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COMPUTATIONAL MODELING OF UNCERTAINTY IN
TIME-DOMAIN ELECTROMAGNETICS∗

C. CHAUVIÈRE† , J. S. HESTHAVEN‡ , AND L. LURATI‡

Abstract. We discuss computationally efficient ways of accounting for the impact of uncertainty,
e.g., lack of detailed knowledge about sources, materials, shapes, etc., in computational time-domain
electromagnetics. In contrast to classic statistical Monte Carlo–based methods, we explore a proba-
bilistic approach based on high-order accurate expansions of general stochastic processes. We show
this to be highly efficient and accurate on both one- and two-dimensional examples, enabling the com-
putation of global sensitivities of measures of interest, e.g., radar-cross-sections (RCS) in scattering
applications, for a variety of types of uncertainties.
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1. Introduction. While computational methods have become increasingly re-
fined and accurate, their reliance on exact data, e.g., complete descriptions of geome-
tries, materials, sources, etc., is emerging as a bottleneck in the modeling of problems
of realistic complexity. For instance, if one attempts to model an experiment, a classic
computational approach would require knowledge of a degree of detail which is un-
realistic and often impossible to obtain, e.g., one cannot hope to control all elements
of an experiment, measure all details of an initial condition or geometry, know the
microstructure of all materials, etc.

The usual approach to dealing with this lack of knowledge or uncertainty is to
simply assume some mean parameters and compute the corresponding solution. If
the solution is robust to parameter variation, this is indeed a reasonable approach.
However, for general problems, where the sensitivity of parts of the solution can be
significant, a solution based on mean parameters is not likely to match very well with
experiments and, thus, is not a good predictive tool. An experimentalist would nat-
urally deal with this exact problem by repeating the experiments and, subsequently,
compute not only mean results but also error bars—reflecting, at least partly, the
sensitivity of the solution.

It is natural to strive to achieve similar abilities in computational modeling ef-
fort, e.g., compute solutions or measures of interest and their associated sensitivities.
Clearly, if a particular measured entity is highly sensitive there is no reason to expect
that this matches experiments exactly. Thus, we would like to be able to model the
impact of the uncertainty, assumed to have certain properties derived from experi-
ments or otherwise, on the computed results, essentially resulting in an ensample of
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752 C. CHAUVIÈRE, J. S. HESTHAVEN, AND L. LURATI

possible solution values with an associated probability. This would immediately en-
able the computation of statistical moments, e.g., means and variances, and of other
valuable information about the sensitivity of solutions and derived quantities.

In this paper we pursue this goal and present a systematic, accurate, and efficient
way of addressing this type of problem, essentially enabling one to compute with
an ensample of data and, subsequently, obtain a full space-time ensample of solutions
with an associated probability density. It is important to realize that is this not a sim-
ple situation, since solutions may vary nonlinearly in the uncertainty due to stochastic
correlations even if the deterministic problem is linear, e.g., Maxwell’s equations.

A standard way of addressing problems of the type mentioned in the above is
through Monte Carlo sampling [13], e.g., run a deterministic code a large number of
times and, subsequently, extract the statistics of interest. The main problem with this
approach is the very slow convergence rate, O(N−1/2), with N being the number of
samples, which makes even the computation of mean solutions expensive and accurate
recovery of higher moments, e.g., variances, prohibitive. As we shall see through
examples, the techniques proposed here suggests that a very considerable reduction
is possible without impacting the accuracy.

Our platform on which to demonstrate this approach is the time-domain Max-
well’s equations, solved using a high-order accurate discontinuous Galerkin method
[9]. However, the basic elements of the formulation are general and can be used with
any computational kernel.

What remains of the paper is organized as follows. In the next two sections, we
recall the deterministic Maxwell’s equations in the time domain and we give some
details of its space discretization using a high-order discontinuous Galerkin method.
In section 4 we continue with an introduction to homogeneous chaos and stochastic
collocation methods, enabling the transition from deterministic to stochastic model-
ing. In the same section, we explain how to model uncertainties and how to extract
statistics of interest (i.e., mean and variance) from the computed stochastic solution.
This sets the stage for numerous examples presented in section 5, comparing the two
approaches and validating the general approach. In section 6 we conclude and offer
some suggestions for continued research in this direction.

2. Maxwell’s equations. Let us consider a general domain Ω and let Es and
Hs denote the scattered electric and magnetic fields, respectively. With ε(x) and
µ(x) being the local permittivity and permeability, and σ(x) the conductivity of the
media, the time-dependent Maxwell’s equations in the scattered field formulation are
given as

ε
∂Es

∂t
= ∇× Hs + σEs + SE ,(2.1)

µ
∂Hs

∂t
= −∇× Es + SH ,(2.2)

where, as is common in time-domain schemes, we have neglected divergence con-
straints, assuming that these amount to constraints on the initial conditions.

The source terms, SE and SH , appearing on the right-hand side of (2.1)–(2.2),
take the form

SE = −(ε− εi)
∂Ei

∂t
+ (σ − σi)Ei,(2.3)

SH = −(µ− µi)
∂Hi

∂t
,(2.4)
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CEM WITH UNCERTAINTY 753

where the incident field (Ei,Hi) is a solution to Maxwell’s equations in a media of
permittivity, permeability, and conductivity—εi(x), µi(x), σi(x), respectively.

We now turn our attention to boundary conditions. Along a perfect electric
conductor (PEC), the boundary conditions on the electric field are

n̂ × Et = 0,(2.5)

where n̂ is the outward pointing normal vector at the surface and Et = Ei +Es is the
total field. For the total magnetic field Ht, the condition is

Ht · n̂ = 0.(2.6)

Along the interface of two dielectric bodies, denoted by the subscripts 1 and 2, we
have

n̂ × (Es
1 − Es

2) = 0 and n̂ × (Hs
1 − Hs

2) = 0;(2.7)

i.e., all tangential components are continuous.

3. Numerical scheme for the deterministic case. Before turning our at-
tention to the case including uncertainties, let us briefly describe the computational
methods used for solving Maxwell’s equations in the physical space. We use a discon-
tinuous Galerkin formulation; the solution will be discontinuous between elements.
This offers a number of advantages over widely used alternative techniques, e.g., ge-
ometric flexibility through fully unstructured grids, high-order accuracy to enable
accurate wave propagation over long distance with a coarse resolution, and very high
computational efficiency through explicit time stepping and high parallel performance.
The method has been discussed, analyzed, and validated extensively [9, 10, 11, 12],
and we shall simply sketch its main components.

We rewrite Maxwell’s equations (2.1)–(2.2) in conservation form

Q
∂q

∂t
+ ∇ · F(q) = S,(3.1)

where q is the state vector formed by the scattered electric field and the magnetic
field

q =

(
E
H

)
,(3.2)

and the components of the tensor F are defined by

Fi(q) =

(
−ei × H
ei × E

)
,(3.3)

where ei denotes the Cartesian unit vectors. On the right-hand side of (3.1), S =
[SE ,SH ] is the source term, which depends on the incident field, and the material
matrix Q is a diagonal matrix with values (ε, ε, ε, µ, µ, µ) on its diagonal.

We assume that the computational domain, Ω, is tessellated by triangles or tetra-
hedrons, D, and we represent the local solution qN as

qN (x, t) =
N∑

i=1

q̃i(t)Li(x),(3.4)
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754 C. CHAUVIÈRE, J. S. HESTHAVEN, AND L. LURATI

where q̃i reflects nodal values, defined on the element, and Li(x) signifies an nth order
Lagrange polynomial, associated with grid points; see [9, 10, 11, 12] for details.

The discrete solution, qN , of Maxwell’s equations is required to satisfy
∫

D

(
Q
∂qN

∂t
+ ∇ · F(qN ) − SN

)
Li(x)dx =

∮

∂D
n̂ · [F(qN ) − F∗]Li(x)dx.(3.5)

In (3.5), F∗ denotes a numerical flux and n̂ is an outward pointing unit vector defined
at the boundary ∂D of the element D. Note that this is an entirely local formulation,
and relaxing the continuity of the elements decouples the elements, resulting in a
block-diagonal global mass matrix which can be trivially inverted in preprocessing.
The price to pay for this is the additional degrees of freedom needed to support the
local basis functions. For high-order elements, this is, however, only a small fraction
of the total number of degrees of freedom. Given the linearity of Maxwell’s equations,
and for stability reasons, it is natural to use an upwinding flux which takes the form [9]

n̂ · [F(qN ) − F∗] =

(
Z

−1
n̂ × (n̂ × [EN ] − Z+[HN ])

Y
−1

n̂ × (n̂ × [EN ] − Z+[HN ])

)
,(3.6)

where the bracket [q] = q− −q+ denotes the jump in the field values (q− is the local
value and q+ is the neighboring value) across an interface, Z± is the local impedance,
and Y ± is the local conductance,

Z± =
1

Y ± =

√
µ±

ε±
.(3.7)

Z and Y in (3.6) are the sums

Z = Z+ + Z−, Y = Y + + Y −.(3.8)

After discretization of the operators and evaluation of the integrals appearing in (3.5),
the problem can be rewritten in matrix-vector form (see [10] for details)

QM
dqN

dt
+ S · FN −MSN = F n̂ · [FN − F∗].(3.9)

The matrices M , S, and F represent the local mass-, stiffness-, and face-integration
matrices, respectively, the exact entries of which can be found in [9], where it is
also discussed how to compute these local operators efficiently and accurately. Note
that the local nature of the scheme allows for the use of an explicit solver for the
time discretization of (3.9). This is traditionally done using an explicit Runge–Kutta
method, although suitable alternatives are plentiful.

4. Accounting for the uncertainty. To deal with the actual lack of detailed
knowledge leading to the uncertainty, we must make some educated guesses—a model—
about the nature of the possible variations in the data. These models can be based on
pure speculation, on measured data, or on other available information. Once this is
done, however, we must introduce this into the computational approach in an efficient,
accurate, and robust manner.

Consider, as a simple example, the wave equation

∂u

∂t
+ a(θ)

∂u

∂x
= 0,(4.1)

D
ow

nl
oa

de
d 

11
/2

6/
12

 to
 1

28
.1

48
.2

52
.3

5.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



CEM WITH UNCERTAINTY 755

where θ is a random parameter with some associated probability density function
(PDF). Thus, this represents an ensemble of wave problems, each with an individual
phase speed occurring with a probability given by the PDF; i.e., the solution u is not
only a function of (x, t) but also of θ, and the equation is a stochastic wave equation.

The actual form of a(θ) may not be known, causing the introduction of the uncer-
tainty. However, it seems quite reasonable that in many situations one can measure or
conjecture the average of a and perhaps its variation; i.e., one can reasonably assume
that a(θ) varies in a certain way related to a normal distribution with a given mean
and variance.

The question remains, however, how this uncertainty will affect the solution,
u(x, t, θ), and, more often, its moments such as the mean and the variance. This is
not a trivial question, as the uncertainty essentially renders the simple linear problem
considerably more complex due to possible stochastic dependence between a and u.

One could naturally solve the above problem for a large number of values of θ,
taken from a proper distribution, and, subsequently, compute the appropriate mo-
ments. This is the essence of a Monte Carlo method and suffers from a very slowly
converging result as 1/

√
N , with N being the number of samples. If higher-order

moments, e.g., the variance or sensitivity of the result, are required, this is often
prohibitive.

In the above example, the uncertainty enters through the phase speed. However,
as we shall see shortly, dealing with uncertainty in initial conditions, boundary condi-
tions, sources, or computational domain/geometries can be done in an entirely similar
fashion.

In this section, we shall discuss two variations, referred to as stochastic Galerkin
and collocation, respectively, of the same underlying result. This enables one to
discretize stochastic partial differential equations (SPDEs) to recover systems of de-
terministic problems which we can subsequently solve with the methods discussed in
section 3. As we shall experience through examples, both techniques offer excellent
accuracy at a severely reduced computational cost as compared to straightforward
Monte Carlo methods.

4.1. The homogeneous chaos expansion. The key result on which we shall
rely is due to Wiener [16] (see also Cameron and Martin [3], Schoutens [14], and
Ghanem and Spanos [7]) and shows that the chaos expansion can be used to approx-
imate any functional in L2(Ω,P), where P is a Gaussian measure on Ω. For such a
random variable X(θ), the chaos expansion is written as

X(θ) = a0H0(4.2)

+
d∑

i1=1

ai1H1(ξi1(θ))

+
d∑

i1=1

i1∑

i2=1

ai1i2H2(ξi1(θ), ξi2(θ))

+
d∑

i1=1

i1∑

i2=1

i2∑

i3=1

ai1i2i3H3(ξi1(θ), ξi2(θ), ξi3(θ))

+ · · · ,

where ξ = (ξ1(θ), . . . , ξd(θ)) represents d independent Gaussian variables with zero
mean and unit variance, each depending on the random event θ, and Hn are the
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756 C. CHAUVIÈRE, J. S. HESTHAVEN, AND L. LURATI

multivariate Hermite polynomials defined as

Hn(ξi1(θ), . . . , ξin(θ)) = e
1
2 ξ

T ξ(−1)n
∂n

∂ξi1 , . . . , ∂ξin
e−

1
2 ξ

T ξ.(4.3)

The number of terms in the expansion (4.2) grows as

P =
(n + d)!

n!d!
,(4.4)

where n is the length of the Hermite expansion and d is the dimension of the Gaus-
sian random space. The polynomial homogeneous chaos expansion forms a complete
orthogonal basis in the space of Gaussian variables, i.e.,

〈Hi(ξi1(θ), . . . , ξin(θ)), Hj(ξj1(θ), . . . , ξjn(θ))〉(4.5)

=

∫

Rd

Hi(ξi1(θ), . . . , ξin(θ))Hj(ξj1(θ), . . . , ξjn(θ))√
(2π)d

e−
1
2 ξ

T ξdξ = i!δij ,

where i denotes the multi-index (i1, . . . , in) and i! = i1!, . . . , in!. Thus there is an
intimate relation between the Hermite polynomials, orthogonal under the Gaussian
weight, and the representation of random variables taken from a Gaussian distribution.
One way of interpreting the homogeneous chaos expansion is that a general random
variable can be expressed in terms of simpler Gaussian variables for which we can
construct an efficient computational approach. Clearly, if the random variable is far
from Gaussian, many terms in the expansion will be needed; i.e., n must be large.
An alternative is to use an expansion in terms of other random variables with an
associated distribution closer to what is expected at input or output (see [14] for
generalizations). For notational convenience, we can rewrite (4.2) in the form

X(θ) =
P∑

j=1

bjΨj(ξ),(4.6)

where there is a one-to-one correspondence between the functions Hi and Ψj and also
between the coefficients ai1,...,ip and bj . In the case of a general stochastic process,
these coefficients will be time dependent.

To model the impact of uncertainty on the propagation of electromagnetic waves,
we include the randomness in the usual spatial-temporal dimensions; i.e., the electric
field and the magnetic field become E(x, t, θ) and H(x, t, θ), reflecting that the fields
are functions of d independent random variables, (ξi1(θ), . . . , ξid(θ)).

In the following we shall discuss in some detail how this can be utilized to construct
an efficient computational method. For simplicity of the discussion, we assume in
what follows that one Gaussian variable suffices to represent the process (i.e., d = 1).
However, the formulation is general and applies to problems requiring many random
variables to describe the stochastic processes.

4.2. Stochastic Galerkin formulation. Using the chaos expansion, we can
express q(x, t, θ) = (E(x, t, θ),H(x, t, θ))T as

q(x, t, θ) =
P∑

i=1

qi(x, t)Ψi(θ).(4.7)
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CEM WITH UNCERTAINTY 757

We can write the computational scheme, which takes into account randomness in a
general setting, as





Q(θ)M

dqN

dt
+ S · FN −MS(θ)N = F n̂ · [FN − F∗],

qN (x, t = 0, θ) = f(x, θ),
(4.8)

where the initial conditions are given by the function f = f(x, θ) and the unknown
vector qN is given by (4.7). As a first step, we discretize (4.8) in the random space
using a Galerkin approach. Multiplying (4.8) by a test function Ψk(θ), replacing qN

by its chaos expansion, and using the scalar product defined by (4.5), we obtain

∀k ∈ [1, P ] :
P∑

i=1

〈QΨi,Ψk〉M
dqi

N

dt
+ k!S · Fk

N −MSk
N = F

P∑

i=1

n̂ · [Fi
N − Fi∗],

(4.9)

where we have used property (4.5). The detailed expression of the terms on the
right-hand side is

n̂ · [Fi
N − Fi∗] =





〈
Z

−1
Ψi,Ψk

〉
n̂ × n̂ × [Ei] −

〈
Z+Z

−1
Ψi,Ψk

〉
n̂ × [Hi]

〈
Y

−1
Ψi,Ψk

〉
n̂ × n̂ × [Hi] +

〈
Y +Y

−1
Ψi,Ψk

〉
n̂ × [Ei]



 .

(4.10)

Recall that Z and Y may depend on the material properties and, thus, may include
uncertainty/randomness.

The initial conditions in (4.8) also need to be projected onto the chaos basis to
give an initial condition for each mode of qi

N in the chaos expansion, i.e.,

∀i ∈ [1, P ] : qi
N (x, t = 0) =

1

i!
〈f(x, θ),Ψi〉.(4.11)

Once the vectors {qi
N}1≤i≤P of the system (4.9) have been computed, we have avail-

able at every point in space an approximation to the probability density of the solution
to the system.

Considering (4.9), we observe that we have managed to recast the general stochas-
tic problem into a system of P coupled deterministic problems which we can now
discretize in space/time exactly as discussed in section 3—or in any other preferred
way.

4.3. Stochastic collocation formulation. The idea of the stochastic colloca-
tion formulation is to replace the expression of the electric and magnetic fields (4.7)
in the polynomial chaos expansion with a Lagrangian polynomial basis; i.e., we would
have

q(x, t, θ) =
P∑

i=1

qi(x, t)Li(θ),(4.12)

where {Li(θ)}1≤i≤P forms a Lagrangian polynomial basis of degree (P − 1). In the
deterministic community, (4.7) would be referred to as a modal expansion and (4.12)
as a nodal expansion. Since θ in (4.12) is a Gaussian variable with zero mean and
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Fig. 4.1. Distribution of Gauss–Hermite collocation points for P = 1, . . . , 30.

unit variance, it seems natural to use Gauss–Hermite collocation points as the basis
for the Lagrange polynomials, as that also enables accurate evaluation of integrals.
Figure 4.1 shows the collocation {θj}1≤j≤P points for P = 1, . . . , 30. It should be
noted that those points are more concentrated near zero, where the probability of the
normal law is highest.

For reasons to be explained shortly, the Lagrange polynomials of (4.12) will not
be based on θj but on

√
2θj . Therefore, by the property of Lagrange polynomials

Li(
√

2θj) = δij , (4.12) gives

q(x, t,
√

2θj) = qj(x, t).(4.13)

In the collocation formulation, we require that the residual of (4.8) be zero at collo-
cation points {

√
2θj}1≤j≤P , i.e.,

∀j ∈ [1, P ] :





QjM

dqj
N

dt
+ S · Fj

N −MSj
N = F n̂ · [Fj

N − Fj∗],

qj
N (x, t = 0) = f(x,

√
2θj).

(4.14)

The stochastic collocation method is essentially a deterministic or lattice Monte Carlo
method with samples {

√
2θj}1≤j≤P . The crucial difference is that a typical Monte

Carlo simulation consisting of P realizations will converge at the slow rate 1/
√
P ,

whereas the convergence of the stochastic collocation method is much faster, as will be
shown by numerical examples (the interested reader can also refer to [17] for classical
results in approximation theory). A simple analogy is that the approximation of
a smooth function, the PDF, is done most efficiently by representing it by smooth
polynomials based on points well suited for interpolation. In a simple Monte Carlo
approach, the interpolation points are random, leading to a poor convergence rate.

We presented the stochastic collocation method for a random space of size d = 1.
The generalization to higher random spaces is straightforward, using tensor prod-
ucts of quadrature points. Note that for higher random spaces and for purposes of
efficiency, it might be necessary to use sparse grid methods (see [17] for details).

4.4. A brief comparison and discussion of the two techniques. It is worth
highlighting a few essential differences between the two ways of introducing the un-
certainty into the model. Although both rely on the use of the chaos expansion, the
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CEM WITH UNCERTAINTY 759

two formulations lead to computationally different methods. In the Galerkin method,
one recovers a system of P coupled equations, even if a scalar equation is consid-
ered initially. While the coupling coefficients can be precomputed, thus reducing the
cost, essential questions, such as well-posedness of the system, do not follow triv-
ially from the well-posedness of the scalar equation. However, analysis confirming the
well-posedness of the system can be found in [5].

For the collocation approach, however, these problems never arise as one solves
P decoupled problems, all of a type similar to that of the original problem. Thus, in
terms of computational efficiency, the stochastic collocation method compares favor-
ably to the stochastic Galerkin formulation.

On the other hand, there are situations in which the Galerkin formulation is
superior to the collocation approach in terms of accuracy. To appreciate this, consider
again (4.1) and assume, for simplicity, that the spatial direction is periodic. We use
a Fourier spectral method in this direction; i.e., we assume

u(x, t, θ) =
∑

|n|≤N

ûn(θ, t) exp(inx).

This yields the semidiscrete scheme

∀|n| ≤ N :
dûn(θ, t)

dt
+ ã(θ)ûn = 0,

with ã(θ) = ina(θ).
If we now represent the orthogonal projection of u onto the space spanned by the

Hermite polynomial by PPu, we recover the error equation

d

dt
ε + ã(θ)ûn − PP (ã(θ)ûn) = 0,

where ε(t) = ûn − PP ûn with

PP ûn =
P∑

i=1

ûni(t)Hi(θ).

From classic approximation results for orthogonal polynomials [6], we recall

‖u− PPu‖w ≤ P−k‖u(k)‖w, P > k ≥ 0.

Here ‖ ·‖w is the Gaussian weighted inner product and u(k) reflects the kth derivative
of u, i.e., it is a simple measure of the smoothness of the probability density associated
with u.

Integration in θ and in time immediately yields the error bound

‖ε(t)‖w ≤ ‖ε(0)‖w + tP−k max
s∈[0,t]

‖(ãûn)(k)(s)‖w

or

‖ε(t)‖w ≤ P−k

(
‖û(k)

n (0)‖w + t max
s∈[0,t]

‖(ãûn)(k)(s)‖w
)
.(4.15)

Thus, if û(k)
n (0) and (aûn)(k) are well behaved, i.e., reasonably smooth, the scheme

converges, although the details naturally depend on ã and the initial conditions.
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760 C. CHAUVIÈRE, J. S. HESTHAVEN, AND L. LURATI

If we now consider the collocation formulation in exactly the same way, we shall
need the interpolation estimate [6]

‖u− IPu‖w ≤ P−k+1‖u(k)‖w, P > k ≥ 1,

where

IP ûn =
P∑

i=1

ûn(θi, t)Li(θ)

is the Lagrange form of the chaos expansion as discussed above. This immediately
yields the estimate

‖ε(t)‖w ≤ P−k+1

(
‖û(k)

n (0)‖w + t max
s∈[0,t]

‖(ãûn)(k)(s)‖w
)
,(4.16)

provided k ≥ 1.
Comparing the bounds in (4.15) and (4.16) highlights several properties of the two

different formulations. We notice, as mentioned above, that the Galerkin formulation
in general is more accurate than the collocation approach, in particular for problems
of low regularity (small k); i.e., for problems with very low regularity (k ≤ 1) the
collocation approach may well fail. Thus, for problems in which the probability density
of ûn develops kinks or cusps, a Galerkin approach is likely to be advantageous.
However, for problems in which both a(θ) and the probability density of the solution,
u, are smooth in θ, the two methods are essentially equivalent in terms of accuracy.
As we shall see shortly, for the different types of applications considered here, the two
methods behave in very similar ways in terms of accuracy.

The analysis also shows that the error grows linearly in time—at least for problems
of simple wave type (4.1). We can obtain a further appreciation of the impact of this
by considering the exact solution

ûn(θ, t) = ûn(θ, 0) exp(ina(θ)t).

The length, P , of the chaos expansion must naturally be chosen to represent this
solution adequately at all times. While this is easily accomplished for the initial
conditions, ûn(θ, 0), the other term reflects a wave, where the wavenumber, a(θ)nt,
grows with time. Again borrowing from classic results in approximation theory [8],
we know that if we consider

exp(ikx) =
L∑

l=0

ûlHl(x),

then exponential accuracy requires that

2l(l/2)!

kl
exp

(
l2

4

)
> exp

(
1

2

(
lπ

kp

)2
)

at a fixed value of x. Here

p =
λ

2x/l
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CEM WITH UNCERTAINTY 761

reflects the number of degrees of freedom used to represent the wave of wavelength λ.
Thus, if we want to accurately resolve waves within x ∈ [−π,π], we find that

lp−1 = 1, and the requirement above is fulfilled for l = p > 6. However, if we are
interested in resolving the problem in x ∈ [−2π, 2π], then lp−1 = 2, and we obtain
l = 2p > 15, while x ∈ [−4π, 4π] implies lp−1 = 4 and the bound l = 4p > 44.

These simple estimates have a few consequences for the methods discussed here.
In particular, we find in the above that the effective wavenumber will grow linearly
with time. This means that if we want to ensure an accurate representation of the
local (in space) probability density, we shall generally expect that P , the number of
terms in the chaos expansion, must grow linearly.

This requires, however, that the local PDF does not change too much over time;
i.e., if it expands significantly in θ space beyond the initial range, we must ensure
that it is well represented within a larger range of θ values, which requires, as seen
above, a faster than linear growth. These arguments are independent of whether we
consider the Galerkin or the collocation approach.

4.5. Computation of statistics. In practice, an expression of the stochastic
fields in the form (4.7) or (4.12), containing a full space-time approximation to the
local PDF, is of little use and often contains too much information. Quantities of
interest—observables—are often macroscopic quantities, i.e., averages or variances of
the fields. The way to extract those quantities depends on whether we have used
a collocation formulation or a Galerkin formulation, and the procedure will also be
different depending on whether we are interested in the statistics of linear or non-
linear functions of the electric or magnetic field. We shall sketch the different pro-
cedures in the next subsections, as this is an important component of the complete
algorithm.

4.5.1. Statistics of linear quantities. As the treatment of the two methods
is slightly different, we shall discuss each separately.

Stochastic Galerkin method. We assume that the solution q(x, t, θ) is available
in the form (4.7), and we wish to extract some statistical information such as the
average solution or its variance.

Let us first assume that we seek the moments of the solutions or a linear combi-
nation of them. Taking the average of (4.7), we get

〈q(x, t, θ), 1〉 =
P∑

i=1

qi(x, t) 〈1,Ψi(θ)〉 =
P∑

i=1

qi(x, t) 〈Ψ1(θ),Ψi(θ)〉

=
P∑

i=1

qi(x, t)δ1i = q1(x, t).(4.17)

Thus, the average is simply the first mode in the chaos expansion. In a similar way,
we can obtain the variance by first computing

〈q(x, t, θ),q(x, t, θ)〉 =
P∑

i=1

P∑

j=1

qi(x, t)qj(x, t) 〈Ψi(θ),Ψi(θ)〉

=
P∑

i=1

P∑

j=1

qi(x, t)qj(x, t)i!δij =
P∑

i=1

i!qi(x, t)2.(4.18)

The variance of the solution is then
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762 C. CHAUVIÈRE, J. S. HESTHAVEN, AND L. LURATI

var = 〈q(x, t, θ),q(x, t, θ)〉 − 〈q(x, t, θ), 1〉2

=
P∑

i=1

i!qi(x, t)2 − q1(x, t)2 =
P∑

i=2

i!qi(x, t)2.(4.19)

Stochastic collocation method. We now assume that the solution q(x, t, θ) is avail-
able in the form (4.12). First, we start by recalling that we have chosen to use the
Gauss–Hermite collocation points {θj}1≤j≤P ; i.e., we have a quadrature formula that
is exact for all polynomial f(x) of degree at most 2P − 1,

∫ +∞

−∞
e−θ2

f(θ)dθ =
P∑

j=1

ωjf(θj),(4.20)

where {ωj}1≤j≤P are the integration weight [4]. This formula can be used to compute
the average of q(x, t, θ) given by (4.12):

〈q(x, t, θ)〉 =
P∑

i=1

qi(x, t)

∫ +∞

−∞

1√
2π

e−
θ2

2 Li(θ)dθ.(4.21)

After a simple change of variable and using (4.20), we get

〈q(x, t, θ)〉 =
P∑

i=1

qi(x, t)
P∑

j=1

1√
π
ωjLi

(√
2θj

)
.(4.22)

This equation shows why we have decided to define Lagrange polynomials based on
the collocation points

√
2θj instead of θj . Indeed, using the fact that Li(

√
2θj) = δij ,

the above equation simplifies as

〈q(x, t, θ)〉 =
P∑

j=1

1√
π
ωjq

j(x, t).(4.23)

The procedure to compute the variance is similar, leading to

var =
P∑

j=1

1√
π
ωj

(
qj(x, t)

)2 − 〈q(x, t, θ)〉2 .(4.24)

It is important to emphasize that the simple, and most expensive, approach of using a
tensor product grid of Gauss quadratures is only one among many alternatives. This
is discussed in detail in [17], where special attention is given to methods of relevance
to problems discussed here.

4.5.2. Statistics of nonlinear quantities. Often, however, we are interested
in the statistics of some derived, possibly nonlinear, functional, F (q) of q(x, t, θ), e.g.,
computation of the impact on the RCS of the uncertainty in the scattering problem.

Let us utilize the idea behind the collocation approach and write

F (q(θ)) =
P∑

j=1

F (q(θj))Lj(θ).
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CEM WITH UNCERTAINTY 763

Thus, we simply need to evaluate the general functionals at the values of θj . However,
since we have already obtained full probabilistic information in the expansions, (4.7) or
(4.12), we can use these results directly to obtain the required information and, thus,
the probabilistic information on F (q). All informations of interest, e.g., moments, can
now be extracted from this in the same way as for the simple variables. Naturally, one
can evaluate the integrals using a classic Monte Carlo approach. This can be done
at little cost since it requires only evaluation of the expansions and not solution of
Maxwell’s equations.

For the Galerkin method, one just needs an extra step to express the fields from
a modal polynomial basis (4.7) to a nodal polynomial basis (4.12), where the coeffi-

cients qj(x, t) are computed by simple evaluation of qj(x, t) =
∑P

i=1 qi(x, t)Ψi(
√

2θj).
Then, the procedure is the same as that for the collocation method.

5. Numerical examples. In the following we shall discuss a few examples used
to validate the approach discussed above. These results are chosen largely to be simple
enough to enable rigorous testing as well as to expose the generality and strength of
the proposed technique.

5.1. One-dimensional material loaded cavity. As a first simple test case,
we consider a one-dimensional PEC cavity loaded with two media, with a material
interface at xmat = 0 and perfectly conducting walls at xpec

1 = −L and xpec
2 = L,

as shown in Figure 5.1. The aim of the test is to compute the first few resonance
frequencies of the cavity. For the simple case considered here, these frequencies are
given as

√
ε1 tan(ω

√
ε2(L− xmat)) = −

√
ε2 tan(ω

√
ε1(L + xmat)),(5.1)

where εk reflects the two different permittivities. We assume for simplicity that the
materials are nonmagnetic, i.e., µk = 1, and solve on each domain Dk the equations

Q
∂q

∂t
+

∂

∂x
F(q) = 0,(5.2)

where

q =

(
Ey

k
Hz

k

)
, F(q) =

(
Hz

k
Ey

k

)
, Q =

(
εk 0
0 µk

)
.(5.3)

To compute the resonant frequencies, we solve the one-dimensional Maxwell’s equa-
tions in the time-domain, subject to a broadband initial condition, and collect one or
several time-traces at various points in the cavity. The spectrum of the time-series
yields the resonant frequencies as strong peaks which are found automatically.

5.1.1. Uncertainty in material. In this first test we assume an uncertainty or
randomness in the permittivity of the material in domain D2 of the form

ε(x, θ) =






1 if x /∈ D2,

2.25

(
1 + 0.1

θ2

1 + θ2

)
otherwise,

(5.4)

where, as everywhere else, θ is a Gaussian variable with zero mean and unit variance.
This model ensures that the permittivity will remain positive in the domain D2. Other
parameters were fixed as L = 1 and µ1 = µ2 = 1.
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764 C. CHAUVIÈRE, J. S. HESTHAVEN, AND L. LURATI

xpec
1 = −L

ε1

µ1

xmat = 0

ε2

µ2

xpec
2 = L

Fig. 5.1. Illustration of one-dimensional loaded cavity.

Table 5.1
Numerical mean and variance of resonance frequencies for cavity with random material. The

discrepancy in the variance for ω1 is caused by quantization errors in the frequency identification
approach and is not related to the accuracy of the modeling of the uncertainty. This is confirmed by
having an identical error in the Monte Carlo model.

Mean of Resonance Frequencies for Uncertainty in Material
iterations ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Exact 3600 1.1955 2.5689 3.6543 5.0158 6.2310 7.4079 8.7898 9.8795 11.2263 12.4614
Formula 7200 1.1957 2.5692 3.6549 5.0168 6.2319 7.4093 8.7913 9.8811 11.2285 12.4632

14400 1.1954 2.5688 3.6541 5.0155 6.2307 7.4074 8.7894 9.8790 11.2257 12.4609
Monte 300 1.1938 2.5715 3.6620 5.0209 6.2350 7.4083 8.7895 9.8837 11.2325 12.4675
Carlo 600 1.1938 2.5712 3.6618 5.0230 6.2346 7.4102 8.7916 9.8869 11.2341 12.4680

1200 1.1938 2.5691 3.6583 5.0185 6.2301 7.4050 8.7862 9.8803 11.2262 12.4611
Stochastic 3600 1.1938 2.5705 3.6595 5.0214 6.2313 7.4109 8.7936 9.8836 11.2214 12.4753
Galerkin 7200 1.1938 2.5708 3.6603 5.0225 6.2328 7.4126 8.7952 9.8842 11.2231 12.4775
P = 40 14400 1.1938 2.5706 3.6594 5.0213 6.2316 7.4111 8.7937 9.8826 11.2203 12.4752

Stochastic 3600 1.1938 2.5705 3.6592 5.0196 6.2330 7.4076 8.7901 9.8826 11.2291 12.4639
Galerkin 7200 1.1938 2.5707 3.6595 5.0199 6.2330 7.4074 8.7901 9.8828 11.2293 12.4645
P = 100 14400 1.1938 2.5707 3.6599 5.0205 6.2334 7.4082 8.7908 9.8836 11.2300 12.4652

Variance of Resonance Frequencies for Uncertainty in Material
iterations ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Exact 3600 1.41e-04 2.81e-04 8.40e-04 1.87e-03 1.58e-03 4.32e-03 4.21e-03 5.26e-03 9.82e-03 6.42e-03
Formula 7200 1.38e-04 2.75e-04 8.23e-04 1.83e-03 1.54e-03 4.23e-03 4.11e-03 5.15e-03 9.60e-03 6.28e-03

14400 1.38e-04 2.76e-04 8.25e-04 1.83e-03 1.55e-03 4.24e-03 4.13e-03 5.16e-03 9.64e-03 6.30e-03
Monte 300 2.62e-29 2.69e-04 1.28e-03 2.41e-03 1.98e-03 4.03e-03 4.06e-03 5.72e-03 9.89e-03 7.04e-03
Carlo 600 2.15e-28 2.85e-04 1.36e-03 2.43e-03 2.09e-03 4.06e-03 4.13e-03 5.65e-03 9.92e-03 7.02e-03

1200 1.66e-28 3.92e-04 1.49e-03 2.44e-03 2.30e-03 4.47e-03 4.52e-03 6.13e-03 1.08e-02 7.46e-03
Stochastic 3600 4.06e-27 3.23e-04 1.43e-03 2.40e-03 2.18e-03 3.84e-03 3.78e-03 5.62e-03 9.76e-03 7.66e-03
Galerkin 7200 5.84e-27 3.06e-04 1.42e-03 2.32e-03 2.18e-03 3.77e-03 3.72e-03 5.45e-03 9.62e-03 7.58e-03
P = 40 14400 2.74e-07 3.17e-04 1.41e-03 2.32e-03 2.18e-03 3.78e-03 3.72e-03 5.53e-03 9.61e-03 7.68e-03

Stochastic 3600 4.06e-27 3.19e-04 1.42e-03 2.35e-03 2.12e-03 4.23e-03 4.19e-03 5.86e-03 1.03e-02 6.82e-03
Galerkin 7200 5.84e-27 3.10e-04 1.41e-03 2.38e-03 2.16e-03 4.29e-03 4.24e-03 5.89e-03 1.06e-02 7.12e-03
P = 100 14400 6.82e-27 3.11e-04 1.42e-03 2.38e-03 2.13e-03 4.26e-03 4.21e-03 5.89e-03 1.02e-02 7.07e-03

For the stochastic Galerkin method with random permittivity, the terms Q, Z, Z,
Y , Y in the semidiscrete equation are all dependent on ε(x, θ) so that the equations
are given by (4.9). The case of random permittivity gives rise to a coupled system of
P deterministic equations, where the coupling is through the many scalar products
defined in (4.9). These scalar products are computed in the preprocessing stage and
stored.

Numerical results. We evaluate the technique by computing the mean and vari-
ance of the resonance frequencies of the loaded cavity. In Table 5.1 we show val-
ues computed by three different methods. The results labeled “Exact Formula” are
obtained by performing Monte Carlo sampling on the equation that describes the
resonance frequencies (5.1). As a benchmark, we show results obtained using a stan-
dard Monte Carlo method on (5.2) with up to 1200 samples. The frequencies in the
stochastic Galerkin method are computed using the method described in section 4.5.1.
Results for two values of P , 40 and 100, are shown. The results show good agreement
between the stochastic Galerkin approach and the statistics of the exact solution as
well as the Monte Carlo method, although it is not clear that the latter results are
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CEM WITH UNCERTAINTY 765

converged. The tables also show that while increasing P does increase the accuracy
of the data, the gain in accuracy is not significant. Note that the iteration in the
Monte Carlo solutions amounts to actually solving the Maxwell’s equations, i.e., the
computational time scales with the number of iterations. For the chaos expansion
method, the computational work scales with P as the iterations simply amount to
summing the final chaos expansions. Thus, the cost of the Monte Carlo approach is
many times larger than the cost of using the techniques discussed here.

5.1.2. Uncertainty in boundary position. Let us now consider the case when
the length of the cavity is unknown, i.e., when there is uncertainty associated with the
position of the boundary. We choose to have uncertainty in the right boundary posi-
tion so that the domain D2 is of variable length. The position of the right boundary
is assumed to be xpec

2 = L + g(θ), where

g(θ) = 0.1

(
θ

1 + θ2

)
.(5.5)

All other parameters are fixed as L = 1, µ1 = µ2 = 1, ε1 = 1, and ε2 = 2.25.
For the stochastic Galerkin method with a random boundary position, we intro-

duce a linear mapping from the variable x into the new variable ξ ∈ [−1, 1], i.e., it is
of fixed length. The mapping of the variable domain D2 into a fixed domain of length
L is

ξ = xmat + (L− xmat)
x− xmat

(L + g(θ) − xmat)
.(5.6)

We can then express (5.2) in the new variable ξ by

Q
∂q

∂t
+

∂ξ

∂x

∂F(q)

∂ξ
= 0,(5.7)

which is stated in a fixed computational domain. Note that this transformation should
also be applied to the initial conditions. As the equations have changed only by the
multiplication of the additional term ∂ξ

∂x , and we now have a deterministic Q, the
computational scheme is expressed as

∀k ∈ [1, P ] : QMk!
dqk

N

dt
+ S

P∑

i=1

〈
∂ξ

∂x
Ψi,Ψk

〉
· Fi

N = F
P∑

i=1

n̂ · [Fi
N − Fi∗],(5.8)

n̂ · [Fi
N − Fi∗] =

〈
∂ξ

∂x
Ψi,Ψk

〉(
Z

−1
n̂ × n̂ × [Ei] − Z+Z

−1
n̂ × [Hi]

Y
−1

n̂ × n̂ × [Hi] + Y +Y
−1

n̂ × [Ei]

)
.(5.9)

Thus, the random domain problem has been transformed into a random coefficient
problem similar to the one discussed previously. Note that we apply this method in
both domains, although in domain D1, which is already of fixed length, the value of
∂ξ
∂x is one.

Numerical results. We compute again the mean and variance of the resonance
frequencies of the loaded cavity. Since the boundary moves only in a small region of
the domain D2 = [xmat, xpec

2 ], we split the domain D2 into two artificial subdomains
D21 = [xmat, xsplit], D22 = [xsplit, xpec

2 ] such that D2 = D21 ∪ D22 and xsplit is
chosen depending on how far the boundary can move inward. Then we can apply the
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Table 5.2
Numerical mean and variance of resonance frequencies for a cavity with an uncertain boundary.

Mean of Resonance Frequencies for Uncertainty in Boundary Position
iterations ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Exact 3600 1.2111 2.5906 3.6943 5.0714 6.2847 7.4973 8.8684 9.9860 11.3513 12.5698
Formula 7200 1.2111 2.5904 3.6941 5.0712 6.2844 7.4971 8.8678 9.9857 11.3511 12.5695

14400 1.2111 2.5904 3.6941 5.0712 6.2843 7.4969 8.8679 9.9854 11.3508 12.5691
Stochastic 3600 1.2199 2.5830 3.6943 5.0654 6.2871 7.4874 8.8631 9.9898 11.3518 12.5519
Galerkin 7200 1.2203 2.5834 3.6947 5.0652 6.2876 7.4881 8.8638 9.9903 11.3523 12.5534
P = 40 14400 1.2205 2.5832 3.6942 5.0644 6.2874 7.4883 8.8637 9.9900 11.3514 12.5529

Stochastic 3600 1.2207 2.5820 3.6900 5.0693 6.2894 7.4934 8.8623 9.9982 11.3619 12.5679
Galerkin 7200 1.2205 2.5820 3.6896 5.0682 6.2886 7.4915 8.8606 9.9965 11.3597 12.5661
P = 100 14400 1.2210 2.5821 3.6899 5.0691 6.2895 7.4930 8.8620 9.9981 11.3615 12.5675

Variance of Resonance Frequencies for Uncertainty in Boundary Position
iterations ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Exact 3600 2.39e-04 1.90e-03 3.88e-03 4.20e-03 1.53e-02 9.28e-03 2.22e-02 2.84e-02 2.27e-02 6.07e-02
Formula 7200 2.43e-04 1.94e-03 3.95e-03 4.27e-03 1.55e-02 9.44e-03 2.25e-02 2.88e-02 2.37e-02 6.22e-02

14400 2.39e-04 1.90e-03 3.88e-03 4.20e-03 1.52e-02 9.27e-03 2.22e-02 2.83e-02 2.29e-02 6.08e-02
Stochastic 3600 9.59e-04 2.89e-03 7.56e-03 1.90e-02 1.25e-02 3.74e-02 3.93e-02 5.03e-02 8.90e-02 6.92e-02
Galerkin 7200 9.63e-04 2.90e-03 7.64e-03 1.91e-02 1.25e-02 3.81e-02 3.97e-02 5.08e-02 8.97e-02 6.98e-02
P = 40 14400 9.65e-04 2.93e-03 7.66e-03 1.93e-02 1.26e-02 3.85e-02 4.01e-02 5.12e-02 9.07e-02 7.01e-02

Stochastic 3600 9.67e-04 3.14e-03 7.69e-03 1.85e-02 1.41e-02 3.84e-02 4.16e-02 5.00e-02 9.05e-02 6.27e-02
Galerkin 7200 9.65e-04 3.14e-03 7.74e-03 1.83e-02 1.41e-02 3.80e-02 4.12e-02 4.95e-02 9.00e-02 6.21e-02
P = 100 14400 9.69e-04 3.18e-03 7.78e-03 1.85e-02 1.42e-02 3.84e-02 4.16e-02 5.00e-02 9.05e-02 6.27e-02

transformation described in the previous section only to the subdomain D22. This
matches the physical properties of the case of an uncertain boundary more closely
than mapping the entire domain D2.

Table 5.2 shows statistics of the resonance frequencies computed by the stochastic
Galerkin method and sampling of the exact solution. Since the Monte Carlo method
is computationally far more expensive, we do not repeat the tests for all cases. The
results again indicate that the stochastic Galerkin approach is in excellent agreement
with the exact solution.

5.1.3. Uncertainty in the interface position. In this last example, we focus
on the cavity where the position of an interface is uncertain, such that both domains
are of variable length. We define the position of the material interface as xmat =
0 + g(θ), where

g(θ) = 0.1

(
θ

1 + θ2

)
.(5.10)

This allows the material interface to be positioned on both sides of the mean position.
We fix other parameters as L = 1, µ1 = µ2 = 1, ε1 = 1, and ε2 = 2.25.

For the stochastic Galerkin method with random position of the interface, we
proceed in a manner similar to that for the random boundary case and introduce a
mapping of both domains from the variable x to the new variable ξ. The mapping of
the variable domains D1 and D2 into domains of fixed length L is defined as

ξ =






−L + L
(x + L)

(g(θ) + L)
if x ∈ D1,

L
(x− g(θ))

(L− g(θ))
if x ∈ D2.

(5.11)

The rest follows from (5.7)–(5.9).
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Table 5.3
Numerical mean and variance of resonance frequencies for cavity with an interface at random

position.

Mean of Resonance Frequencies for Uncertainty in Interface Position
iterations ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Exact 3600 1.2115 2.5884 3.6975 5.0686 6.2832 7.5054 8.8486 10.0084 11.3353 12.5667
Formula 7200 1.2116 2.5885 3.6976 5.0691 6.2832 7.5063 8.8491 10.0089 11.3367 12.5672

14400 1.2116 2.5886 3.6976 5.0689 6.2832 7.5063 8.8488 10.0093 11.3361 12.5671
Stochastic 3600 1.2166 2.5761 3.6902 5.0674 6.2832 7.5004 8.8567 10.0026 11.3383 12.5672
Galerkin 7200 1.2166 2.5761 3.6906 5.0682 6.2832 7.5015 8.8575 10.0030 11.3401 12.5677
P = 40 14400 1.2168 2.5761 3.6902 5.0679 6.2832 7.5015 8.8571 10.0032 11.3391 12.5672

Stochastic 3600 1.2172 2.5761 3.6903 5.0683 6.2832 7.5140 8.8631 10.0039 11.3378 12.5670
Galerkin 7200 1.2166 2.5761 3.6908 5.0672 6.2832 7.5122 8.8621 10.0026 11.3353 12.5678
P = 100 14400 1.2166 2.5761 3.6905 5.0674 6.2832 7.5120 8.8626 10.0030 11.3361 12.5675

Variance of Resonance Frequencies for Uncertainty in Interface Position
iterations ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Exact 3600 2.85e-04 2.24e-04 4.71e-04 4.76e-03 1.70e-05 1.01e-02 2.94e-03 4.05e-03 2.02e-02 9.08e-04
Formula 7200 2.84e-04 2.23e-04 4.70e-04 4.75e-03 1.69e-05 1.04e-02 3.13e-03 4.34e-03 2.06e-02 1.34e-03

14400 2.88e-04 2.26e-04 4.76e-04 4.82e-03 1.73e-05 1.06e-02 3.27e-03 4.53e-03 2.09e-02 1.41e-03
Stochastic 3600 9.12e-04 3.65e-28 7.76e-04 5.83e-03 1.54e-25 9.08e-03 3.74e-03 5.50e-03 2.03e-02 2.13e-03
Galerkin 7200 9.13e-04 1.76e-26 7.63e-04 5.79e-03 2.27e-25 9.14e-03 3.73e-03 5.50e-03 2.02e-02 2.38e-03
P = 40 14400 9.16e-04 6.90e-27 7.75e-04 5.90e-03 7.78e-26 9.14e-03 3.73e-03 5.56e-03 2.05e-02 2.21e-03

Stochastic 3600 9.23e-04 3.65e-28 7.73e-04 6.08e-03 1.54e-25 9.08e-03 3.26e-03 5.91e-03 2.22e-02 1.88e-03
Galerkin 7200 9.13e-04 1.76e-26 7.59e-04 5.94e-03 2.27e-25 9.03e-03 3.22e-03 5.88e-03 2.20e-02 2.16e-03
P = 100 14400 9.12e-04 6.90e-27 7.67e-04 5.96e-03 7.78e-26 8.92e-03 3.20e-03 5.84e-03 2.17e-02 2.28e-03

Numerical results. We split the domains into smaller regions, as described in the
previous case, in order to match the physical properties of the cavity. In this case,
the mapping is applied only to the two subdomains adjacent to the material interface.
Table 5.3 shows statistics of the resonance frequencies computed by the stochastic
Galerkin method and sampling of the exact solution. The quality of the results are
similar to those of the previous test cases.

5.2. Two-dimensional circular cylinder. As a second and more advanced
test, we consider plane wave scattering by a two-dimensional circular cylinder of
radius unity. The measure of interest is the RCS, defined as

RCSdb(φ) = 10 log

(
2π

|F(φ)|2

|Ei|2

)
,(5.12)

where Ei is the incident field and F(φ) is a nonlinear function of E(x, t, θ) and
H(x, t, θ), computing the scattered far field as a function of the polar angle, φ. In
this particular case, F(φ) is the near-to-far-field transformation along some closed
contour [15].

Typical meshes are represented in Figure 5.2, where the number of elements is
1141. The domain extends from −6 to +6, and a perfectly matched layer (PML) of
width 1 is used to truncate the domain (see [1] for details). Degree five polynomials
are enough to ensure that convergence is achieved in the physical space, and six modes
in the chaos expansion (or six nodes for the collocation formulation, i.e., P = 6) are
also enough for good convergence in probability space.

5.2.1. Uncertainty in the source term. Let us denote by Γ the boundary
of a PEC two-dimensional circular cylinder contained in the domain Ω. In this first
example, we consider the following model for the uncertainty in the source term
appearing in (2.1):

D
ow

nl
oa

de
d 

11
/2

6/
12

 to
 1

28
.1

48
.2

52
.3

5.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp
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Fig. 5.2. Typical mesh using 1141 spectral elements.

SE =

{
E0 sin(2πω(k(θ).x − t) if x ∈ Γ,
0 otherwise,

(5.13)

where k(θ) is an uncertain wave vector. We assume that the value of the wave
vector k(θ) is subject to a small random perturbation from its deterministic value
k0 = (r0 cos(α0), r0 sin(α0)). More precisely, we assume that this vector can vary in
one of the following two ways:

1. Randomness in the direction of k:

k(θ) =

(
r0 cos(α0 + 0.1θ)
r0 sin(α0 + 0.1θ)

)
.(5.14)

2. Randomness in the modulus of k:

k(θ) =

(
r0(1 + 0.1θ) cos(α0)
r0(1 + 0.1θ) sin(α0)

)
.(5.15)

The latter case mimics a slight variation in the frequency of the source.
Stochastic Galerkin method. For the stochastic Galerkin method, the source term

in the semidiscrete equation (4.9) becomes

Sk
N =

{
E0〈sin(2πω(k(θ) · x − t)),Ψk〉 if x ∈ Γ,
0 otherwise,

(5.16)

or, after a simple trigonometric manipulation,

Sk
N =






E0

(
〈sin(2πωk(θ) · x),Ψk〉 cos(2πωt)

− 〈cos(2πωk(θ) · x),Ψk〉 sin(2πωt)
)

if x ∈ Γ,

0 otherwise.

(5.17)

The coefficients 〈sin(2πωk(θ) ·x),Ψk〉 and 〈cos(2πωk(θ) ·x),Ψk〉 in the above expres-
sion can be precomputed, stored, and then used to impose the boundary conditions
at any subsequent time steps. Furthermore, by assuming that the permittivity ε and
the permeability µ are deterministic, using the orthogonality of Hermite polynomials
(4.5), equation (4.9) simplifies to

∀k ∈ [1, P ] : k!QM
dqk

N

dt
+ k!S · Fk

N −MSk
N = F n̂ · [Fk

N − Fk∗].(5.18)
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Fig. 5.3. Comparison of the stochastic Galerkin method and the stochastic collocation method.
Left: Average of the RCS for the randomness in the angle of the wave. Right: Variance of the RCS
for the randomness in the angle of the wave vector.

The above equation highlights that for this test case, all the modes are decoupled,
and that the cost of solving it, compared to a deterministic simulation, is simply
proportional to the number of modes in the chaos expansion. For this particular case,
the costs of the Galerkin and collocation methods are the same.

Stochastic collocation method. For the stochastic collocation method, the source
term in the semidiscrete equation (4.14) becomes

Sj
N =

{
E0 sin(2πω(k(

√
2θj) · x − t)) if x ∈ Γ,

0 otherwise.
(5.19)

As always for the stochastic collocation technique, the nodal solutions qj
N are de-

coupled from each other and are obtained by solving P independent systems of the
form

∀j ∈ [1, P ] : QM
dqj

N

dt
+ S · Fj

N −MSj
N = F n̂ · [Fj

N − Fj∗].(5.20)

Numerical results. We conduct the first test to compare the results of the average
and variance of the RCS computed by the stochastic collocation method and the
stochastic Galerkin method. For the numerical experiments, we set r0 = 1 and α0 = π
in (5.14)–(5.15). Figure 5.3 shows the average and the variance of the RCS, and it
can be seen that for the same discretization, they give identical results in agreement
with the discussion in section 4.4. This case corresponds to uncertainty in the angle
of the wave vector, and similar results are obtained for uncertainty in the norm of
the wave vector. Figure 5.4 shows the average of the RCS and its possible variations
for the randomness in the angle of k and in the modulus of k. It appears that the
uncertainty in the angle of k primarily affects the RCS in the forward scatter, whereas
the uncertainty in the norm of k mainly affects the RCS in the sidebands.

5.2.2. Uncertainty in materials. We now assume that the permittivity inside
a cylindrical domain D is unknown, whereas the permittivity outside this domain is
deterministic, e.g.,

ε(x, θ) =

{
1 if x /∈ D,
2.25e0.1θ otherwise.

(5.21)
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Fig. 5.4. Left: RCS for the randomness in the angle of the wave vector. Right: RCS for the
randomness in the norm of the wave vector. Results are shown with the mean RCS as well as ±1
standard deviation.
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Fig. 5.5. Typical mesh using 1318 spectral elements.

Here again, our concern is not the correctness of the probabilistic law chosen in (5.21)
for the uncertainty of the permittivity ε(x, θ), since for any reasonable law, the tech-
niques presented in this paper should work equally well. With an uncertainty of the
form e0.1θ (which is a log-normal law), the permittivity is guaranteed to remain pos-
itive. For uncertainty in the permittivity of the material, the source term of (2.1)
takes the form

SE = −(ε(x, θ) − εi)
∂Ei

∂t
,(5.22)

where (Ei,Hi) denotes the incident field which is a solution to Maxwell’s equations.
For that test case, it is necessary to mesh the entire domain, as shown in Figure 5.5
(here 1318 spectral elements are represented).

Stochastic Galerkin method. Projecting the source term using the chaos basis, we
obtain

∀k ∈ [1, P ] : Sk
N = −

(
〈ε(x, θ),Ψk〉 − εi

) ∂Ei

∂t
.(5.23)
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Fig. 5.6. Comparison of the stochastic Galerkin method and the stochastic collocation method.
Left: Average of the RCS for the randomness in material. Right: Variance of the RCS for the
randomness in material.

In this case, the equation to be solved is (4.9) and the source term is given by (5.23).
Note that in this case, the size of the coupled system to be solved is P times the size
of the system coming from a deterministic simulation.

Stochastic collocation method. For the stochastic collocation method, the source
term of (4.14) is simply

Sj
N = −

(
ε(x,

√
2θj) − εi

) ∂Ei

∂t
.(5.24)

In that case, the stochastic collocation method is cheaper than the stochastic Galerkin
method since it only requires one to solve P decoupled systems of the size of a deter-
ministic problem.

Numerical results. Here we again compare the results of the RCS for both the
stochastic collocation method and the stochastic Galerkin method. Figure 5.6 shows
the average and the variance of the RCS. Although the results are not strictly iden-
tical, the small differences can be attributed to the nonsmooth nature of the RCS for
this problem, which makes convergence more difficult to achieve. Figure 5.7 shows
the average of the RCS and the possible variations around its average value. Note
that for this test case, and contrary to the previous case, the whole RCS is affected
by the uncertainty.

5.2.3. Uncertainty in shape. For this last example, the exact location of the
boundary of an object is assumed to be unknown. One way to solve this problem is
to generate different meshes for different radii of the cylinder and to perform a Monte
Carlo simulation with those meshes. Since this cannot be achieved in an automatic
and efficient way, in this paper we proceed differently, inspired by the one-dimensional
approach based on mappings.

The idea is to keep the same mesh, the mean mesh, and to randomly move
one side of the triangles sitting on the cylinder surface. For example, the triangle
(u1,u2,u3) has the side (u1,u3) sitting on the cylinder surface (see Figure 5.8). For
the deterministic case, the physical element is mapped into the parent element T and
the transformation is written as

x(ξ, η) = (1 − ξ − η)u1 + ξu2 + ηu3 for (ξ, η) ∈ T .(5.25)
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Fig. 5.7. RCS for uncertainty in the material. Results are shown with the mean RCS as well
as ±1 standard deviation.
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Fig. 5.8. Illustration for the randomness in shape.

Note that the Jacobian J(ξ, η) = (∂x
∂η ,

∂x
∂ξ )T of transformation (5.25) is only a function

of (ξ, η). Assuming randomness of the form e0.1θ, the points u1 and u3 take a new
position e0.1θu1 and e0.1θu3, respectively, and the mapping (5.25) becomes

x(ξ, η) = (1 − ξ − η)e0.1θu1 + ξe0.1θu2 + ηu3 for (ξ, η) ∈ T .(5.26)

The Jacobian of transformation (5.26) is now a function of (ξ, η, θ). The determinant
of the Jacobian, which appears as a multiplicative coefficient in Maxwell’s equations,
is random, and this makes Maxwell’s equation a stochastic PDE, which can be solved
with the techniques described above (collocation or Galerkin stochastic method). The
advantage of the procedure lies in the fact that one need only generate a single mesh,
the randomness being modeled by the Jacobian of the transformation.
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Fig. 5.9. Comparison of the stochastic collocation solution with the exact solution. Left: Av-
erage of the RCS for the uncertainty in shape. Right: Variance of the RCS for uncertainty in
shape.
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Fig. 5.10. RCS for material cylinder with uncertain radius. Results are shown with the mean
RCS as well as ±1 standard deviation.

Numerical results for a PEC cylinder with uncertain radius. We test the ap-
proach by considering a PEC cylinder with an uncertain radius, the randomness be-
ing described by (5.26). For the deterministic problem, an exact RCS is available [2].
Therefore, the coefficients in (5.3) can be computed exactly and an exact stochastic
solution for the RCS is available for the random radius problem. This enables us to
compare the statistics of the numerical stochastic collocation solution with the exact
one. This is what is done in Figure 5.9, which represents the average and the variance
of the RCS (the mesh used for the numerical results is the same as in the previous
section). We can see that the two solutions match very well.

Numerical results for a cylindrical material with uncertain radius. For this last
example, the exact radius of the cylindrical boundary of a cylinder with a permittivity
ε1 is uncertain and is assumed to be described by (5.26). We also assume that outside
the object, the relative permittivity is equal to one. Figure 5.10 shows the average of
the RCS for this problem and the possible variations around its average value.

6. Concluding remarks. In this paper we discussed the use of probabilistic
methods, rather than more traditional statistical methods such as Monte Carlo, to
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enable the computation of quantitative measures for the impact of uncertainties on
computational results, exemplified by the solution of the time-domain Maxwell’s equa-
tions. These uncertainties can be due to a lack of knowledge, or lack of control over
variations, or can simply be used as a model to compute the mean and variances over
an ensemble of data, e.g., to compute the RCS of a fleet of aircraft, all of the same
type but with minor differences.

The approach, based on chaos expansions, has the following significant advan-
tages:

• It is simple, systematic, and accurate, and can be used in connection with
existing validated codes with only minimal changes.

• The representation of probability distributions, which are most often smooth,
by using high-order polynomials can be expected to be close to optimal and
leads to a need for very few terms, i.e., few samples, without sacrificing the
accuracy.

• It enables the computation of an ensample of solutions in space and time with
an associated probability measure. It can handle large degrees of uncertainty
simply by increasing the length of the expansion.

• It is flexible enough to handle a large variety of different types of uncertainty,
e.g., materials, initial conditions, and shapes.

The computational results validate these claims and show the potential of com-
puting high-order moments, in particular variances/sensitivities, thus enabling the
computation of numerical error bars.

Throughout this paper, the dimension of the random space d is set to 1, and
for the stochastic collocation method, the computational cost is proportional to P ,
where P is the number of collocation points. For more general problems with random
dimensions d > 1, the computational cost of the collocation method would be pro-
portional to P d (for Galerkin polynomial chaos, it could be P 2d, where, in that case,
P denotes the number of modes). This means that for problems where the correla-
tion length is very small compared to the size of the problem, this method becomes
more expensive, as a significant number of independent random variables is needed.
For such cases requiring high-dimensional random spaces, the stochastic collocation
methods discussed in [17] hold significant promise, as one can choose to limit the
attention to high-dimensional integration formulas, thus dramatically reducing the
number of samples even for high-dimensional randomness. As we have discussed in
section 4.4, however, there is significant potential for reducing the computational cost
by developing a theory that offers insight into how uncertainty can propagate through
dynamical systems and what regularity one can expect for the underlying probability
densities.
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