the accuracy

of the Lebesgue and the anchored ANOVA expansions.

We consider a situation with p = 25 particles, each held fixed at a random position in

a two-dimensional space [−a, a]2. Let us furthermore assume that a single particle of unit

mass is initially positioned at (0, 0) and that it feels an acceleration through Newtonian

gravitational forces from all the other particles. This leads to a simple dynamical equation

ü(t) =

p∑
i=1

mir̂i/r
2
i , u(t0) = u0. (34)

Here r̂i is the distance vector between the fixed particle i and the moving particle and ri
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is the Euclidian distance between the fixed particle i and the moving particle. To endow

this problem with a high-dimensional characteristic, we assume that all the masses, mj, are

uniformly distributed random variables with a mean of 1/(p+ 1) and a 10% variance.

As a high-dimensional function of interest, we consider the kinetic energy at a fixed

time (t = 8) and built an ANOVA expansion of this. This is achieved by following the

approach of [2] in which a second order polynomial between the kinetic energy of the moving

particle and the random masses of fixed particles is constructed through a least squares

approximation. This has been studied previously in [5] in a related context using a Lebesgue

ANOVA expansion and we refer to that for further details.

To validate the accuracy and efficiency of the anchored ANOVA expansion, we also

compute the Lebesgue ANOVA expansion using a Stroud-3 method [5] and a 25-dimensional

level three sparse grid. We have used a 25-dimensional 3-level sparse grid to implement the

anchored ANOVA expansion.

In Fig. 6 we show that there is only a slight difference in the L2 and the L∞ errors in the

Lebesgue ANOVA expansion based on the Stroud-3 method and the sparse grid, confirming

that the integration has converged and that the effective dimension of the kinetic energy is

indeed very low

Figure 7 confirms that the second order truncated Lebesgue ANOVA expansion and the

second order truncated anchored ANOVA expansion have the same accuracy. However, the

latter is obtained at a cost which is more than two order of magnitude less. The three level

Lebesgue ANOVA expansion is taken as the exact solution.

5 Concluding remarks

We have discussed two representations of high dimensional functions using ANOVA expan-

sions, resulting in the classic Lebesgue ANOVA expansion and the anchored ANOVA expan-

sion. Both of these can represent high dimensional functions well and often expose a low

effective dimension, allowing for the effective evaluation of moments of the high-dimensional

functions without impacting the accuracy. However, the classic ANOVA expansion is ex-

pensive to construct due to the need to accurately evaluate high dimensional integrals. We

therefore consider the anchored ANOVA expansion in more detail.
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Figure 6: Errors of the Lebesgue ANOVA expansion computed using a Stroud 3 method

(left) and a 3-level sparse grid (right).
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Figure 7: Errors of the Lebesgue ANOVA expansion (left) and the anchored ANOVA

expansion (right).

A key element in the anchored ANOVA expansion is the need to choose an anchor point

as this choice impacts the accuracy of the expansion, or rather the number of terms needed

in the expansion to achieve a desired accuracy. This choice is therefore important from a

practical point of view as longer expansions results in increased computational cost when

evaluating moments.

We proposed a simple but efficient method for choosing the anchor point based on the

structure of the Smolyak sparse grid. The computation of the anchor point is straightforward

and avoids any additional cost. The accuracy and flexibility of this approach has been
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demonstrated for a number of standard test functions and found to compare favorably with

several alternative techniques. An additional advantage of this approach is that it generalizes

to problems with non-uniformly distributed random variables.

The method was applied to study a more complex high-dimensional system of ordinary

differential equations, yielding excellent agreement with results obtained through a Lebesgue

ANOVA expansion, yet achieved at considerable less cost.

The derivation of more rigorous error estimates for the anchored ANOVA expansion

largely remains an open question but with the close connection to the sparse grid integration

discussed here, we hope to be able to report on this in the future.
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