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Abstract. We present a discontinuous Galerkin finite element method (DG-FEM)
solution to a set of high-order Boussinesq-type equations for modelling highly nonlin-
ear and dispersive water waves in one and two horizontal dimensions. The continuous
equations are discretized using nodal polynomial basis functions of arbitrary order
in space on each element of an unstructured computational domain. A fourth order
explicit Runge-Kutta scheme is used to advance the solution in time. Methods for in-
troducing artificial damping to control mild nonlinear instabilities are also discussed.
The accuracy and convergence of the model with both h (grid size) and p (order)
refinement are verified for the linearized equations, and calculations are provided
for two nonlinear test cases in one horizontal dimension: harmonic generation over
a submerged bar; and reflection of a steep solitary wave from a vertical wall. Test
cases for two horizontal dimensions will be considered in a future paper.

Keywords: Discontinuous Galerkin finite element method, high-order Boussinesq-
type equations, gravity waves, unstructured grids.

1. Introduction

Boussinesq-type equations are in widespread use by coastal engineers
for the numerical simulation of nonlinear wave motion in near-shore
regions. The main idea behind these equations is to reduce the three
dimensional problem to a two dimensional problem by assuming a
polynomial variation in the vertical direction. Such equations represent
an important engineering tool for the prediction of wave-wave, wave-
bottom, and coastal wave-structure interaction; phenomena which are
critical to the design of e.g. offshore windmill foundations, harbours,
and exposed loading facilities.

There are a large number of Boussinesq-type models in use today,
and a comprehensive review of the history of Boussinesq theory can be
found in Madsen and Schäffer (1999). Basically, there are two classes of
Boussinesq models: two-variable formulations which are in terms of an
elevation and a horizontal velocity or flux variable; and three-variable

formulations which also retain the vertical component of velocity as
an unknown. Two-variable formulations, for example Peregrine (1967),
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Madsen and Sørensen (1992) or Nwogu (1993) are generally more ef-
ficient, but have a limited radius of convergence and are thus limited
to a distinct value of kd (k the wave number and d the water depth)
regardless of the order retained in the expansion in terms of dispersion.
Three-variable formulations, on the other hand, can have an infinite
radius of convergence, as shown by Madsen and Agnon (2003). We focus
here on the most accurate of these yet developed, that of Madsen, Bing-
ham and Liu (2002). The Padé (4,4) version of this method is capable
of accurately modelling nonlinear waves up to the point of breaking
and out to relative water depths of approximately kd = 25, while accu-
rate kinematics (the vertical variation of the flow) are obtained out to
approximately kd = 10. The Padé (2,2) version obtained by using the
optimized coefficients determined in Jamois, Fuhrman and Bingham
(2005) is accurate in dispersion out to approximately kd = 10 and with
accurate kinematics to approximately kd = 4. These equations are thus
appropriate for modelling a broad range of water wave phenomena in
near-coastal environments. This additional accuracy and range of dis-
persion is however obtained at the cost of additional variables (degrees
of freedom) and more complicated systems of linear equations to solve
relative to the two-equation models; and this provides new challenges
for obtaining efficient numerical solutions.

Many of these challenges have been successfully overcome using a
structured (uniformly-spaced, rectangular) grid finite difference solu-
tion as reported by Fuhrman, Bingham and Madsen (2004) and previ-
ous publications cited therein. This finite difference scheme is however
at a fixed order of accuracy; and it lacks geometric flexibility both in
terms of local grid refinement and the inclusion of other than piecewise
rectangular structures. The goal of the present work is to provide a
solution with both geometric and order flexibility by means of an un-
structured DG-FEM. We note that the unstructured grid is particularly
attractive since it allows the grid to be adapted to the physical scales
of the problem which can potentially lead to a significant reduction in
the computational effort.

The unstructured finite element method (FEM) has been applied to
solve various two-variable Boussinesq-type formulations. The classical
Boussinesq equations of Peregrine (1967) were solved by Antunes Do
Carmo and Seabra Santos (1993), Ambrosi and Quartapelle (1998)
and again by Eskilsson and Sherwin (2004). A set of weakly dispersive
Boussinesq-type equations was solved and studied by Langtangen and
Pedersen (1998). Li, Liu, Yu and Lai (1999) solved the improved Boussi-
nesq equations by Beji and Nadaoka (1996). The extended Boussinesq
equations by Madsen and Sørensen (1992) were solved using a FEM
model by Sørensen, Schäffer and Sørensen (2004), while the equations
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of Nwogu (1993) were solved by Walkley and Berzins (1999,2002), and
Eskilsson and Sherwin (2003,2005). Recently, Eskilsson and Sherwin
(2002,2005) solved the same set of extended equations using a DG-FEM
method.

At first glance it may seem strange to use a discontinuous method
to solve continuous problems where we expect smooth solutions (i.e.
up to wave breaking); especially when a continuous form of the method
is available. The reasons for this choice are: Ease of implementation;
and improved computational efficiency due to the local nature of the
DG-FEM, which is especially important for implementing higher-order
operators (in this case up to fifth order derivatives).

The remainder of this paper is organized as follows. Section 2 reviews
the governing equations of the high-order Boussinesq-type formulation
which we seek to solve. Section 3 presents a method of lines stabil-
ity analysis of the continuous linearized equations in both one and
two horizontal dimensions. Section 4 describes the numerical methods
chosen for discretizing the governing equations in one horizontal di-
mension. A discrete stability analysis is given along with descriptions
of the techniques used for wave generation and absorption as well mild
filtering techniques which is necessary to stabilize the nonlinear calcu-
lations. Section 5 provides some numerical results obtained using the
proposed methodology. The last section provides a summary along with
concluding remarks.

2. The high-order Boussinesq-type equations

If viscous effects are small enough to be neglected then potential flow
theory provides a reasonably good mathematical description of the flow
of water waves. Boussinesq-type equations are derived from an exact
infinite series solution to the fully nonlinear potential flow problem.

The fluid motion is described by the horizontal velocities û, the
vertical velocity ŵ evaluated at the expansion level z = ẑ and the
surface elevation η. The variables defined at the expansion level can be
related to the surface variables defined at z = η(x), which are denoted
by a ’∼’. The still water depth d(x) is measured from the still water
level (SWL), which is positioned at the still water surface where z = 0.
See sketch in Figure 1. The gravitational acceleration constant g is set
to 9.81m2/s.

The set of high-order Boussinesq-type equations are given in terms
of variables defined directly on the free surface as

∂tη = w̃ −∇η · ũ, (1)
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Figure 1. Definition sketch. One horizontal dimension.

∂tŨ = −∇
(

gη +
Ũ · Ũ

2
− w̃2

2
(1 + ∇η · ∇η)

)

, (2)

where Ũ ≡ ũ + w̃∇η = (Ũ , Ṽ )T and ∇ = (∂x, ∂y)
T is the two dimen-

sional gradient operator in a Cartesian coordinate system and ∂x is the
partial derivative with respect to the x-coordinate. From appropriate
initial conditions the free surface variable η(x, t) is evolved for t > t0 by
Eq. (1) and the tangential velocity Ũ(x, t) by the momentum equation
Eq. (2). Note, that x ∈ Ω. However, in order to evolve these variables
the free surface vertical velocity w̃(x, t) has to be determined. This is
done by first solving an algebraic system and then using the solution to
compute the vertical free surface velocity. In one horizontal dimension
(1D) solve

[

Ũ
0

]

=

[

A2 − ∂xη · B2 B2 + ∂xη · A2

A3 + ∂xd · S1 B3 − ∂xd · S2

] [

û∗

ŵ∗

]

, (3)

and then the vertical free surface velocities can be obtained from

w̃ = −B2û
∗ + A2ŵ

∗. (4)

In two horizontal dimensions (2D) solve






Ũ

Ṽ
0






=





A11 − ∂xη · B11 A2 − ∂xη · B12 B11 + ∂xη · A1

A2 − ∂yη · B11 A22 − ∂yη · B12 B12 + ∂yη · A1

A01 + S01 A02 + S02 B0 + S03









û∗

v̂∗

ŵ∗



 ,

(5)

and similarly to the 1D case the vertical free surface velocities can be
computed from the solution to this algebraic system as

w̃ = −B11û
∗ − B12v̂

∗ + A1ŵ
∗. (6)
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The terms allowing for a mildly varying bottom are given as

S01 = ∂xd · C11 + ∂yd · C2, (7)

S02 = ∂xd · C2 + ∂yd · C22, (8)

S03 = −∂xd · C13 − ∂yd · C23. (9)

The different continuous operators used to define the complete equation
systems Eqs. (3)-(9) are given in Appendix A. Further, the structure
of the global operators on the right hand sides in Eq. (3) or Eq. (5) is
unsymmetric.

A similar solution procedure to the one suggested by Madsen, Bing-
ham and Liu (2002) is used for solving the set of governing equations.
Madsen et al. also concludes that a constant expansion level of approx.
ẑ = −0.5d leads to optimal accuracy with respect to the vertical veloc-
ity distribution and therefore this expansion level is chosen throughout
this paper. This choice simplifies the linear system in Eq. (5) and results
in a block symmetric system, and therefore for this specific case reduces
the number of different operators.

At the physical domain boundaries we generally specify impermeable
wall conditions. If needed, we generate waves internally using relaxation
zones and approximate radiation boundaries using sponge layers. See
section 4.9.

3. Stability considerations

Fuhrman, Bingham, Madsen and Thomsen (2000) considered numerical
stability for their finite difference model and found it to be linearly
stable and under sufficient artificial damping to be also nonlinearly
stable.

In this section we consider the linear stability of the analytic problem
by a Fourier analysis. It is shown that the eigenspectra of the continuous
operators are purely imaginary and upper bounds for the maximum
eigenvalues are found.

3.1. Fourier analysis

The starting point for the Fourier analysis is to consider the linearized
equation system in a periodic domain containing a flat bottom, which
can be given in the semi-discrete form as

∂tq = L(q) = Jq, (10)
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where q = (η,u)T is a vector of primitive variables. In 1D this gives
the form as

∂t

[

η
u

]

=

[

0 J12

−g∂x 0

] [

η
u

]

, (11)

where we solve Eq. (3) and insert the solution into Eq. (4) to obtain
the continuous operator

J12 =
A2A3 + B2B3

A3B2 − A2B3
. (12)

We perform a Fourier linear stability analysis of the Padè (4,4) formu-
lation by Madsen, Bingham and Liu (2002) and assume a harmonic
variation in space

η(x, t) = η̂(t)eikx, u(x, t) = û(t)eikx (13)

in Eq. (11). We find that in the Fourier space the operator is given as

J12 = −i
60kd

(

1008 + 112(kd)2 + (kd)4
)(

15120 + 420(kd)2 + (kd)4
)

914457600 + 431827200(kd)2 + 25804800(kd)4 + 408240(kd)6 + 1740(kd)8 + (kd)10
,

(14)

and the eigenvalues of the Jacobian J in Eq. (11) are

λ(J) = ±i

√

√

√

√

(g/d)(kd)260

(

15240960 + 2116800(kd)2 + 63168(kd)4 + 532(kd)6 + (kd)8
)

914457600 + 431827200(kd)2 + 25804800(kd)4 + 408240(kd)6 + 1740(kd)8 + (kd)10
,

(15)

which are both complex and imaginary. Further, in the shallow water
limit kd < 0.31, the eigenvalues reduce to λ(JSWE) = ±k

√
gd - i.e. they

reduce to the eigenvalues from the linearized shallow water equations.
We conclude that; i) the eigenvalues of the linearized Boussinesq

formulation reduce to the shallow water eigenvalues for relatively low
depths and ii) the exact eigenspectra of the linearized formulation are
imaginary and iii) the maximum absolute eigenvalue of the continuous
problem is bounded for a constant still water depth d since from Eq.
(15) we find that

|λ1D
max| = lim

kd→∞

|λ(J)| = 2
√

15

√

g

d
. (16)

In other words, for a given still water depth d, the maximum absolute
eigenvalue of the Jacobian increases with kd. Increasing kd on a fixed
depth d corresponds to allowing the wave length L → 0, i.e. the small-
est (and fastest) wave harmonic determines the size of the absolute
maximum eigenvalue on a fixed depth.
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Similar results are obtained for the Padé (2,2) version, and for both
versions of the formulation in 2D. See Table I. The upper bound for the
eigenvalues remains the same for the Padé (2,2) formulation in both 1D
and 2D. For the Padé (4,4) formulation, the upper bound is lower than
the one found for the one dimensional case. Thus, the above analysis

Table I. Analytical bounds for |λmax|
√

d
g

for the linearized

formulations in different horizontal dimensions. σ = −0.5.

1D 2D

Padé (2,2) 2
√

6 2
√

6

Padé (4,4) 2
√

15 3
√

5

leads to the expectation that the less accurate Padé (2,2) formulation
retaining third order rather than fifth order differential operators as in
the Padé (4,4) formulation, has better stability properties if the discrete
properties of the Jacobian mimic this behavior.

4. Numerical methods

In this section we outline the numerical methods used to solve the gov-
erning Eqs. (3)-(9). A method of lines approach has been used, where
the spatial and temporal discretizations are considered separately. The
discontinuous Galerkin finite element method is used for the spatial
discretization of the governing equations and the resulting semi-discrete
equation system is solved using an explicit Runge-Kutta method to
evolve the equations in time from appropriate initial conditions.

4.1. The Discontinuous Galerkin Finite Element Method

The Discontinuous Galerkin Finite Element Method (DG-FEM) is used
for the spatial discretization. Originally, the method was developed for
solving conservation laws, e.g. see review on DG-FEM in Cockburn
and Shu (2001). In this paper, the DG-FEM is used to discretize and
solve the high-order Boussinesq-type formulation, which is not given in
conservation form.

The DG-FEM is a high-order spectral finite element method. On
each element, it is based on the Galerkin form of the more general
Mean Weighted Residual methods, which determines the way we satisfy
(or minimize the residual of) our governing PDE when we seek an
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approximate solution. Before constructing any DG-FEM scheme, the
domain is subdivided into local elements. The main idea of the DG-
FEM is to allow the solution to be discontinuous over the local element
boundaries and only couple adjacent elements using suitable numerical
fluxes. The choice of numerical fluxes can be borrowed from the finite
volume framework, which is theoretically well-established. The DG-
FEM combined with nodes defined directly at the boundaries offers
the opportunity to determine the numerical fluxes directly. Further, the
method can by construction easily handle complex geometries, irregular
meshes, and polynomials of different degrees in different elements. Thus
the method supports hp-adaptive strategies for obtaining convergent
solutions. A major advantage of the DG-FEM is that it conceptually
generalizes to higher dimensions, and therefore once familiar with the
one dimensional method, it is straightforward to apply the concepts in
higher dimensions.

4.2. Subdivision of the computational domain

Before applying the discontinuous Galerkin procedure to discretize these
equations in space, we partition the computational domain into K non-
overlapping elements, such that Ω =

⋃K
k=1 Ωk. The size of the k’th

element is denoted as hk.
On the k’th element the solution is approximated locally by a finite

sum as

uk
N (x) =

N
∑

n=0

ûk
nφn(x) =

N
∑

n=0

uk
nln(x), (17)

where we have N +1 degrees of freedom inside each element. The ln(x)
are the Lagrange polynomials defined on the same set of nodes as used
in combination with the chosen orthogonal basis. The basis functions
φn, i = 0, .., N are chosen such that uk

N ∈ V N
k , where the approximation

space V N
k is defined as

V N
k = {v : vk ∈ PN (Ωk),∀Ωk ∈ Ω}, (18)

i.e. polynomials of at most order N in each element. The classical
Legendre polynomials Pn(x) are used as our orthogonal basis in 1D
and are normalized such that

φn(x) =
Pn(x)√
2n + 1

. (19)

As shown in Hesthaven and Warburton (2002) we can choose to repre-
sent our polynomial basis functions in a Lagrangian (i.e. a nodal) basis
and we use the Legendre-Gauss-Lobatto nodes in one dimension. By
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uniqueness of the polynomial interpolations, the following (constant)
transformation matrix can be defined for transforming the variables
between the modal and nodal spaces

Vij = φj(xi), i, j = 0, ..., N. (20)

Here xi is the i’th nodal point inside the k’the element. This leaves
us with the following relationship between the modal and nodal spaces
and the basis functions

uN = V ûN , φi(x) = V T li(x). (21)

These relationships allow us to determine both the mass matrix and the
stiffness matrix exactly for a standard element without using high-order
Gaussian quadrature rules for the elemental integrals.

4.3. Spatial discretization

The high-order Boussinesq formulation constitutes a complex system
of equations and numerically we are faced with a number of challenges.
In particular, the time-dependent equations Eq.’s (1)-(2) are nonlinear
and not given in a conservative form, and the involved algebraic system
Eq. (3) or Eq. (5) is nonlinear, time-dependent and contains high- order
differential operators.

To apply the DG-FEM we first rewrite Eqs. (1)-(2) slightly by
introducing some auxiliary variables as

∂tη = g(x), (22)

g(x) = w̃ −∇η · (Ũ − w̃∇η), (23)

where g(x) is assumed to be a source function, and

∂tŨ = −∇F (x), (24)

F (x) = gη +
Ũ · Ũ

2
− w̃2

2
(1 + ∇η · ∇η). (25)

Following the DG-FEM procedure, for each element in the domain we
multiply Eq.’s (22) and (24) with a smooth weight function v(x) =
φ(x). Two integration by parts are done on the terms containing spatial
derivatives, i.e. only the second term in Eq. (24). In the intermediate
step of these integrations, the analytic flux function F (x) is inter-
changed with a continuous numerical flux function F ∗(xk,−, xk,+) to be
chosen, which allow us to connect adjacent elements. By this approach,
the starting point for the strong DG-FEM formulation of Eq.’s (22) and
(24) for the k’th element, k = 1, ..., K, becomes

∫

Ωk

φ∂tηdxk =

∫

Ωk

φg(x)dxk, (26)
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∫

Ωk

φ∂tŨdxk = −
∫

Ωk

φ∇F (x)dxk +

∮

∂Ωk

φn · (F (x) − F ∗(x))dxk,

(27)

where n = (nx, ny)
T is an outward pointing normal vector to the k’th

element.
Before arriving at the final numerical scheme, we need to replace the

continuous variables with finite polynomial approximations of the form
given in Eq. (17), and choose suitable consistent numerical fluxes. We
choose the simplest numerical fluxes available, namely central fluxes or
Lax-Friedrichs fluxes given by the trace operators

F ∗

CF (a, b) = 0.5(F (a) + F (b)), (28)

F ∗

LF (a, b) = 0.5(F (a) + F (b) + s(a − b)), s = max{|F ′(u)|}.(29)

The central fluxes are used for computing spatial derivatives and the
(global) Lax-Friedrichs fluxes are used for the time-dependent momen-
tum Eq. (27) to introduce a small amount of artificial viscosity into the
numerical scheme.

In 1D, the final scheme for the time-dependent equations can be
written in a compact form (discrete operator notation borrowed from
Sherwin (1999)) using the following discrete elemental operators de-
fined and computed for a standard element as

Mij =

∫ 1

−1
φi(ξ)φj(ξ)dξ, M = (V V T )−1, (30)

Sij =

∫ 1

−1
φi(ξ)φ

′

j(ξ)dξ, S = MD, (31)

Eij = φi(−1)φj(−1), Fij = φi(−1)φj(1), (32)

Gij = φi(1)φj(−1), Hij = φi(1)φj(1), (33)

where M is the Mass Matrix and S is the Stiffness matrix and D is the
nodal differentiation matrix.

Using the given discrete standard operators with a nodal represen-
tation, i.e. set φi(x) = li(x), we can write the numerical scheme in 1D
for the k’th element in compact notation as

hk

2
M

d

dt
ηk

N =
hk

2
Mgk

N , (34)

gk
N = w̃k

N − fk
N ũk

N , (35)

hk

2
Mfk

N = Sηk
N + 0.5(Gηk+1

N − Hηk
N ) − 0.5(Fηk−1

N − Eηk
N ),(36)

and using Lax-Friedrichs numerical fluxes

hk

2
M

d

dt
Ũk

N = SF k
N + 0.5(GF k+1

N − HF k
N ) − 0.5(FF k−1

N − EF k
N )
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− s(0.5(GŨk
N − HŨk−1

N ) − 0.5(FŨk
N − EŨk−1

N )), (37)

F k
N = gηk

N +

(

Ũk
N

)2

2
−

(

w̃k
N

)2

2
(1 + (fk

N )2). (38)

To arrive at this numerical scheme, it should be clear that in Eq. (36) we
obtained a DG-FEM approximation to f = ∂xη by using a strong form
DG-FEM and central fluxes. Also, the nonlinear terms in the functions
given in Eq. (23) and Eq. (25) are determined using direct products as
shown in Eq. (35) and Eq. (38) at the grid nodes in a collocation manner
instead of using aliasing-free orthogonal projections. This approach is
used for efficiency reasons and is both convenient and consistent, but
may lead to aliasing errors in the computations requiring the use of a
de-aliasing technique.

To set up a numerical scheme for the algebraic system Eq. (3) or
Eq. (5) requires a global assembly procedure for the discrete opera-
tors to be assembled into global operators. For the finite domain case,
this procedure involves the construction of the first order differential
operators having suitable boundary conditions imposed. However, for
convenience we present the assembly procedure for a periodic domain,
since the modifications for the finite domain case are straightforward.

The discrete global operators are constructed using a Local Discon-
tinuous Galerkin (LDG) method. Central fluxes are used to connect
the elements as in Bassi and Rebay (1997). Each of the high-order
differential operators in the system are decomposed into a set of first
order differential operators. E.g. the third derivative operator in x as

z = ∂xxxu → z = ∂xq, q = ∂xr, r = ∂xu. (39)

The high-order differential operators are determined by matrix-matrix
products of the discrete global first order differential operators with
suitable boundary conditions imposed.

The global assembly of the discrete first order differential operators
defined on a periodic domain needs to be determined from the local
representation on each element. Consider the PDE

∂xu = f, x ∈ [0, L], (40)

which by the strong form of the DG-FEM procedure leads to the local
scheme

∫

Ωk
φ∂xudxk +

∮

∂Ωk
φn · (u∗ − u)dxk =

∫

Ωk

φfdxk. (41)

The computational domain is subdivided in the usual way into K
elements. Then for each element, we can write the numerical nodal
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12 A. P. Engsig-Karup

scheme as

Suk
N + 0.5(Guk+1

N − Huk
N ) − 0.5(Fuk−1

N − Euk
N ) =

hk

2
Mfk

N . (42)

Now, if we for simplicity only consider two elements (set K = 2) and use
central fluxes to connect our elements, then we can write the globally
assembled numerical scheme as
[

S + 0.5(E − H) 0.5(G − F )
0.5(G − F ) Sx + 0.5(E − H)

] [

u1
N

u2
N

]

=

[

h1

2 M 0

0 h2

2 M

]

[

f1
N

f2
N

]

,

(43)
or in a more compact form as

DG
x u = f, (44)

where both u and f are DoF x 1 sized vectors, where DoF = K ·(N+1),
and the global differentiation operator with respect to x with boundary
terms included is defined as

DG
x =

[

∆x1

2 M 0

0 ∆x2

2 M

]−1 [

S + 0.5(E − H) 0.5(G − F )
0.5(G − F ) S + 0.5(E − H)

]

.

(45)
To construct the global third order differential operator given in Eq.
(39) we can easily construct it from this global operator as

∂xxx → DG
x · DG

x · DG
x . (46)

By this approach, the high-order differential operators can be built. For
example, the 1D operator A2 in Eq. (3), can be discretized as

AG
2 = I − α2 · (DG

x )2 + α4 · (DG
x )4, (47)

where I is the unitary matrix of size DoF x DoF and αi, i = 2, 4 are
diagonal matrices.

When each of the discrete block-differential operators are constructed
in this way, we can easily assemble the discrete global operator in Eq.
(3).

The assembly of the nonlinear operators have been done in a collo-
cation manner. For example,

∂xη · B2 → ηx · BG
2 , (48)

where ηx is a diagonal matrix holding the discrete nodal values of ∂xη.
This approach may lead to aliasing errors, however it allows for a fast
and efficient way of reconstructing the operators, which is necessary for
the fully nonlinear simulations to keep the computational costs low.
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Due to the locality of the DG-FEM, the global assembly result in
a relatively sparse global matrix. This matrix can be reordered in a
preprocessing step such that the bandwidth of the matrix in the 1D
finite domain case is given as 2 x (N + 1) x (2qmax + 1), where qmax

is the order of the largest derivative in the formulation. Thus, the
bandwidth is dependent on both the local polynomial order and the
highest derivative in the block operators. The global matrix system is
usually sparse and hence it can be solved efficiently by an appropriate
sparse solution method. Since this global matrix system has to be both
built (for the fully nonlinear problem) and solved at every time step,
this becomes the computational bottleneck in solving the numerical
scheme. For the present computations we have used a direct sparse
solution technique.

4.4. Boundary conditions

In the current models, we have imposed impermeable wall bound-
ary conditions using a symmetry technique (or mirror principle) and
whenever needed radiation boundaries are setup using relaxation zones.

The impermeable wall boundary conditions are imposed weakly at
the outer boundaries of the computational domain through the numer-
ical flux function, which is denoted by q∗ here. Hence, by the symmetry
technique dirichlet boundary-type conditions are imposed as

q∗ = −q−, (49)

such that the averages of the two distinct boundary values at each
boundary face correspond to the values we seek to impose. Neumann
boundary-type conditions are imposed as

q∗ = q−, (50)

such that the averages are left unmodified.
By this technique the boundary conditions are imposed approxi-

mately to the accuracy of the scheme.

4.5. Temporal discretization

A fourth order 2N -low storage explicit Runge-Kutta scheme with 5
stages (labelled LSERK45 here) by Carpenter and Kennedy (1994) is
used for solving the semi-discrete governing equations in time. The
absolute stability region encloses a large part λ∆t ≤ 3.345 of the
imaginary (inviscid stability) axis in the complex plane and is easily
implemented.
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For hyperbolic-type problems which are solved using explicit time-
integration schemes, where λ∆t should reside inside the absolute sta-
bility region of the chosen time integration scheme for the numeri-
cal scheme to be absolutely stable, the maximum time step ∆tmax is
restricted by

∆tmax ≤ |sA|
|λmax|

, (51)

where sA is the size of the absolute stability region measured on the
imaginary axis at the point where the absolute stability region crosses
the imaginary axis in the complex plane.

4.6. Linear stability

A numerical study of linear stability in 1D was carried out to investigate
the linear stability properties of the DG-FEM scheme to determine if
the analytical bounds given in Table I holds for the discrete cases.
The study was performed using structured domains at various con-
stant depths, where both the number of elements and the fixed local
polynomial orders were varied. From the resulting discrete eigenspectra
we numerically determined the magnitude of the largest eigenvalue for
the given discretization and depth.

It was found that the discrete eigenspectra of the numerical schemes
based on the linearized formulation in 1D result in an upper bound
closely matching the analytical results presented in Table I. This has
been illustrated in Figure 2 by two tests; the first test using few ele-
ments and a high local polynomial order, and in the second test many
elements and low local polynomial order. Remarkably, linear stability
in 1D was found to be independent of the size of the elements, the
number of elements and also the local polynomial order used within
the elements (as long as the chosen order lead to well-conditioned local
operators, which is the case for all moderate polynomial orders used in
applications, usually N < 10).

Therefore, the time step size in the linearized model in 1D can in
fact be chosen based on accuracy considerations alone as long as the
analytical criterion is satisfied. However, we conclude from Figure 2 that
for shallow depths the upper bound for linear stability is too restrictive
if the smallest scale waves cannot be resolved on the grid.

Finally, we note that the time step is usually chosen based on accu-
racy considerations alone, and therefore the above results are mainly
important for testing an application.

paper.tex; 3/01/2006; 21:38; p.14



Paper Draft 15

10
0

10
2

10
4

1

2

3

4

5

6

7

8

d/∆ x
min

|λ
m

ax
|/(

g/
d)

0.
5

Absolute maximum eigenvalues (N,K)=(30,10)

Analytical
Discrete

10
0

10
2

10
4

2

3

4

5

6

7

8

d/∆ x
min

|λ
m

ax
|/(

g/
d)

0.
5

Absolute maximum eigenvalues (N,K)=(2,100)

Analytical
Discrete

a) High local polynomial order and
few elements.

b) Low local polynomial order and
many elements.

Figure 2. Computed normalized absolute maximum eigenvalues for the linearized
Padé (4,4) formulation for constant depths in 1D using a structured domain.

4.7. General stability

For the more general cases a CFL-like criterion is used. The general
cases includes both varying depth and fully nonlinear problems, in
which cases the linear stability criteria Eq. (51) or the analytical bounds
in Table I do not hold. As is usually the case with most numerical
methods, the upper limit for the time step is restricted by the numerical
growth of the eigenvalues of the discrete operators. Instead, we use the
following CFL-like condition

∆t ≥ CFL
∆xmin

cmax
, (52)

where the maximum wave propagation speed is estimated using the
general linear dispersion relation. Here ∆xmin is set to be the smallest
distance between any two points on an element in the domain. The
magnitude of the CFL constant is O(1).

4.8. De-aliasing techniques

For nonlinear problems which lack (any) numerical diffusivity, we may
need to maintain numerical stability by applying a general filtering or
de-aliasing technique. In the presented models, we have used the DG-
FEM in a collocation manner which may give rise to aliasing errors,
since we have chosen to evaluate the nonlinear terms by direct products
for computational efficiency. To reduce such aliasing errors we have used
the filtering techniques mentioned here.

For mildly nonlinear cases in 1D it was found to be sufficient to use
a mild nodal filter constructed in a similar way as the one presented
in Fischer and Mullen (2001). Instead of constructing the filter on the
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Gauss-Legendre (GL) nodes, we instead base the filter on the Lobatto-
Gauss-Legendre (LGL) nodes. Hence, following their procedure, the
filter is constructed as follows. Let IM

N be an interpolation operator for
a polynomial of degree N defined on N +1 GLL nodes onto the M +1
GLL nodes. Define

∏

N := IN+1
N IN

N+1 to be a projection from P 1
N+1 to

P 1
N on [-1,1]. The filter is constructed as

Fα := α
∏

N
+ (1 − α)IN+1

N+1 . (53)

For mildly nonlinear problems in 1D we have found that this filter
works well with approx. α = 0.1 − 0.2.

For more extreme nonlinear wave problems the model has been suc-
cessfully stabilized with a Savitzky-Golay-type (SG) polynomial aver-
aging filter, see Savitzky and Golay (1964), which has also been used by
Fuhrman and coworkers (e.g. Jamois, Fuhrman and Bingham (2005)).
The SG filter was then applied locally by using an iso-parametric ap-
proximation procedure after having averaged the interface values to
an equi-distant/structured grid where the polynomial filtering could
be carried out before returning (by interpolation back) to the original
grid. It is noted that this approach is semi-local in the sense that the
averaging is done across element interfaces locally. This approach was
found to be practical in order to avoid unnecessary large jump discon-
tinuities and to reduce any aliasing errors in the solution which might
otherwise have been introduced by alternative filtering procedures. The
computational cost of this approach is negligible in comparison with the
cost of solving the algebraic system every time step when it is set up
in the pre-processing stage before the computations.

However, in 2D models where complex geometries may be used, the
SG filtering procedure is impractical and hence alternative de-aliasing
means are to be found. Possibly, we need to reduce the aliasing errors by
a more consistent or exact evaluation of the integrands for handling the
nonlinear terms in the DG-FEM, and subsequently project the solution
to the original grid.

4.9. Relaxation zones

We need to be able to both absorb and generate waves which are gen-
erally uni-directional inside the computational domain. A convenient
method by Larsen and Dancy (1983) for both generating and absorbing
waves while preserving the outer domain boundary conditions is to
modify the discrete function values in a smooth way in space using a
relaxation function Γ(x) such that the relaxed solution u∗(x) is given
as

u∗(xi) = Γ(xi)u(xi) + (1 − Γ(xi))ue(xi), (54)
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where Γ(x) ∈ [0, 1] has to be a single-valued function for x ∈ Rd,
where d is the number of horizontal dimensions, and ue is an analytical
solution. The first term acts as a ”sponge layer” which will effectively
damp any wave motion in the zone. The last terms containing ue act
as ”source terms” within the relaxation zone, and if they are included
in the relaxation, allow us to generate waves.

This relaxation method is somehow ad-hoc and the following pa-
rameters should be balanced before arriving at satisfactory results: a)
shape of relaxation functions, b) position of relaxation zones and c) the
length of the relaxation zones.

The following relaxation functions have been used in the simulations
for respectively sponge layers and wave generation

Γ(x; p) = 1 − xp, (55)

Γ(x) = −2x3 + 3x2. (56)

The relaxation zones are positioned appropriately where waves are to
be both/either generated and/or absorbed and the rule of thumb is
that the relaxation should be invoked in a region covering approx. 1-
2 wave lengths of the primary wave in the region. A disadvantage of
the relaxation method is that it takes up a part of the computational
domain, but the compensation lies in the fact that it is a straightforward
procedure, which is both easy and flexible to use. For this reason it is
our method of choice.

5. Computational examples

We conclude with some numerical examples confirming that the pro-
posed methodology provide a basis for solving the high-order Boussinesq-
type equations accurately.

5.1. Spatial accuracy

Consistency tests of the numerical model based on the Padé (4,4) for-
mulation have been carried out to numerically determine convergence
rates for h- and p-type refinement strategies. The linearized system of
equations in 1D is used as the basis for modelling a linear standing
wave in a finite domain x ∈ [−1, 1]2. The tests are carried out in deep
waters with a relative depth corresponding to kd = 2π, which should
be solved accurately by the high-order system, since at this depth all
the spatial derivatives are important for obtaining accurate solutions.

It is shown numerically that in the approximate limits, which is
reached by either h- or p-type refinement or a combination hereof,
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where sufficient spatial resolution is used to capture the solution, the
numerical model has the expected spatial order of accuracy, which is
obtained by using central numerical fluxes.

Consistency tests have been carried out for a linear standing wave
given by the initial surface elevation η(x, t) = Hcos(ωt)cos(kx) and
no kinetic energy, where the angular frequency ω has been determined
using the linear Boussinesq dispersion relation derived in Madsen, Bing-
ham and Liu (2002). The numerical model was run for 100 time steps
with a time step small enough for the spatial errors to dominate in each
test. The normalized max-norm errors have been determined using the
analytical solution for a linearly standing wave.

As demonstrated in Figure 3 convergence is obtained for both h-
type and p-type strategies until the levels of truncation errors from the
solution of the algebraic system dominates. Clearly, the p-type conver-
gence strategy is superior giving rise to exponentially fast convergence
as opposed to the alternative h-type convergence strategy leading to
algebraic convergence. The spatial order of accuracy is found from
the data presented in Figure 3 a) to be optimal O(hN+1) for even
polynomial orders and sub-optimal O(hN ) for odd polynomial orders.
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Figure 3. Consistency test for different convergence strategies.

5.2. Harmonic generation over a submerged bar

Although potential benefits in using DG-FEM for solving the Boussinesq-
type equations are expected to be more significant in solving 2D prob-
lems, we demonstrate the geometric flexibility and the potential bene-
fits in using the proposed methodology by simulating harmonic gener-
ation over a submerged bar.

The experiment where an input wave is propagating over a sub-
merged bar during which the wave will undergo transformation was
originally proposed by Beji and Battjes (1994). Later an equivalent ex-
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periment, which was scaled by a factor of two, was carried out by Luth,
Klopman and Kitou (1994). The bathymetry was defined as shown in
Figure 4 for the original unscaled experiment.

Figure 4. Submerged bar test setup in original experiment.

In this experiment the input wave propagates toward the bar on a
constant bottom with no change in form until it reaches the bar. On
the up-slope the wave will then steepen due to nonlinear shoaling. At
the top of the bar bound harmonics will be released as free harmonics
decomposing the wave into shorter waves which will result in a rapidly
varying wave profile behind the bar. The shorter wave components or
free higher harmonics require a highly accurate dispersion relation to
be propagated correctly. Therefore this experiment has been used as
a benchmark test for dispersive wave models. See for example Madsen
and Schäffer (1999), Madsen, Bingham and Liu (2002) and Walkley
(1999).

We have considered a setup corresponding to Case A in the original
experiment by Beji and Battjes. The model based on the high-order
formulation by Madsen, Bingham and Liu (2002) was used. For this
case, the input wave on a undisturbed depth of d = 0.40 m is given
as; Case A: T = 2.02 s and H = 2 cm. The input wave was generated
using 2nd order Stokes Theory. Computed results are compared with
the experimental data obtained by Luth et al. in Figure 5. Locally on
each element a polynomial order of N = 8 is used and K = 110 equi-
sized elements. At every stage of the explicit Runge-Kutta scheme the
spatial solutions for η(x, t) and ˜U(x, t) are filtered using a mild nodal
filter with α = 0.1. As shown in Figure 5 we achieve excellent agreement
with the data with minimal differences in surface elevations (due to the
accurate dispersion relation) at all gauge locations.

A numerical simulation has been done using an unstructured grid
adapted to the problem as depicted in Figure 6 a). Inside the domain,
the grid varies linearly from a element size of h0 = 0.67m to an element
size of hk = 0.35m positioned at the top of the bar. From the top of
the bar and forward the element size remain constant to be slightly
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increased in the relaxation region where it is instead hk = 0.4m. Using
a local polynomial order of 8 and a total of 80 elements the degrees of
freedom are reduced by 26% compared to the former experiment. This
is possible because the spatial resolution is coarsened in the region to
the left of the bar and fine in the region where the spurious (or faster)
wave components are released after the bar. As depicted in Figure 6
the results are indistinguishable from the ones presented in Figure 5.
This test serve to illustrate the potential gain that can be obtained by
using an adapted grid compared to a structured grid.
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Figure 5. Computed and measured time series of free surface elevations for case A at
three gauge positions; before, at, and after the top of the submerged bar. A structured

grid was used. Last figure shows a comparison by a time harmonics analysis between
computed and experimental data.

5.3. High-amplitude Solitary waves

A demanding test is to model the propagation of high-amplitude soli-
tary waves which is reflected on a vertical solid wall. This experiment
demands a model capable of capturing both the nonlinear and disper-
sive characteristics. A highly accurate initial condition for the solitary
waves can be computed using the method by Tanaka (1986). From
the initial starting point, which is assumed to be sufficiently far from
the walls for the boundary conditions to be satisfied, the wave will
propagate inside the computational domain toward the left wall. Within
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Figure 6. Submerged bar test using an unstructured grid adapted to the physical
scales.

a distance of approx. 2d from the wall measured from the wave crest, the
wave crest will start to accelerate leading to a tall and thin yet shooting
up in close proximity to the wall. This effect is a pure nonlinear effect.
As concluded by Cooker, Weidman and Bale (1997) on the basis of
experimental data and in agreement with their numerical results, the
phase-change during the reflection is spatially dependent and hence
these waves are not solitons, which result in a (usually minor) loss of
energy during the reflection of the solitary waves. Therefore the wave
cannot maintain it’s original shape after the reflection. However, the
wave will after the reflection again take the form of a solitary wave
with slightly smaller amplitude and this adjustment will result in a
dispersive trail.

Similar to the results obtained by Madsen, Bingham and Liu (2002),
we present results for the attachment, detachment and max wave run
up amplitudes. Numerical simulations using structured grids have been
carried out for solitary waves with varying wave steepness. For solitary
waves with amplitudes a/d ≤ 0.5 a mild nodal filter with α = 0.1− 0.2
have been applied every time step. For the more extreme and steep soli-
tary waves the SG-polynomial averaging (nodal) filter has been applied
every time step with stencil half size α = 6 and filter order p = 8. In
all simulations a local polynomial order of N = 8 has been used. The
spatial resolution needed, increase with the magnitude of the solitary
wave amplitude. The number of elements ranged from K = 40−100 for
amplitudes 0.1 − 0.6 for the waves to be considered as well-resolved in
a computational domain x ∈ [0, 45]m. For the high-amplitude solitary
waves to be accurately resolved a model capable of adapting the grid
”on the fly” to allow for changes in the spatial resolution where it is
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needed would be more appropriate in terms of computational efficiency.
However, this is not possible in the current application.

As experienced by both Cooker, Weidman and Bale (1997) and
Madsen, Bingham and Liu (2002) it is difficult to model the thin jet
shooting up numerically due to the rapid and subsequent collapse of
the jet afterward, which demands sufficient spatial resolution in this
region. However, we introduced a small amount of artificial viscosity
in the vicinity of the wall in order to suppress spurious oscillations
and therefore we are able to continue the detachment curve where
previous results have not been obtained in Figure 7 a) even for the
high-amplitude cases. Further, as can be seen in Figure 7 b) the nu-
merical data for the non-dimensional wall forces at the left wall are in
excellent agreement up to nearly a/d = 0.6. Around this limit it it found
necessary to introduce the beforehand mentioned artificial viscosity.
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Figure 7. Reflection of high-amplitude solitary waves.

6. Summary & concluding remarks

We have presented a methodology based on the DG-FEM for solv-
ing high-order Boussinesq-type equations, which supports the use of
unstructured meshes. This has potential benefits in terms of possible
reductions of the degrees of freedom and local adaptivity in complex
geometries.

It has been shown that the methodology can be used to produce
accurate results for demanding test cases describing relevant dispersive
and nonlinear wave phenomena.

Reducing the computational effort remains a future task. The com-
putational bottleneck in solving the system of equations is to both
reconstruct and solve the involved algebraic system efficiently. Hence,
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it is crucial for large-scale applications that an efficient sparse solver is
used to enable the model to be cost-efficient. Currently, the methodol-
ogy is based on simple approximations in a collocation manner possibly
leading to aliasing errors. These aliasing errors can be removed by in-
troducing frequency-dependent artificial viscosity by e.g. nodal filtering
or Savitzky-Golay polynomial averaging filtering.

The current application is only capable of adapting the grid to the
initial geometry of the domain. For some problems, e.g. high-amplitude
solitary waves problems, it is more convenient to be able to adapt the
grid during the simulation based on for example steep gradients in the
solution.

We seek to test the methodology for fully nonlinear problems in
two horizontal dimensions and a thorough description along with more
results will appear in a future paper.

Appendix

A. Differential operators

A number of differential operators are derived for the high-order Boussi-
nesq type formulation presented in section 2. The definitions for use
with the one and two dimensional formulations are given.

A.1. Two different formulations

Two different formulations have been used in setting up the numerical
models.

The Padé (4,4) formulation retaining up to fifth order derivatives
given in Madsen, Bingham and Liu (2002) result in the following coef-
ficients

α2 ≡ (z − ẑ)2

2
− ẑ2

18
, (57)

α4 ≡ (z − ẑ)4

24
− ẑ2(z − ẑ)2

36
+

ẑ4

504
, (58)

β1 ≡ z − ẑ, (59)

β3 ≡ (z − ẑ)3

6
− ẑ2(z − ẑ)

18
, (60)

β5 ≡ (z − ẑ)5

120
− ẑ2(z − ẑ)3

108
+

ẑ4(z − ẑ)

504
, (61)

γ2 ≡ 4

9
, γ3 ≡ 1

9
, γ4 ≡ 1

63
, γ5 ≡ 1

945
. (62)
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The optimized parameters leading to a minimization of the linear
shoaling errors over kd ∈ [0, 30] (σ = −0.5) are given as

c2 = 0.357739, c4 = 0.00663819,

s3 = 0.0753019, s5 = −6.31532x10−5. (63)

The Padé (2,2) formulation retaining up to third order derivatives
is given as

α2 ≡ (z − ẑ)2

2
− ẑ2

10
, (64)

α4 ≡ 0, (65)

β1 ≡ z − ẑ, (66)

β3 ≡ (z − ẑ)3

6
− ẑ2(z − ẑ)

10
, (67)

β5 ≡ 0, (68)

γ2 ≡ 2

5
, γ3 ≡ 1

15
, γ4 ≡ 0, γ5 ≡ 0. (69)

The optimized parameters leading to a minimization of the lin-
ear shoaling errors over kd ∈ [0, 6] (σ = −0.5) presented in Jamois,
Fuhrman and Bingham (2005) are given as

c2 = −0.0593982, s3 = −0.00113222. (70)

Further, the height of the water-column from the bottom to the
chosen expansion level is defined as

λ = d + ẑ (71)

A.2. One dimension

A2 = 1 − α2(∂xx) + α4(∂xxxx), (72)

A3 = λ(∂x) − γ3λ
3(∂xxx) + γ5λ

5(∂xxxxx), (73)

B2 = β1(∂x) − β3(∂xxx) + β5(∂xxxxx), (74)

B3 = 1 − γ2λ
2(∂xx) + γ2λ

4(∂xxxx), (75)

S1 = 1 − c2λ
2(∂xx) + c4λ

4(∂xxxx), (76)

S2 = λ(∂x) − s3λ
3(∂xxx) + s5λ

5(∂xxxxx). (77)
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A.3. Two dimensions

A01 = λ∂x − γ3λ
3(∂xxx + ∂xyy) + γ5λ

5(∂xxxxx + 2∂xxxyy + ∂xyyyy),(78)

A02 = λ∂y − γ3λ
3(∂xxy + ∂yyy) + γ5λ

5(∂xxxxy + 2∂xxyyy + ∂yyyyy),(79)

A1 = 1 − α2(∂xx + ∂yy) + α4(∂xxxx + 2∂xxyy + ∂yyyy), (80)

A11 = 1 − α2(∂xx) + α4(∂xxxx + ∂xxyy), (81)

A2 = −α2(∂xy) + α4(∂xxxy + ∂xyyy), (82)

A22 = 1 − α2(∂yy) + α4(∂xxyy + ∂yyyy), (83)

B0 = 1 − γ2λ
2(∂xx + ∂yy) + γ4λ

4(∂xxxx + 2∂xxyy + ∂yyyy), (84)

B11 = β1(∂x) − β3(∂xxx + ∂xyy) + β5(∂xxxxx + 2∂xxxyy + ∂xyyyy),(85)

B12 = β1(∂y) − β3(∂xxy + ∂yyy) + β5(∂xxxxy + 2∂xxyyy + ∂yyyyy), (86)

C11 = 1 − c2λ
2(∂xx) + c4λ

4(∂xxxx + ∂xxyy), (87)

C2 = −c2λ
2(∂xy) + c4λ

4(∂xxxy + ∂xyyy), (88)

C13 = λ(∂x) − s3λ
3(∂xxx + ∂xyy) + s5λ

5(∂xxxxx + 2∂xxxyy + ∂xyyyy),(89)

C22 = 1 − c2λ
2(∂yy) + c4λ

4(∂xxyy + ∂yyyy), (90)

C23 = λ(∂y) − s3λ
3(∂xxy + ∂yyy) + s5λ

5(∂xxxxy + 2∂xxyyy + ∂yyyyy).(91)
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