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Abstract (German)

Fehlerbeseitigung in Computersystemen ist schwierig, zeitraubend, und erfordert detaillierte Ken-

ntnisse des Programmcodes dieser Systeme. Fehlerberichte enthalten selten genügend Informatio-

nen zur Beseitigung des Fehlers. Entwickler müssen in anstrengender Detektivarbeit herausfinden,

wie das Programm zu der beschriebenen Fehlersituation gekommen ist.

Diese Doktorarbeit beschreibt eine Technik zur Synthese von Programmausführungen, welche

diese Detektivarbeit automatisiert: Ausgehend von einem Programm und einem Fehlerbericht,

generiert die Programmausführungssynthese automatisch einen Programmablauf, welche zum be-

schriebenen Fehler führt. Mittels einer Kombination aus statischer Programmanalyse und symbol-

ischer Ausführung synthetisiert sie sowohl eine Reihenfolge der Ausführung der Programmthreads,

als auch benötigte Eingabedaten, welche den Fehler auslösen. Die synthetisierte Ausführung kann

schrittweise in einem Debugger, zum Beispiel gdb, nachverfolgt werden. Besonders nützlich ist

dies zur Beseitigung von Fehlern in nebenläufigen Programmen: Fehler, die sonst nur sporadisch

auftauchen, können nun deterministisch in einem Debugger analysiert werden.

Weil die Programmausführungssynthese weder Aufzeichnungen zur Laufzeit, noch Änderun-

gen an Programm oder Hardware benötigt, entsteht keinerlei Beeinträchtigung der Programm-

leistung. Dadurch ist Programmausführungssynthese auch für Programme im laufenden Betrieb

möglich. Diese Doktorarbeit enthält sowohl eine theoretische Analyse der Programmausführungssyn-

these, als auch experimentelle Belege, die zeigen, dass sie erfolgreich in der Praxis angewendet

werden kann. Innert Minuten generiert sie, von einem Fehlerbericht ausgehend, Programmaus-

führungen für verschiedene Speicherzugriffsfehler und Nebenläufigkeitsfehler in echten Systemen.

Diese Doktorarbeit präsentiert ausserdem die Rückwärtssynthese von Programmausführungen.

Diese Technik nimmt einen Speicherauszug (einen sogenannten coredump, der beim Auftreten

des Fehlers erstellt wird) und berechnet das Ausführungssuffix, welches zu diesem Speicherinhalt

führt. Die Rückwärtssynthese generiert alle nötigen Informationen, um dieses Suffix determinis-

tisch in einem Debugger zu analysieren, bis die Fehlerquelle gefunden ist. Da nur der letzte Teil

einer Programmausführung generiert wird, eignet sich die Rückwärtssynthese besonders zur Anal-

yse von beliebig lange laufenden Programmen, in denen die Fehlerquelle und das Auftreten des

Fehlers zeitlich nahe beieinander liegen.
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Diese Dissertation beschreibt ebenfalls, wie Programmausführungssynthese mit Techniken zur

Aufzeichnung von Programmausführungen kombiniert werden kann. Dies dient der Klassifizierung

von Data Races und dem Beheben von Synchronisationsfehlern wie zum Beispiel Deadlocks.

Stichworte: Automatisierte Debugging, Programmausführungssynthese, Aufnahme, Wiedergabe,

symbolische Programmausführung.



Abstract

Debugging real systems is hard, requires deep knowledge of the target code, and is time-consuming.

Bug reports rarely provide sufficient information for debugging, thus forcing developers to turn

into detectives searching for an explanation of how the program could have arrived at the reported

failure state.

This thesis introduces execution synthesis, a technique for automating this detective work:

given a program and a bug report, execution synthesis automatically produces an execution of the

program that leads to the reported bug symptoms. Using a combination of static analysis and sym-

bolic execution, the technique “synthesizes” a thread schedule and various required program inputs

that cause the bug to manifest. The synthesized execution can be played back deterministically in

a regular debugger, like gdb. This is particularly useful in debugging concurrency bugs, because it

transforms otherwise non-deterministic bugs into bugs that can be deterministically observed in a

debugger.

Execution synthesis requires no runtime recording, and no program or hardware modifications,

thus incurring no runtime overhead. This makes it practical for use in production systems. This

thesis includes a theoretical analysis of execution synthesis as well as empirical evidence that

execution synthesis is successful in starting from mere bug reports and reproducing on its own

concurrency and memory safety bugs in real systems, taking on the order of minutes.

This thesis also introduces reverse execution synthesis, an automated debugging technique that

takes a coredump obtained after a failure and automatically computes the suffix of an execution

that leads to that coredump. Reverse execution synthesis generates the necessary information to

then play back this suffix in a debugger deterministically as many times as needed to complete the

debugging process. Since it synthesizes an execution suffix instead of the entire execution, reverse

execution is particularly well suited for arbitrarily long executions in which the failure and its root

cause occur within a short time span, so developers can use a short execution suffix to debug the

problem.

The thesis also shows how execution synthesis can be combined with recording techniques in

order to automatically classify data races and to efficiently debug deadlock bugs.

Keywords: Automated debugging, execution synthesis, record-replay, symbolic execution.
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Chapter 1

Introduction

1.1 Problem Statement

This thesis aims to provide a solution for automatically debugging failures that occur in software

running in production. Developers should be able to deterministically replay an entire execution

or an execution suffix that is relevant for debugging the failed execution. The replayed execution

should be useful for debugging, which means, at a minimum, that developers should be able to

reproduce the same root cause and failure as the original execution. We consider that a practical

solution should not require any program recording, any program modifications, and no changes to

hardware. A practical solution should use as input only the program and the bug report (e.g., the

coredump) that is generated after the failure and is sent to developers. This thesis is only concerned

with failures that produce a coredump, such as program crashes or assert failures.

1.2 Motivation

Debugging software deployed in the real world is hard, frustrating, and typically requires deep

knowledge of the code of the program. With increasing parallelism in both hardware and software,

the classic problem of bugs in sequential execution is now being compounded by concurrency bugs

and other hard-to-reproduce behavior. Bug reports rarely provide sufficient information about

how the failure occurred, so developers must turn into detectives in search of an explanation of

how the program could have reached the reported failure state. If developers had a better way to

triage, analyze, and debug these failures, they would spend less time debugging and more time

implementing useful features.

To fix a bug, developers traditionally try to reproduce it and observe its manifestation in a

debugger. Alas, this approach is often challenging, especially for concurrency bugs—in a recent

17



18 CHAPTER 1. INTRODUCTION

survey, almost 70% of respondents considered reproducing concurrency bugs to be hard or very

hard [57]. Moreover, the large amount of guesswork involved in debugging leads to error-prone

patches, with many concurrency bug fixes either introducing new bugs or, instead of fixing the un-

derlying bug, merely decreasing its probability of occurrence [85]. Increasingly parallel hardware

causes multi-threaded software to experience increasingly concurrent executions, making latent

bugs more likely to manifest, yet no easier to fix.

There are multiple reasons why reproducing bugs is challenging: First, complex sequences

of low-probability events (e.g., a particular thread schedule) are required for a bug to manifest,

and programmers do not have the means of directly controlling such events. Second, the probe

effect—unintended alteration of program behavior through the introduction of instrumentation and

breakpoints [49]—can make bugs “vanish” when hunted with a debugger. Third, variations in the

operating system and runtime environment (e.g., kernel or library version differences) may make

it practically impossible to reproduce a bug exactly as it occurred at the end user’s site.

This thesis sets out to address the question of how would one debug failures post-mortem with

no runtime recording and no execution control in production—once the application fails, the ideal

tool would use the information that can be collected “for free” after the failure (e.g., the coredump)

to automatically infer how to make the program fail in the same way again. Such a tool would

enable developers to home in on the root cause and fix it. This tool would essentially automate

what developers do manually today.

1.3 Background

One way to do automated debugging is to record all key events during the real execution and, when

a failure occurs, ship the log of these events along with the failure to the developers, who can then

reproduce the execution that led to the failure. This is called deterministic record-replay [9, 42, 43,

77, 81].

Record-replay systems, however, are not an ideal solution, mainly because of performance and

storage overheads. For example, making a multi-threaded execution on a multicore CPU repro-

ducible requires logging a large number of memory operations, and this causes existing determin-

istic record-replay systems to have high performance overhead (e.g., 400% for SMP-ReVirt [42]

and 60% for ODR [9]). Several systems choose to trade some of the reproducibility guarantees for

lower runtime overhead [9, 17, 102, 35], but this trade-off hurts their utility for debugging [131].

In record-replay for datacenter applications [132], a big challenge is that such applications are

data-intensive, and the large volume of data they process increases proportionally with the size of

the system and the power of individual nodes. Recording all this data and storing it for debugging

purposes is impractical; checkpointing can help trim the logs, but it increases recording overhead
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and still does not get rid of logs. Since recording must be always-on, to catch the occurrence of

infrequent bugs (which are the hard ones to debug), such performance and storage overheads make

record-replay impractical for debugging failures in most production systems.

Another option would be to use deterministic execution systems [13, 16, 38, 39], but they

too are prohibitively heavyweight, especially for multi-CPU hardware. Deterministic execution

systems also incur storage overhead, since they have to record program inputs in order to reproduce

failures that occur in production.

A third option to do automated debugging is static analysis. Tools like PSE [87] and Sher-

Log [126] use static analysis to improve error diagnosis and infer the likely cause of a failed

execution. SherLog uses existing program logs to enhance the results of the static analysis. How-

ever, static analysis tools may produce imprecise results, because they do not produce an execution

that can be deterministically replayed by developers in a traditional environment. Moreover, such

tools focus on sequential programs, because static analysis for multi-threaded programs is more

challenging due to the complexity of alias analysis [117]. The precision of these techniques can be

improved by enhancing logs [129, 127], at the expense of adding runtime overhead.

1.4 Thesis Objectives

The key objectives of the automated debugging technique we develop in this thesis are: (1) the

technique should reproduce an execution of the program that can help developers understand the

failure and fix the root cause of the failure; (2) the technique should not require any runtime

recording; (3) the technique should not require program modifications or specialized hardware.

Record replay techniques do not meet objective (2), because they must record information

while software is running in production. Deterministic execution systems do not meet objective (3),

because they require changes to the program, the hardware, or the production environment where

the program is running. Static analysis tools have false positives and do not infer an execution that

can be deterministically replayed to help debugging, therefore they do not meet objective (1).

1.5 Solution Overview

This thesis introduces execution synthesis (Chapter 4), a technique for automatically finding “ex-

planations” for hard-to-reproduce bugs. Execution synthesis takes as input a program plus a bug

report and produces an execution of that program that causes the reported bug to manifest de-

terministically. Execution synthesis requires no tracing or execution recording at the end user’s

site, making it well suited for debugging long-running, performance-sensitive software, like Web

servers, database systems, application servers, game servers, etc.
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Successful debugging with execution synthesis is premised on the observation that, in order to

diagnose a given bug, a developer rarely needs to replay the exact same execution that evidenced

the bug at the user’s site. Instead, playing back any feasible execution that exhibits that same bug

will typically be sufficient. The execution produced by execution synthesis provides an explanation

of the bug, even if it is not precisely the execution experienced by the user reporting the bug. A

synthesized execution provides the causality chain leading to the bug, thus eliminating the guessing

and lengthy detective work involved in debugging. In addition to a bug report, developers now also

have an execution they can play back in their debugger. This allows them to deterministically

observe the buggy behavior and to use classic techniques for finding a suitable bug fix, such as

step-by-step execution and data structure dumps.

Execution synthesis consists of two parts. Sequential path synthesis combines symbolic ex-

ecution with context-sensitive inter- and intra-procedural static analysis to efficiently produce a

guaranteed-feasible sequential execution path from the start of the program to any target basic

block in each program thread. Thread schedule synthesis finds a schedule for interleaving thread-

level sequential paths such that the program’s execution exhibits the reported bug.

We prototyped the proposed technique in ESD, a tool that automatically analyzes common el-

ements provided in bug reports (coredumps, stack traces, etc.), synthesizes an execution that leads

to the reported misbehavior, and allows developers to play back this execution in a debugger. ESD

is practical and scales to real systems. For example, it takes less than three minutes to synthe-

size an execution for a deadlock bug in SQLite, an embedded database engine with over 100,000

lines of C/C++ code [99] used in Firefox, Skype, Mac OS X, Symbian OS, and other popular

software [108].

Based on the lessons learned from developing execution synthesis, we developed reverse ex-

ecution synthesis (Chapter 5), a technique for automated debugging that targets arbitrarily long

executions. The key difference between execution synthesis and reverse execution synthesis is

that the latter focuses on reproducing just a suffix of the execution, while the former technique

reproduces an entire execution (i.e., from the start of the program up to the failure point).

The insight behind reverse execution synthesis is that developers rarely need a full execution

for debugging. A suffix of the failure-bound execution is sufficient for debugging as long as this

suffix can be replayed in a debugger and contains the root cause of the failure. Reverse execution

synthesis conceptually reverse-executes the program from the coredump and generates possible

suffixes that generate the same coredump. The key technique we developed for reverse execution

synthesis is the ability to execute suffixes of an execution starting from an unknown program

memory state.
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1.6 Thesis Roadmap

The rest of this thesis is structured in the following way: Chapter 2 describes prior work on au-

tomated debugging, Chapter 3 defines the debugging utility of an automated debugging system,

Chapter 4 describes execution synthesis, and Chapter 5 describes reverse execution synthesis.

Chapter 6 provides an empirical evaluation of execution synthesis and reverse execution synthesis

and describes several uses cases of the two techniques. Chapter 7 describes how to improve the

performance of execution synthesis by adding a lightweight recording layer. Finally, Chapter 8

presents future work ideas and Chapter 9 concludes the thesis.



22 CHAPTER 1. INTRODUCTION



Chapter 2

Related Work

In this chapter we review related work. Some of the described related work provided inspira-

tion for execution synthesis and reverse execution synthesis, while other is related by virtue of

addressing similar problems. We broadly divide the body of related work into record-replay sys-

tems (Section 2.1), deterministic execution systems (Section 2.2), bug finding tools (some of which

focus on inferring inputs (Section 2.3.1), while others focus on finding schedules (Section 2.3.2)),

debugging tools based on static analysis (Section 2.4), and bug triaging systems (Section 2.5).

2.1 Record-Replay Systems

A classic way to do automated debugging is to use a record-replay system [80]: record all relevant

details of an execution (e.g., network and disk inputs, the order of asynchronous events, the thread

schedule, etc.) into a log file, ship this log file to the developers’ site and replay the recorded details

of the execution from the log file. This section discusses several record-replay systems, focusing

on their suitability for automated debugging of software that runs in production.

Record-replay systems are fundamentally different from execution synthesis primarily because

execution synthesis does not record the execution. Record-replay systems have to record non-

deterministic events, while execution synthesis must synthesize these events offline. Thus, on the

one hand, the offline synthesis process is substantially more complex and expensive than simply

replaying the recorded events from a log. On the other hand, the runtime recording process of

record-replay systems has several disadvantages. First, the high runtime overhead makes record-

replay systems impractical for use in production. Second, record-replay systems do not have pre-

dictable performance guarantees (their overhead varies depending on the recorded program, the

workload, and the hardware platform). Third, record-replay systems are complex pieces of soft-

ware running underneath the recorded program, therefore they may themselves be responsible for

introducing bugs.

23
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Whole-system replay records the execution with high fidelity: the program is run inside a spe-

cialized virtual machine, which records all sources of non-determinism for later replay [42, 43, 6].

Recording is done below the virtual machine. The main challenge is recording and replaying asyn-

chronous events. ReVirt [42] uses a lightweight mechanism based on hardware performance coun-

ters to record the point in the program’s execution when asynchronous events occur, and then re-

plays events at the recorded execution point. ReVirt was shown to have less than 8% overhead [42],

but only works for recording the execution of single-CPU virtual machines. SMP-ReVirt [43] ex-

tends ReVirt to multi-processor machines, using commodity hardware page protection to record

and accurately replay memory sharing between multiple CPUs. Recording the order of shared

memory accesses with low runtime overhead is the main challenge faced by record-replay sys-

tems: SMP-ReVirt is expensive (e.g., 400% runtime overhead), therefore it is mostly suitable for

use during development. Scribe [77] makes several optimizations to improve the performance of

multi-processor recording to 15% for a 2-CPU system. Execution synthesis transforms the problem

of recording shared memory accesses into that of synthesizing a thread schedule offline.

Whole-system replay works well for bugs that occur relatively frequently. However, bugs in

production are rare occurrences, so the performance and space overhead of always-on recording

of the entire execution offers less payback. Reverse debugging [75] uses VMs to travel back and

forth in an execution, which is useful in dealing with hard-to-reproduce bugs; this approach typi-

cally incurs prohibitive recording overhead for bugs that occur infrequently. In contrast, execution

synthesis does not require recording, so it presents unique advantages in dealing with rare events,

such as concurrency bugs.

Higher-level record-replay systems record just the target processes to reduce runtime overhead

(e.g., Flashback [109], Chimera [81], ADDA [132]), or record library-level interactions and re-

play them (e.g., R2 [60]). These approaches typically incur lower overhead than whole-system

replay. For instance, recording at the SQL interface in R2 can reduce the log size by up to 99%,

compared to doing so at the Win32 API. R2 does not record all sources of non-determinism (e.g.,

data races, multi-processor non-deterministic events, etc.), therefore it may not always produce

a faithful replay. Execution synthesis uses techniques similar to R2 to playback the synthesized

execution and extends these techniques with the ability to play back asynchronous events (such as

thread preemptions) that are crucial to reproducing concurrency bugs.

One way to reduce the overhead of recording shared memory accesses was introduced by

Chimera [81]: use static analysis to identify code without data races, and only record the order

of memory accesses that are potentially racing. Systems based on static analysis require source

code as input (accurate static analysis is harder for program binaries [19]), therefore, they are not

suitable for whole-system record-replay. Moreover, Chimera makes several assumptions about the

program’s source code (e.g., lack of pointer arithmetic) to guarantee that static data race analy-
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sis has no false negatives. If the static analysis it employs has false negatives, Chimera does not

guarantee deterministic replay.

Recent work looked at replaying bugs while aiming to reduce recording overhead [9, 102, 35,

67]. ODR [9] and PRES [102] reproduce concurrency bugs for programs running on multipro-

cessors, while Oasis [35] and BugRedux [67] reproduce bugs in sequential programs. All four

systems trade the fidelity of the recording (i.e., they do not record some details of the execution)

for achieving lower runtime overhead, however, they rely on an offline inference process to recon-

struct the information that was not recorded. For instance, both ODR and PRES have a mode in

which they do not record the order of the racing memory accesses. Instead, these systems perform

an offline search through the set of possible thread schedules to infer the order of the racing mem-

ory accesses offline. Oasis records a trace of the executed branch instructions and uses a training

phase—before the program is deployed at the user site—to determine which parts of the branch

trace can be easily inferred offline. BugRedux records a trace of the called functions to achieve a

good tradeoff between recording overhead and inference time. While similar in spirit to execution

synthesis, these tools do not fully eliminate the need for recording, adding overheads as high as

50%, making them less practical for production systems.

Long-running executions pose an important challenge for record-replay systems. One option

to record-replaying long running executions is to use checkpointing [6] and to replay starting from

a recent checkpoint instead of the beginning of the execution. Another approach is to focus on

replaying an execution suffix. BBR [28] is a record-replay system targeted at long-running single-

threaded applications. BBR records in a circular buffer pieces of information about the last seconds

of the execution (i.e., a trace of the branches taken by the program, consisting of a single bit for

each branch taken) and reconstructs the missing pieces offline. Compared to systems like ODR

and PRES, BBR focuses on reproducing a short execution suffix, therefore the recorded trace is

small and the runtime overhead to under 10%. Like reverse execution synthesis, BBR targets long

running applications and reproduces an execution suffix. However, reverse execution synthesis

does not entail any recording and works for multi-threaded instead of single-threaded programs.

Aftersight [30] is an efficient way to observe and analyze the behavior of running programs

on production workloads. Aftersight decouples analysis from normal execution by logging non-

deterministic virtual machine inputs and replaying them on a separate analysis platform or in real

time on a different core of the system, thus enabling synchronous safety monitors that perform

realtime analysis to detect safety violations. Execution synthesis does not monitor the running

program. Instead, it requires a coredump to perform its analysis at the developer’s site. However,

since the analysis is done offline, execution synthesis is not appropriate for realtime analysis.

Compared to replaying a single node, record-replay for distributed applications poses addi-

tional challenges, due to the inherent recording overheads. First, applications are data intensive,
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and the volume of the data they process increases proportionally with the size of the system.

Recording this volume of data to persistent storage is even a larger challenge than for a single

node. Second, coordinating a set of distributed nodes to perform a faithful replay of a failed execu-

tion requires having captured all critical causal dependencies between control messages exchanged

during execution. Knowing a priori which dependencies matter is undecidable. Existing work on

debugging distributed systems does not fully address these challenges: Friday [50] and Liblog [51]

address distributed replay, but have high overhead for data-intensive applications. ADDA [132]

provides distributed replay for datacenters, but has non-negligible overhead for large datacenters

due to both the storage and multi-core recording overheads. Execution synthesis and reverse execu-

tion synthesis can be applied to individual application processes, but do not address the debugging

of an entire distributed system.

One way to reduce runtime overhead is to use specialized hardware ([124, 93]) to do the record-

ing. For instance, FDR [124] piggybacks on the cache coherence hardware to record thread order-

ing information. While this approach can help debugging, it requires hardware features that are

not available today and that are uncertain to exist in the future. Hardware mechanisms such as

LBA [27] were used to enable efficient and flexible logging and extraction of run time execution

events for debugging and security purposes. LBA was used to accelerate dynamic software-based

analyses by offloading the dynamic analyses to idle cores. iWatcher [138] is a hardware mecha-

nism that enables associating monitoring functions with specific memory location, thus accelerat-

ing memory safety tools like Valgrind [114]. Execution synthesis could leverage future specialized

hardware recording systems to reduce synthesis time, assuming that the specialized will not intro-

duce runtime overhead and will become part of commodity hardware.

Record-replay systems like ReVirt [75], FlashBack [109], UndoDB [5], and VMWare Work-

station 7.0 [6] leverage both record-replay and checkpointing to provide reverse debugging capa-

bilities [1] (e.g., execute reverse-step in a debugger). While the program appears to be executing in

reverse in the debugger, it is in fact executing forward from a previously taken snapshot. Execution

synthesis provides a similar functionality, however it does not use checkpointing to implement the

reverse-* commands in gdb. Instead, it replays the synthesized execution from the beginning of

the execution.

Program sampling [83] has been proposed as a way to share the cost of dense code assertions

among many users. This technique uses statistical methods to identify program behaviors that are

strongly correlated with failure, therefore it can be applied to debug a wide range of bugs. Sampling

does not extract from the program execution bug-specific information, therefore debugging non-

deterministic bugs such as deadlocks and data races is still hard. In Section 7.1 we introduce

a system that gathers bug-specific information: rather than identifying behaviors correlated to

failures, this approach requires a predefined recording layer that is optimized for a specific class of
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bugs.

2.2 Deterministic Execution

Another approach to automated debugging is to make program execution deterministic using a

deterministic execution system [13, 16, 38, 39, 100]. Deterministic execution systems use deter-

ministic schedulers to execute a non-deterministic program using a particular thread schedule (i.e.,

a particular order of the synchronization operations and of the shared memory accesses): as long

as the program is run using the same inputs, it is guaranteed to run the same thread schedule. The

thread schedule is typically chosen arbitrarily among the possible thread schedules. Deterministic

execution systems are prohibitively heavyweight, especially for multi-CPU systems and also incur

storage overhead, since they have to record program inputs in order to reproduce failures that occur

in production.

Deterministic execution systems could be used in conjunction with execution synthesis: the

more deterministic programs are (e.g., if they are guaranteed to experience a single possible or-

dering of any racing memory accesses), the easier it will be for execution synthesis to synthesize

the thread schedule. One challenge in using deterministic execution in conjunction with execu-

tion synthesis is that each program input leads to a different deterministic schedule, therefore one

would still need to record all program inputs, which is not practical for production systems. Pere-

grine [36] partially alleviates this challenge by reusing the same deterministic thread schedule for

multiple sets of inputs that drive the program down the same execution path.

2.3 Bug Finding Tools

2.3.1 Finding Inputs That Trigger Bugs

There is a rich body of work focused on discovering bugs in programs [105, 44, 56, 55, 23],

with recent tools typically employing symbolic execution [74]. Execution synthesis builds upon

techniques developed for these systems, most notably KLEE [23].

In combining static analysis with symbolic execution, we were inspired by a series of sys-

tems [34, 33, 24] which compute inputs that take a program to a specified undesired state, such as

the location of a crash. Unlike execution synthesis, these systems are targeted at program states

that can be deterministically reached when given the right program arguments. Execution syn-

thesis was specifically motivated by the difficulty of reproducing elusive non-deterministic bugs,

hence our emphasis on inferring not only program arguments, but also inputs from the program’s

environment and scheduling decisions. Moreover, these prior tools require recording of certain
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program inputs and/or events; in execution synthesis we go to the extreme of zero program tracing,

in order to be practical for production systems.

Static analysis and symbolic execution were used to create vulnerability signatures [21] and

to show that it is possible to automatically create exploits by analyzing program patches [20].

Execution synthesis is similar to this work in that it aims to create inputs that execute the program

toward a certain vulnerability. However, execution synthesis addresses bugs more broadly than

just input validation bugs and is able to handle multi-threaded programs. Moreover, automatic

patch-based exploit generation works best when the constraint formula is partially generated from

an existing sample execution. We did not yet explore this approach in execution synthesis because

sample executions may add constraints on program inputs, that may prevent execution synthesis

from reproducing a particular bug.

AEG [12] is an automated exploit-generation system. It first uses static analysis to find potential

bug locations in a program, then uses a combination of static and dynamic analysis to find an

execution path that reproduces the bug, and then generate an exploit automatically. AEG generates

exploits, which provide evidence that the bugs it finds are critical security vulnerabilities. Instead,

execution synthesis takes as input the manifestation of a known bug and works for both exploitable

and non-exploitable bugs. Unlike execution synthesis, AEG does not start from an existing bug

and does not leverage the rich source of information present in the coredump. Moreover, AEG is

targeted at buffer overflow bugs in sequential programs, while execution synthesis also works for

concurrency bugs. AEG [12] was developed after execution synthesis.

UC-KLEE [103, 45] introduced under-constrained execution as a way to test the equivalence of

two arbitrary C functions. Under-constrained execution runs a function in isolation from the rest of

the program by providing symbolic arguments to the function and then using symbolic execution

to explore paths inside the function. This approach can generate paths that would be infeasible

in a real execution. UC-KLEE partially mitigates this problem by checking the equivalence (in

terms of program output) of two library functions that are meant to provide the same functionality.

Thus, both feasible and infeasible paths are likely to generate the same output in both functions.

UC-KLEE flags any output differences as potential bugs. The approach used by reverse execution

synthesis to execute symbolic snapshots (Chapter 5) was inspired by under-constrained execution.

Reverse execution synthesis extends under-constrained execution to concurrent programs.

Several bug-finding systems published after execution synthesis combine static and dynamic

program analysis techniques to prioritize testing program patches [89, 110] or to find security

vulnerabilities [14]. Similarly to how execution synthesis prunes execution paths that cannot re-

produce the failure, eXpress [110] prunes execution paths which do not lead to the target patched

code. Similarly to execution synthesis, several recent systems use distance-based heuristics to eval-

uate which execution paths are more likely to reach a particular program location (e.g., patched
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code [89] or security vulnerabilities [14]). These systems are also addressing a program reacha-

bility problem, but they are designed to search for bugs instead of trying to reproduce a particular

bug. Thus, unlike execution synthesis and reverse execution synthesis, they do not leverage the

information in the bug report and they do not handle concurrency bugs.

2.3.2 Finding Thread Schedules that Trigger Bugs

Even though program testing is different from debugging, we drew inspiration for schedule syn-

thesis from tools that search for concurrency bugs, like Chess [94], DeadlockFuzzer [70], and

CTrigger [101]. Still, there exist major differences. These tools exercise target programs in a

special environment and, when a bug occurs, the tools are able to replay those bugs. In contrast,

execution synthesis reproduces bugs discovered in the field by end users, in which case requiring

the program to run in a special setting is not feasible. These tools also require the existence of a

test case that provides all required program input, whereas execution synthesis automatically infers

this input.

Another important difference appears in the use of heuristics. Chess, for example, employs a

technique called iterative context bounding (ICB) [94]. ICB assumes that prioritizing executions

with fewer context switches is an efficient way to find concurrency bugs, so Chess repeatedly runs

an existing test case, each time with a different schedule, and limits the total number of possible

context switches, as in ICB. When searching for a specific bug, we found execution synthesis to be

much faster. Also, execution synthesis achieves scalability without having to bound the number of

context switches. However, Chess’s goals are different from those of execution synthesis, so direct

performance comparisons must be done carefully.

Similarly to RaceFuzzer [106], execution synthesis dynamically detects potential data races

and performs context switches before memory accesses suspected to be in a race. However, ex-

ecution synthesis is more precise, because it is targeted at a specific bug and uses checkpoints to

explore alternate thread interleavings, unlike RaceFuzzer’s random scheduler. Moreover, by using

symbolic execution, execution synthesis can achieve substantially higher coverage for data race

detection.

CTrigger [101] finds atomicity violation bugs by identifying unserializable interleavings and

then exercising small perturbations in the thread schedule to identify the atomicity violation. Exe-

cution synthesis can reproduce data race bugs, but it does not explicitly handle atomicity violation

bugs. However, if reproducing the failure requires synthesizing a particular atomicity violation,

one could leverage the techniques developed by CTrigger during the synthesis process.

Most other testing tools based on symbolic execution [55, 23] work only for single-threaded

programs, while execution synthesis enables symbolic execution for multi-threaded programs.
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Prior work [118] analyzes coredumps to reconstruct the thread schedule that caused a crash.

Their technique runs the program with the initial inputs—which need to be recorded in production—

and generates a coredump at the same program counter as the original coredump. If the coredumps

do not match, this technique analyzes the differences between the two coredumps and leverages

the execution index [122] to generate a failure-inducing thread schedule. This technique introduces

runtime overhead because it assumes the program inputs are recorded and must also record various

pieces of runtime information in order to reconstruct the execution index.

2.4 Static Analysis

PSE [87] and SherLog [126] use backward static analysis to improve error diagnosis. PSE per-

forms a static backward dataflow analysis based on precise alias analysis for a value of interest

from the failure point to where the value originated. SherLog leverages existing program logs to

infer execution suffixes that explain the logs. SherLog uses a path-sensitive backward static anal-

ysis based on Saturn [41] and a constraint solver to identify must-paths (partial execution paths

that were definitely executed), may-paths (partial execution paths that may have been executed), or

must-not-have (infeasible execution paths), and then stitched them together to form possible exe-

cution suffixes that explain the failure. Based on a study of logging practices [128] in open source

software, SherLog was extended to perform runtime logging pro-actively [127, 129] to gather—

with low overhead—more runtime information that is relevant for debugging and that can improve

the accuracy of its static analysis.

Tools based on static analysis [87, 37] do not infer a guaranteed-to-be-feasible path, since,

unlike execution synthesis, they do not synthesize the inputs that were not recorded. These tools

are efficient, but work at a higher level of abstraction, which is a source of false positives. Reverse

execution synthesis also uses the coredump and dynamic analysis to obtain more accurate suffixes

than techniques based only on static analysis. Moreover, (forward) execution synthesis provides

fully accurate executions by reconstructing a full execution trace that can be played back in a

debugger.

!exploitable [92] is a debugging tool based on static analysis that assigns exploitability ratings

to crashes. !exploitable uses heuristics, and unfortunately this can lead to both false positives and

false negatives. Execution synthesis can improve the accuracy of !exploitable if it succeeds in syn-

thesizing a full execution path. Otherwise, reverse execution synthesis provides an execution suffix

that explains the failure, which can further improve the accuracy of !exploitable’s classification.

In some sense, reverse execution synthesis is like computing weakest preconditions [40] for

the coredump (i.e., the coredump can be seen as an extraordinarily large postcondition). Inter-

procedural weakest precondition computation is hard for imperative programs. The state-of-the
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art weakest precondition computation tools [21, 25] do not work for concurrent programs, do not

leverage the coredump, and assume some level of recording [21]. The full use of the coredump,

the accurate memory handling, and the support for concurrent programs are key differentiators of

reverse execution synthesis from work on weakest precondition computation.

Execution synthesis drew inspiration from the large body of prior work on model checking [61,

15, 65, 98, 62, 130, 48]. Given a program safety property, a model checker either proves that the

property holds on all possible execution paths of the program or finds an execution that violates the

property. If the property is undecidable, a model checker may not terminate. Execution synthesis

also aims to solve a program reachability problem, however, it is focused on a particular failure,

while model checkers are typically used for finding bugs or proving program properties. Moreover,

unlike execution synthesis, model checkers do not leverage the coredump and they require a model

of the program environment.

Model checkers like SLAM [15] and BLAST [61] use CEGAR (counterexample-guided ab-

straction refinement): they start with a coarse abstraction of the program and gradually refine the

abstraction if they encounter a violation of the property. The advantage of over-approximating the

set of possible paths using program abstractions is that it becomes feasible to prove that a prop-

erty is safe without enumerating all possible program paths and thread schedules. However, to

find a path that violates the safety property, an abstraction-based model checker still needs to fully

refine the program abstraction. BLAST [61] improves over SLAM [15] by using lazy predicate

abstraction (i.e., it refines the program abstraction on demand and non-uniformly at each program

location) and interpolation-based predicate discovery (i.e., a way to refine predicates in order to ef-

ficiently prove that an execution path of the abstracted program is infeasible). Execution synthesis

uses real executions instead of program abstractions. Abstractions are useful for proving a safety

property, while execution synthesis deals with finding execution paths that violate a property (the

bug report already evidences that the property can be violated). On the one hand, a model checker

would have to fully refine the abstraction in order to find a path that explains a given bug report,

therefore predicate abstractions—as used by BLAST and SLAM— would not be useful for exe-

cution synthesis. On the other hand, predicate abstraction could be useful to trim the search space

of execution synthesis: an abstraction could quickly determine if a given program state cannot

reach the program location where the failure occurred, while execution synthesis might have to

enumerate a potentially large set of execution paths that cannot be trimmed statically.

2.5 Bug Triaging

Bug triaging faces an important scalability concern when dealing with many users. Traditional

approaches (e.g., users call technical support to report a problem) do not scale to many users. Bug
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triaging requires automatically obtaining bug reports and submitting them to the developers, where

they are stored in a database that enables prioritization, complex queries on the data, spotting trends

and testing hypothesis.

The state of the art in automated bug reporting and triaging systems are Windows Error Re-

porting [54] and Google Breakpad [58]. These systems collect bug reports from a large number

of users (e.g., WER collected billions of error reports in ten years of operation). These bug re-

ports reveal some information about the bug (e.g., the end state of the application), but not how

the application got there. Typically, WER bug reports provide a minidump (a partial coredump)

and a coarse-grained description of the hardware and software installed at the user machine. WER

uses error statistics to isolate bugs at a large scale and also to prioritize bugs that impact multiple

users. WER also enables empirical analyses of hardware failures [97] at a large scale, showing

that hardware induced failures are recurrent and CPU fault rates are correlated with the number of

executed cycles.

Triage [113] performs automatic debugging at the end-user site. It uses checkpointing to re-

peatedly replay the moment of failure, analyze the failed execution to infer the cause of the bug

using delta debugging [136], and provide a detailed diagnostic report. Triage requires that the ex-

ecution be checkpointed frequently, which introduces non-negligible overhead. Moreover, Triage

records all program inputs, which makes it impractical for long running executions with large in-

put streams. One important difference between Triage and execution synthesis is that execution

synthesis does not pinpoint the root cause of a failure, while Triage identifies the root cause of

the failure using delta debugging. F3 [68], a recent technique that postdates execution synthesis

demonstrated that it is feasible to combine execution synthesis, delta debugging, and lightweight

recording in order to identify the root cause of a failure.

The privacy leaked by a coredump sent to a bug triaging system can be mitigated by design-

ing special APIs. For instance, .NET provides a way to declare private data and store it in en-

crypted containers, ensuring this data is no leaked in the coredump. A solution to anonymize bug

reports [24] works by replacing concrete (potentially private) inputs with inputs that take the pro-

gram down the same execution path, but leak less data (e.g., send out a bug report that replaces the

credit card information with random numbers). If execution synthesis is performed at the user’s

site instead of the developer’s site, it could extend the benefits provided by anonymized bug re-

ports [24], since it does not synthesize the exact original execution. Therefore, execution synthesis,

could be used to generate an anonymized coredump that evidences the same failure, and ship it to

developers. We leave this for future work.

Drawing inspiration from execution synthesis, we developed Recore [82], a technique for re-

producing bugs in Java programs. Recore starts from a Java memory dump and stack trace (the

execution synthesis equivalent of a coredump generated by a C/C++ program) and uses genetic
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algorithms to create a program that generates a similar coredump. Recore’s fitness function is

based on the similarity of the stack and the heap of the original coredump and the state of a can-

didate execution state. To speed up the search, Recore uses the memory values in the coredump

to determine which program arguments to pass to the functions in the constructed program. An

important difference between Recore and execution synthesis is that Recore constructs a different

program that generates a similar coredump, while execution synthesis uses the original program.

Another approach that uses genetic algorithms for reachability analysis is Fitnex [121]. Fitnex

extends Pex [112] with the ability to derive program inputs based on a fitness function. This

function evaluates how close a particular execution path is to a particular program location. The

reachability analysis in execution synthesis is more general, in that it combines static analysis,

proximity-guided dynamic search, and algorithms to reproduce concurrency bugs.
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Chapter 3

Debug Determinism: The Holy Grail of

Automated Debugging

Deterministic replay tools offer a compelling approach to debugging hard-to-reproduce bugs. Re-

cent work on relaxed-deterministic replay techniques shows that debugging using a record-replay

system is possible with low in-production overhead [9, 102, 35, 133]. However, despite consid-

erable progress, a record-replay system that offers not only low in-production runtime overhead

but also high debugging utility remains out of reach. To this end, we argue for debug determin-

ism—a new determinism model premised on the idea that effective debugging entails reproducing

the same failure and the same root cause as the original execution. Debug determinism provides

a reasoning framework for how to trade recording overhead for debugging utility. This chapter

presents ideas on how to achieve and quantify debug determinism.

3.1 A Determinism Model Focused on High Debugging Utility

We argue that the ideal automated debugging system should provide debug determinism. Intu-

itively, a debug-deterministic system produces an execution that manifests the same failure and the

same root cause (of the failure) as the original execution, hence making it possible to debug the

application. The key challenge in understanding debug determinism is understanding exactly what

is a failure and what is a root cause:

A failure occurs when a program produces incorrect output according to an I/O specification.

The output includes all observable behavior, including performance characteristics. Along the

execution that leads to failure, there are one or more points where the developer can fix the program

so that it produces correct output. Assuming such a fix, let P be the predicate on the program state

that constrains the execution—according to the fix—to produce correct output. The root cause is

35
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the negation of predicate P.

A perfect implementation fully satisfies the I/O specification, that is, for any input and execu-

tion it generates the correct output. A deviation from the perfect implementation may lead to a

failure. So, more intuitively, this deviation represents the root cause.

In identifying the root cause, a key aspect is the boundary of the system: e.g., if the root cause

is in an external library (i.e., the developer has no access to the code), a fix requires replacing the

library. Else, if the library is part of the system, the fix is a direct code change.

Debug determinism is the property of a replay-debugging system that it consistently repro-

duces an execution that exhibits the same root cause and the same failure as the original execution.

For example, to fix a buffer overflow that crashes the program, a developer may add a check

on the input size and prevent the program from copying the input into the buffer if it exceeds the

buffer’s length. This check is the predicate associated with the fix. Not performing this check

before doing the copy represents a deviation from the ideal perfect implementation, therefore this

is the root cause of the crash. A debug-deterministic system replays an execution that contains the

crash and in which the crash is caused by the same root cause, instead of some other possible root

cause for the same crash.

The definition of the root cause is based on the program fix, which is knowledge that is unlikely

to be available before the root cause is fixed—it is akin to having access to a perfect implementa-

tion. In this chapter we discuss how to achieve debug determinism without access to this perfect

implementation.

Replay-debugging techniques [9, 13, 17, 43, 102, 133] offer a compelling approach to dealing

with non-deterministic failures. A replay debugger produces an execution that is similar to the orig-

inal failed execution. The hope is that the developer can then employ traditional cyclic-debugging

techniques or automated analyses on the generated execution to isolate the defect causing the fail-

ure. Many kinds of replay techniques have emerged over the years, differing primarily in how

they deal with non-deterministic events (e.g., inputs, scheduling order, etc.). Record-replay tech-

niques [9, 17, 43, 102], for example, record non-deterministic events at runtime. Deterministic

execution techniques [13], eliminate non-determinism (e.g., by precomputing scheduling order) to

ensure deterministic replay. Finally, inference-based techniques [9, 102, 35, 133] provide replay

by computing unrecorded non-deterministic events after the original execution has finished.

Despite a plethora of replay techniques, a truly practical replay debugger remains out of reach.

The traditional obstacle has been high runtime overhead that is unacceptable in production envi-

ronments. Alas, this is exactly where most unexpected and hard-to-reproduce bugs often surface.

It seems clear now, however, that in-production overhead is not an impenetrable barrier. In partic-

ular, recent work on relaxed-determinism models [9, 102, 35, 133] shows that, by making fewer

guarantees about the execution properties that are reproduced, one can shift runtime overhead from
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production time to debugging time. The failure determinism model provided by execution synthe-

sis [133], for example, guarantees only that the replayed execution exhibits the same final failure

state as the original execution. In so doing, it avoids the need to record non-determinism, but has

to infer it after the failure.
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Figure 3.1: Trend in determinism relaxation: recent relaxed systems reduce runtime overhead, but
forego debugging utility. The figure is not based on new measurements. It shows the current trend
in relaxation based on published results.

While trying to satisfy the low runtime overhead requirement, designers of modern replay sys-

tems may have ignored another equally important one: effective debugging. Systems that provide

relax determinism (plotted qualitatively in Fig. 3.1) have traded debugging utility for low runtime

overhead.

We argue that a replay debugger should strive not only for low runtime overhead but also for

high debugging utility. This introduces two questions: what is high debugging utility, and how do

we get it?

Debug Determinism. To answer to the first question, this chapter describes a new determinism

model called “debug determinism”. The key observation behind debug determinism is that, to

provide effective debugging, it suffices to reproduce some execution with the same failure and

the same root cause as the original. A debug-deterministic replay system enables a developer to

backtrack from the original failure to its root cause.

Root Cause-Driven Selectivity. One way to achieve debug determinism is to precisely record

or precompute the portions of the execution containing only the failure and its root cause, while

relaxing the recording everywhere else. Unfortunately, this approach is infeasible, as the root cause

of a failure is not known a priori. To this end, we give several heuristics that approximate this ideal

approach by predicting the portions of the execution containing the root causes.

The key challenge in achieving debug determinism is that the notion of root cause is subjective—
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a detailed and correct developer-provided specification is needed to precisely identify it. In reality,

such a specification is rarely available. Thus, we give several heuristics to approximate debug

determinism in the absence of such a specification.

3.2 The Impact of Relaxed Determinism on Debugging Utility

This section describes several replay determinism models and the problems that arise when over-

relaxing determinism.

Failure determinism, implemented by execution synthesis, ensures that the replay exhibits the

same failure as the original run. Execution synthesis does not do any recording. Instead, it extracts

the failure information from a bug report or coredump and uses post-factum program analysis to

infer an execution that exhibits the same failure and can be replayed in a debugger.

Output determinism, implemented by ODR [9], ensures that the replay produces the same

output as the original run. ODR uses several recording schemes. In the most lightweight scheme,

ODR records just the outputs of the original run and infers all unrecorded non-determinism. Scal-

ing this inference process is hard, therefore ODR provides another scheme that also records the

program inputs, the execution path, and the scheduling order. However, ODR does not record

the causal order of the racing instructions running on different CPUs. Instead, it uses symbolic

execution to infer the values that were read by the racing instructions.

Value determinism, implemented by iDNA [17], ensures that a replay run reads and writes

the same values to and from memory at the same execution points as the original run. Value

determinism does not guarantee causal ordering of instructions running on different CPUs, thus

requiring more effort from the developer to track causality across CPUs.

Relaxed determinism models (e.g., ODR [9], execution synthesis [133], PRES [102]) assume

that debugging is possible regardless of the degree of relaxation. For some bugs, this is not true:

relaxed models may not be able to reproduce the failure, hence making it hard to backtrack to

and fix the underlying defect (i.e., root cause). For other bugs, these models help reproduce the

failure, but may not reproduce the original root cause, hence potentially deceiving the developer

into thinking that there isn’t a problem at all. Finally, for some bugs, a significant amount of run-

time information may need to be reconstructed, leading to prohibitively large post-factum analysis

times.

To see how failures may not be reproduced under relaxed determinism models, consider a

program that outputs the sum of two numbers. Suppose, however, that the program has a bug such

that for inputs 2 and 2, it outputs 5. To replay this execution, an output deterministic replay system

(which guarantees only that the replay run exhibits the same outputs [9]) may produce an execution

in which the output is 5 (like the original), but the inputs are 1 and 4. 1 plus 4, however, is 5 and thus
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is not a failure at all, much less the original failure. Unfortunately, without an execution exhibiting

the original failure, developers cannot determine the true root cause of the faulty arithmetic (e.g.,

an array indexing bug).

To see how root causes may not be reproduced under ultra-relaxed determinism models, and

why that can trick the developer into thinking there isn’t a problem at all, consider the case of

a server application that drops messages at higher than expected rates. Unbeknownst to the de-

veloper, the true root cause of this failure is a race condition on the buffer holding incoming

messages. However, an output- or failure-deterministic replay debugger may not reproduce the

true root cause. Instead, it may produce an execution in which the packets were dropped due to

network congestion. Network congestion is beyond the developer’s control and thus she naturally,

yet mistakenly, assumes nothing more can be done to improve the program’s performance. In the

end, the true root cause (a race condition) remains undiscovered.

3.2.1 Focusing on the Root Cause to Achieve Debug Determinism

The definition of debug determinism suggests a simple strategy for achieving it in a real replay

system: record or precompute just the root cause events and then use inference to fill in the missing

pieces. However, the key difficulty with this approach is in identifying the root cause events. One

approach is to conservatively record or precompute all non-determinism (hence providing perfect

determinism during replay), but this strategy results in high runtime overhead. Another approach

is to leverage developer-provided hints as to where potential root causes may lie, but this is likely

to be imprecise since it assumes a priori knowledge of all possible root causes.

To identify the root cause, we observe that, based on various program properties, one can often

guess with high accuracy where the root cause is located. This motivates our approach of using

heuristics to detect when a change in determinism is required without actually knowing where the

root cause is. We call this heuristic-driven approach root cause-driven selectivity (RCSE). The

idea behind RCSE is that, if strong determinism guarantees are provided for the portion of the

execution surrounding the root cause and the failure, then the resulting replay execution is likely

to be debug-deterministic. Of course, RCSE is not perfect, but preliminary evidence (Section 3.4)

suggests that it can provide a close approximation of debug determinism.

Next, we present several variants of RCSE.

Code-Based Selection

This heuristic is based on the assumption that, for some application types, the root cause is more

likely to be contained in certain parts of the code. For example, in datacenter applications like

Bigtable [26], a recent study [10] argues that the control-plane code—the application component
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responsible for managing data flow through the system—is responsible for most program failures.

This observation suggests an approach in which we identify control-plane code and reproduce

its behavior precisely, while taking a more relaxed approach toward reproducing data-plane code.

Since control-plane code executes less frequently and operates at substantially lower data rates than

data-plane code, this heuristic can reduce the recording overhead of a replay-debugging system.

The key challenge is in identifying control-plane code, as the answer is dependent on program

semantics. One approach is suggested in [10] and we implemented it in ADDA [132]. ADDA

deems code that processes inputs at a low data rate as control-plane, since data plane code often

operates at high data rates. We provide more details on this approach in Section 3.4.

Data-Based Selection

Data-based selection can be used when a certain condition holds on program state. For instance,

if the goal is to reproduce a bug that occurs when a server processes large requests, developers

could make the selection based on when the request sizes are larger than a threshold. Thus, high

determinism will be provided for debugging failures that occur when processing large requests.

A more general approach is to watch for a set of invariants on program state: the moment the

execution violates these invariants, it is likely executing an error path. This is a good heuristic to

increase the determinism guarantees for that particular segment of the execution. Ideally, assuming

perfect invariants (or specification), the root cause and the events up to the failure will be recorded

with the highest level of determinism guarantees. If such invariants are not available, one could

use dynamic invariant inference [46] before the software is released. While the software is running

in production, the replay-debugging system monitors the invariants. If the invariants do not hold,

the system switches to high determinism recording, to ensure the root cause is recorded with high

accuracy.

Combined Code/Data Selection

Another approach is to make the selection at runtime using dynamic triggers on both code and

data. A trigger is a predicate on both code and data that is evaluated at runtime in order to specify

when to increase recording granularity. An example trigger is a “potential-bug detector”. Given a

class of bugs, one can in many cases identify deviant execution behaviors that result in potential

failures [134]. For instance, data corruption failures in multi-threaded code are often the result of

data races. Low-overhead data race detection [69] could be used to dial up recording fidelity when

a race is detected.

Therefore, triggers can be used to detect deviant behavior at runtime and to increase the deter-

minism guarantees onward from the point of detection. The primary challenge with this approach
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is in characterizing and capturing deviant behavior for a wide class of root causes. For example, in

addition to data races, data corruption may also arise due to forgetting to check system call argu-

ments for errors, and increasing determinism for all such potential causes may increase overhead

substantially. A compelling approach to create triggers is to use static analysis to identify potential

root causes at compile time and synthesize triggers for them.

All heuristics described above determine when to dial up recording fidelity. However, if these

heuristics misfire, dialing down recording fidelity is also important for achieving low-overhead

recording. For code-based selection, we can dial down recording fidelity for data-plane code. For

trigger-based selection, we can dial down recording fidelity if no failure is detected and no trigger

fired for a certain period of time.

3.2.2 Assessing Debug Determinism

So far, work on replay-debugging has not employed metrics that evaluate debugging power. In-

stead, the comparison was mainly based on recording performance figures and ad-hoc evidence of

usefulness in debugging. Instead, we propose a metric aimed at encouraging systematic progress

toward improving debugging utility.

Debugging fidelity (DF) is the ability of a system to reproduce accurately the root cause and

the failure. Assume that a system reports k executions, out of which, koriginal is the number of

executions that reproduce the correct root cause and the failure, kfp is the number of false posi-

tives (i.e., they report either the failure or the root cause incorrectly), and kother is the number of

executions that reproduce the failure, but reproduce a feasible root cause, yet this root cause is

different from the original root cause. Thus, k = koriginal +kfp+kother. If an execution produced by

the debugging system does not reproduce the failure, debugging fidelity is 0, because developers

cannot inspect how the program reaches failure. If the system reproduces the original root cause

and the failure, debugging fidelity is 1. If an execution reproduces the failure, but a different root

cause from the original, debugging fidelity is 1/n, where n is the number of possible root causes

for the failure observed in the original execution. This definition takes into account the fact that a

replayed execution is still useful for debugging even if it reproduces the failure through a different

root cause, yet the replay is useless for debugging if it does not reproduce the failure.

Thus, debugging fidelity is DF =
koriginal+

kother
n

koriginal+kother+kfp
, where n is the number of feasible root causes

for the same failure. For instance, a system that reproduces the original root cause and failure

through a single execution (k = 1) has DF = 1, a system that has a false positive has DF = 0,

and a system that reproduces the original failure but a different root cause than the original has

DF = 0.5.

This definition is more general than the one we proposed in [131]. Unlike the definition
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in [131], this definition allows assessing the debugging fidelity of systems that (1) replay or syn-

thesize more than one path and (2) can have false positives.

It may be difficult to analytically determine a replay system’s debugging fidelity. However, it

is possible to determine it empirically. For instance, static analysis could be used to identify the

location of all possible root causes for a certain failure, potentially including false positives. One

can then manually weed out the false positives and check if the system can replay all of the true

positives. Another approach is to empirically test if a replay-debugging system correctly replays

when the given root causes are guaranteed to be present in the original execution through some

other means (e.g., deterministic execution).

Debugging efficiency (DE) is the duration of the original execution divided by the time the

tool takes to reproduce the failure, including any analysis time. Normally this metric has values

less than 1, but it is possible for techniques such as execution synthesis [133] to synthesize a

substantially shorter execution. If this shorter execution compensates for post-factum analysis

time, debugging efficiency can have values greater than 1.

Debugging utility (DU) is the product of debugging fidelity and debugging efficiency: DU =

DF×DE.

We will use debug determinism to evaluate the debugging fidelity of execution synthesis (Sec-

tion 4.7) and reverse execution synthesis (Section 5.7).

3.3 Challenges

Debug determinism assumes that the developer is interested solely in the original failure and root

cause. It is possible, however, that a developer may want to find all potential root causes for a given

failure. Thus, a system that records just the failure and finds all executions that share the same root

cause and failure would be ideal. The challenge is scaling this approach to real programs.

Finally, while debug determinism may be the sweet spot in the problem domain of debugging,

it is unclear what the sweet spot is for other replay-amenable problem domains. In particular, what

are the ideal determinism models for replay-based forensic analysis and fault tolerance? Can the

same principles behind debug determinism be applied to these problems?

3.4 Example

Inspired by RCSE, we built ADDA [132], a system for record replaying data center applications.

ADDA has lower recording and storage overhead than existing systems, owing to two techniques:

First, ADDA provides control plane determinism, leveraging our observation that many typical

datacenter applications consist of a separate control plane and data plane, and most bugs reside in
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the former. Second, ADDA does not record “data plane” inputs, instead it synthesizes them during

replay, starting from the application’s external inputs, which are typically persisted in append-only

storage for reasons unrelated to debugging. We showed in [132] that ADDA deterministically

replays real-world failures in Hypertable [4] and Memcached [47]. ADDA is a concrete example

that shows it is possible to lower the overhead of recording data-intensive data center applications

using RCSE based on control plane / data plane selectivity.

Although ADDA synthesizes missing data plane inputs, it is not based on execution synthe-

sis (Section 4.1), therefore a detailed description of ADDA is beyond the scope of this thesis.

This chapter described debug determinism, a determinism model premised on the idea that

effective debugging entails reproducing the same failure and the same root cause as the original

execution and proposed a metric to evaluate the debugging utility of a an automated debugging

system. The work described in this chapter appeared in [131] and [132]. The next chapter describes

execution synthesis, an automated debugging technique.
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Chapter 4

Execution Synthesis

Having seen in Chapter 2 the efforts other researchers have devoted to solving the debugging

challenge, and in Chapter 3 how to judge the debugging utility of a solution in this space, we now

describe execution synthesis, our technique for automated debugging. In further chapters we will

describe interesting variants of this approach.

4.1 Definition

Definition 1 Given a program P and an execution E that produces coredump Core as a result

of a failure F, execution synthesis is a computation that yields an execution E ′ of the unmodified

program P that, when executed, deterministically reproduces the same failure F as the one that ap-

pears in coredump Core. The inputs to the execution synthesis computation are solely the program

P and its state at the time of the failure F.

4.2 Overview

Execution synthesis is the first automated debugging technique we developed. Reverse execution

synthesis (described in Section 5) is a followup technique on execution synthesis. Reverse execu-

tion synthesis trades the deterministic execution of E ′ for the ability to reproduce arbitrarily long

executions faster than execution synthesis.

Execution synthesis is a “purist” approach to automated debugging: it does not require any

recording of execution E. The only requirement is the coredump Core, which is generated when

P encounters a failure. The no-recording requirement sets execution synthesis apart from record-

replay techniques. Nevertheless, execution synthesis can be combined with record-replay tech-

niques, and Chapter 7 describes how to trade synthesis time for the runtime overhead introduced

45
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by execution recording.

The input to execution synthesis (ESD) consists of the coredump associated with a bug report

and the program the developer is trying to debug. ESD then outputs a trace that can be played back

in a debugger using the ESD runtime environment. Given a class of bugs, ESD can extract from the

coredump all information it needs to find a way to reproduce that class of bugs (e.g., for debugging

deadlocks, it extracts the call stacks of the deadlocked threads).

At the end user site, the buggy program is run normally, i.e., without instrumentation or special

environments, no annotations, and no debug symbols.

Execution synthesis shifts the burden of bug reproduction from the user side to the developer

side, thus avoiding the performance and storage overhead of runtime tracing. This overhead can

be substantial: a long-running server that handles many requests and fails after several weeks of

execution can incur high cumulative recording overhead.

This design choice means that ESD must reproduce the behavior of a bug (i.e., an execution

that fails due to that bug) without knowledge of some crucial runtime information, such as the

inputs to the program or the schedule of its threads. Our premise is that, to remove a bug, one

need not see the exact same execution that caused the bug to manifest at the end user, but merely

some execution that triggers the bug. For this slightly more modest goal, runtime information is

not strictly necessary—it can all be inferred with a combination of program analysis and symbolic

execution.

Besides automating the laborious parts of debugging, execution synthesis may even generate a

path to the bug that is shorter than (but still equivalent from the point of view of debugging fidelity)

the one that occurred at the user’s site, thus further saving debugging time.

We use the example in Listing 4.1 to illustrate how execution synthesis works. In this example,

two threads executing CriticalSection() concurrently may deadlock if the condition on line 10 is

true. An execution in which the threads deadlock is the following: one thread runs up to line 11

and is preempted right after the unlock call, then a second thread executes up to line 9 and blocks

waiting for mutex M2, then the first thread resumes execution and blocks waiting for M1 on line

12. The program is now deadlocked.

The bug report for this deadlock would likely contain the final stack trace of each thread, but

would be missing several important pieces of information needed for debugging, such as the return

values of external calls—getchar() and getenv()—and the interleaving of threads. ESD “fills in the

blanks” and infers two key aspects of the buggy execution: a program path in each thread from the

beginning to where the bug occurs, and a schedule that makes this path feasible.

To synthesize the path through the program for each thread, ESD first statically analyzes the

program and then performs a dynamic symbolic analysis. In the static analysis phase, ESD com-

putes the control flow graph (CFG) and performs intra- and inter-procedural data flow analysis to
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...

idx=0;

1: if (getchar() == ’m’)

2: idx++;

3: if (getenv(‘‘mode’’)[0] == ’Y’)

4: mode=MOD_Y;

5: else

6: mode=MOD_Z;

...

7: CriticalSection() {

8: lock(M1);

9: lock(M2);

...

10: if (mode==MOD_Y && idx==1) {

11: unlock(M1);

...

12: lock(M1);

}

...

Listing 4.1: Example of a deadlock bug. Two threads executing this code may deadlock if the
condition on line 10 is true and one thread is preempted right after executing statement 11.

identify the set of paths through the graph that reach the bug location. For the example in List-

ing 4.1, ESD’s static analysis identifies two paths that could lead the first thread to statement 12:

1→2→3→4→7→...→12 and 1→3→4→7→...→12, both of which require getenv("mode") to re-

turn a string starting with ‘Y’. Since ESD cannot decide statically whether statement 2 is part of

the path to statement 12 or not, both alternatives are considered possible. For the second thread, a

similar analysis finds four possible paths to statement 9.

In the dynamic analysis phase, ESD symbolically executes [23] the program in search of a

guaranteed-feasible path from the start of the program to the failure point. The search space is

restricted to the paths identified during the static analysis phase. In our example, ESD determines

that only path 1→2→3→4→7→...→12 can take the first thread to statement 12, since it is the only

one that sets idx to value 1. This dynamic phase also identifies the need for getchar() to return ‘m’.

For the second thread, all four paths appear feasible for the time being.

Symbolic execution suffers from the notorious “path explosion” problem [18]. Execution syn-

thesis therefore incorporates a number of techniques to cope with the large number of paths that

typically get explored during symbolic execution. The foremost of these techniques is the use of a

proximity heuristic to guide symbolic execution on those paths most likely to reach the bug. ESD

uses the CFG to estimate the distance (in basic blocks) from any given node in the CFG to the

bug location. Using this estimate, the exploration of paths is steered toward choices that have a

shorter distance to the bug, thus enabling ESD to find a suitable path considerably faster than mere

symbolic execution.
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For multi-threaded programs, synthesizing the execution path for each thread is not enough—

ESD must also identify a thread interleaving that makes these paths possible. ESD does this thread

schedule search within the dynamic analysis phase. To make it fast, ESD uses the stack traces from

the bug report to attempt thread preemptions in strategic places—such as before calls to mutex

lock operations—that have high probability of leading to the desired schedule. In our example,

ESD identifies the required preemption points after statement 11 (first thread) and statement 9

(second thread). It also propagates the constraints on getchar() and getenv() in the first thread to

the path choice for the second thread.

In the rest of this chapter, we describe sequential path synthesis (Section 4.3), thread schedule

synthesis (Section 4.4), and execution playback (Section 4.5). We then discuss the complexity of

execution synthesis (Section 4.6) and discuss execution synthesis (Section 4.7).

4.3 Synthesis of Sequential Executions

In this section we describe how ESD finds a sequential bug-bound execution path within each

thread of a program: first it identifies a search goal (Section 4.3.1), then performs static analy-

sis (Section 4.3.2), and finally a dynamic search (Section 4.3.3).

4.3.1 Identifying the End Target

For each thread present in the bug report, we define the goal as a tuple <B,C> containing the basic

block B in which the bug-induced failure was detected, and the condition C on program state that

held true when the bug manifested.

ESD can automatically extract B and C from a coredump for most types of crashes, hangs, and

wrong-output failures. The extraction process depends on the type of the bug. For example, in the

case of a segmentation fault, B is determined by the instruction that triggered the access violation,

and C indicates the value of the corresponding pointer (e.g, NULL), extracted from the coredump.

For a deadlock, B contains the lock statement the thread was blocked on at the time the program

hung, and C captures the fact that there was a circular wait between the deadlocked threads. As a

final example, for a race condition, B is where the inconsistency was detected—not where the race

itself occurred—such as a failed assert, and C is the observed inconsistency (e.g., a negation of the

assert condition).

If the crash occurs inside an external library, B contains the call to the external library function

and C indicates that the values of the arguments are the ones with which that library function was

called when the crash occurred. The values of the arguments are extracted from the coredump and

the call stack in the bug report.
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4.3.2 Identifying Intermediate Steps with Static Analysis

Once the goal <B,C> has been established, ESD does a static analysis pass to narrow down the

search space of paths to the goal. This phase operates on the program’s control flow graph (CFG)

and data flow graph (DFG). First, ESD identifies the critical edges in the CFG, i.e., those that must

be present on the path to the goal. Then, ESD identifies intermediate goals, i.e., basic blocks

that, according to the DFG, must execute in order for the critical edges to be traversable. The

intermediate goals are then passed to the dynamic analysis phase, described in the next section.

ESD first computes the full inter-procedural CFG of the program. It performs alias analysis [11]

and resolves as many function pointers as possible, replacing them with the corresponding direct

calls; this can substantially simplify the CFG. ESD can handle the case when not all function

pointers are resolved, though it may lose precision. In this latter case, subsequent analyses will

still be sound and complete, but may take longer to execute. ESD also eliminates all basic blocks

that cannot be reached from the start of the program (i.e., dead code) and all basic blocks from

which there is no path to B.

We define a critical edge as an edge that must be executed by any execution that reaches the

goal. Conditional branch instructions generate two outgoing edges in the CFG, corresponding

to the true and else branches, respectively. If, for a given branch instruction b, only one of the

outgoing edges can be part of a path to the goal, then it is a critical edge. When branch instruction

b is encountered during dynamic analysis, ESD will ensure the critical edge is followed; otherwise,

the search would miss the goal.

ESD identifies the critical edges by starting from the goal block and working backward, in a

manner similar to backward slicing [119]. Starting from B, the algorithm finds at each step a

predecessor node in the CFG. For each such node, if only one of its outgoing edges can lead to B,

then that edge is marked as critical. The current version of the ESD prototype can only explore one

predecessor for each node, so as soon as a block with multiple predecessors is found, the marking

of critical edges stops and ESD moves to the next step. A more effective, but potentially slower,

algorithm would explore all predecessors and identify multiple sets of critical edges.

An intermediate goal is a basic block in the CFG that is guaranteed to be present on the path

to the goal block B, i.e., it is a “must have.” The knowledge that certain instructions must be

executed helps the dynamic analysis break down the search for a path to the final goal into smaller

searches for sub-paths from one intermediate goal to the next.

To determine intermediate goals, ESD relies on the critical edges. For each critical edge,

the corresponding branch condition and its desired value (true or false) are retrieved. For each

variable x,y, ... in the branch condition, ESD finds the sets of instructions Dx,Dy, ... that are reach-

ing definitions [7] of the respective variable. It then looks for combinations of instructions from

Dx,Dy, ... that would give the branch condition the desired value, i.e., instructions for which there
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is a static guarantee that, if they were executed, the critical edge would be followed. When such a

combination is found, the basic blocks that contain the reaching definitions in the combination are

marked as intermediate goals. Should more than one combination exist, the corresponding sets of

instructions are marked as disjunctive sets of intermediate goals.

While condition C in goal <B,C> is not explicitly used in the above algorithms, ESD does use

C in its analyses. To a first degree of approximation, basic block B is replaced in the program

with a statement of the form if (C) then BugStrikes, and the static analysis phase runs on the

transformed program, with BugStrikes as the goal basic block. By finding a path along which the

program executes BugStrikes, ESD will have found a path that executes block B while condition

C holds, i.e., a path that reaches the original goal <B,C>. Some conditions, however, cannot

be readily expressed in this way. For example, a deadlock condition is a property that spans the

sequential execution paths of multiple threads. For such cases, ESD has special-case handling to

check condition C during the dynamic phase; this will be further described in Section 4.4.

4.3.3 Stitching Intermediate Steps Together with Dynamic Analysis

The previous section showed how ESD statically derives intermediate goals, producing an over-

approximation of the path from program start to goal <B,C>. We now describe how ESD employs

symbolic execution [23] to narrow down this over-approximation into one feasible path to the goal.

To perform the dynamic analysis, ESD runs program P with symbolic inputs that are initially

unconstrained, i.e., which can take on any value, unlike regular “concrete” inputs. Correspond-

ingly, program variables are assigned symbolic values. When the program encounters a branch

that involves symbolic values—either program variables or inputs from the environment—program

state is forked to produce two parallel executions, one following each outcome of the branch (we

say that the symbolic branch results in two “execution states”). Program variables are constrained

in the two execution states so as to make the branch condition evaluate to true or false, respectively.

If, due to existing constraints, one of the branches is not feasible, then no forking occurs.

For example, the first if statement in Listing 4.1 depends on the return value of getchar(). ESD

therefore forks off a separate execution in which getchar()=‘m’. The current execution continues

with getchar()6=‘m’. Executions recursively split into sub-executions at each subsequent branch,

creating an execution tree like the one in Figure 4.1. Constraints on program state accumulate in

each independent execution. Once an execution finishes, the conjunction of all constraints along

the path to that terminal leaf node can be solved to produce a set of program inputs that exercises

that particular path. For example, the rightmost leaf execution (after the third fork) has constraints

mode=MOD_Y and idx=1 and the first character of getenv()’s return must be ‘Y’ and the return of

getchar() must be ‘m’. Everything else is unconstrained in this particular execution.
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getchar()=='m'

getenv("mode")[0]==’Y’

True

False

False

True

mode==MOD_Y

&& idx==1

mode==MOD_Y

&& idx==1

TrueFalse TrueFalse

Figure 4.1: Execution tree for the example in Listing 4.1.

An execution state consists of a program counter, a stack, and an address space. Such states

can be “executed,” i.e., the instruction pointed to by the program counter is executed and may

cause corresponding updates to the state’s stack and address space. We chose this representation

for compatibility with the KLEE symbolic execution engine [23], since the ESD prototype relies on

(a modified version of) KLEE.

As new executions are forked, the corresponding execution states are added to a priority queue.

At every step of the symbolic execution, a state is chosen from the priority queue and one instruc-

tion is executed in that state, after which a new choice is made, and so on. In this way, the entire

space of execution paths can be explored, and the symbolic execution engine switches from one

execution to the other, depending on the ordering of the states in the queue. When the goal <B,C>

is encountered in one of these executions, ESD knows it has found a feasible path from start to goal.

There are two key challenges, though: the execution tree grows very fast (the notorious path

explosion problem [18]), and determining the satisfiability of constraints at every branch condition,

in order to determine which of the branches are feasible, is CPU-intensive. These two properties

make symbolic execution infeasible for large programs. For ESD to be practical, the search for a

path to the goal must be very focused: the less of the tree is expanded and searched, the less CPU

and memory are consumed.

ESD uses three key techniques to focus the search: First, it uses statically derived intermediate

goals (Section 4.3.2) as anchor points in the search space, to divide a big search into several small

searches. Second, ESD leverages the information about critical edges (Section 4.3.2) to promptly

abandon during symbolic execution paths that are statically known to not lead to the goal. Third,

ESD orders the priority queue of execution states based on each state’s estimated proximity to

the next intermediate goal. In this way, the search is consistently steered toward choosing and

exploring executions that appear to be more likely to reach the intermediate goal soon.

We refer to this latter technique as proximity-guided search and describe it in the next section.
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4.3.4 Faster Stitching with Proximity-Guided Path Search

ESD uses guided forward symbolic execution to search for a path that reaches the goal extracted

from the bug report. In doing so, ESD uses a proximity heuristic to estimate how long it would

take each execution state to reach the goal, and it then executes the one that is closest.

The proximity of an execution state to a goal equals the least number of instructions ESD

estimates would need to be executed in order to reach that goal from the current program counter

in the execution state (line 1 in Algorithm 1). This bound aims to be as tight as possible and can

be computed with low overhead.

Algorithm 1: Heuristic Proximity to Goal
Input: Execution state S, goal G (potentially intermediate)
Output: Estimate of S’s distance to G

1 dmin← distance(S.pc,G)
2 if dmin = ∞ then

3 foreach procedure π ∈ S.callStack do

4 Ira← instruction to be executed after π call returns
5 d← dist2ret(S.pc)+distance(Ira,G)+1
6 dmin←min(dmin,d)

7 return dmin

8 function distance ( instruction I, instruction G )
9 dmin← ∞

10 if I and G are in the same procedure π then

11 foreach acyclic path ρ in π’s CFG from I to G do

12 d← number of instructions on path ρ

13 foreach call to procedure γ along path ρ do

1414 d← d+dist2ret(γ .startInstruction)

15 dmin←min(dmin,d)

16 return dmin

17 function dist2ret ( instruction I )
18 dmin← ∞

19 π← procedure to which I belongs
2020 foreach return instruction R in π do

21 dmin←min(dmin, distance(I,R) )

22 return dmin

When the goal is inside the currently executing procedure, function distance computes the

proximity. If there are no calls to other procedures, the distance is the length of the path to the

goal with the fewest number of instructions (lines 9-12). If, however, any of the instructions along

the path are calls to other procedures, then ESD factors in the costs of executing those procedures
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by adding to the path length the cost of the calls (lines 13-14).

The cost of calling a procedure corresponds to the number of instructions along the shortest

path from the procedure’s start instruction to the nearest return point. This is a special case of

computing the distance of an arbitrary instruction to the nearest return (function dist2ret, lines 17–

22).

When the goal is not in the currently executing procedure, it may be reached via a procedure

that is in a frame higher up in the call stack. In other words, the currently executing procedure

may return, and the caller of the procedure may be able to reach the goal, or the caller’s caller

may do so, etc. Thus, ESD computes a distance estimate for each function on the call stack of the

current execution state (lines 3-4). It takes into account the instructions that have to be executed

to return from the call plus the distance to the goal for the instruction that will be executed right

after the call returns (line 5). The final distance to the goal is the minimum among the distances

for each function on the call stack (line 6).

Each execution state S in ESD has n distances associated with it, corresponding to S’s distance

to the G1, ...,Gn−1 intermediate goals inferred through static analysis and to the final goal Gn = B.

The closer an intermediate goal truly is, the more accurate the distance estimate. ESD maintains

n “virtual” priority queues Q1, ...,Qn, which provide an ordering of the state’s distance to the

respective goal: the state at the front of Qi has the shortest estimated distance to goal Gi. We refer

to these queues as “virtual” because the queue elements are just pointers to the execution states.

Each state can be found on each of the virtual queues.

At each step of the dynamic analysis, ESD picks a state S from the front of one of the queues.

The choice of which queue to consult is uniformly random across the queues. The front state is

dequeued, and the instruction at S.pc is symbolically executed, which updates the program counter,

stack, and address space, and recomputes the distances from the new S.pc. The rationale of choos-

ing states this way is to progressively advance states toward the nearest intermediate goal. Since

the static analysis does not provide an ordering of the intermediate goals, ESD cannot choose which

goal to try to reach first. It is possible, in principle, for the static phase to provide a partial order

on the intermediate goals based on the inter-procedural CFG.

Once a state has reached the final goal (i.e., S.pc = B) the search completes: ESD has found

a feasible path that explains the buggy behavior. ESD solves the constraints that accumulated

along the path and computes all the inputs required for the program to execute that path, in a way

similar to automated test generation [55, 23]. The ESD prototype relies on symbolic models of the

filesystem [23] and the network stack to ensure all symbolic I/O stays consistent, although it could

also work without models if implemented based on S2E instead of KLEE.

Several programming constructs (such as recursion, system calls, and indirect calls) can pose

challenges to the computation of a distance heuristic. We choose to increase the cost of a path that
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encounters recursion and system calls by a fixed amount—e.g., if a path leads to a recursive or

multi-level recursive call, we assign a constant weight (e.g., 1000) instructions to that call. Indirect

calls are resolved with alias analysis; if that is not possible, then ESD averages the cost of the call

instruction across all possible targets. The distance estimate is just a heuristic, so a wrong choice

would merely make the path search take longer, but not affect correctness.

Another concern in heuristic-driven searches are local minima. Fortunately, they are a danger

mainly for search processes that cannot backtrack; in path search, ESD can backtrack to execution

states that are higher up in the execution tree, thus avoiding getting stuck in local minima.

We found that the three techniques of focusing the search—proximity-based guidance, the use

of intermediate goals, and path abandonment based on critical edges—can speed up the search by

several orders of magnitude compared to other search strategies (Chapter 6).

Nevertheless, further techniques could be employed to improve the search strategy. For in-

stance, if the initialization phase of the program can be reproduced by other means, such as from

an existing test case (ESD does not require existing test cases), ESD could run concretely the initial-

ization phase and automatically switch from concrete to symbolic execution later in the execution

of the program [29, 56], thus reducing execution synthesis time. We leave this for future work.

4.4 Synthesis of Thread Schedules

In the case of multi-threaded programs, ESD must also synthesize a schedule for interleaving the

execution paths of the individual threads. It seeks a single-processor, sequential execution that

consists of contiguous segments from the individual threads’ paths. In other words, ESD synthe-

sizes a serialized execution of the multi-threaded program.

To do so, ESD employs symbolic execution, but instead of only treating inputs and variables

as symbolic, it also treats the underlying scheduler’s decisions as symbolic. It associates with

each preemption point (i.e., each point where the scheduler could preempt a thread) a hypothetical

branch instruction that is conditional on a single-bit predicate: if true, the currently running thread

is preempted, otherwise not. These single-bit predicates1 can be viewed as bits in the representation

of a variable that represents the serial schedule. ESD treats this variable as symbolic, and the

question becomes: What value of this schedule variable would cause the corresponding execution

to exhibit the reported bug?

Preemption points of interest are before and after concurrency-sensitive operations: load in-

structions, store instructions, and calls to synchronization primitives. While conceptually the

sequential path synthesis phase is separate from schedule synthesis, ESD overlaps them and syn-

1For programs with more than two threads, predicates have multiple bits, to indicate which thread is scheduled in
place of the currently running one.
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thesizes one “global” sequential path, by exploring the possible thread preemptions as part of the

sequential path synthesis.

Just as for sequential path synthesis, ESD employs heuristics to make the search for a thread

schedule efficient. It is substantially easier to choose the right heuristic if ESD knows the kind of

concurrency bug it is trying to debug, and this can often be inferred from the coredump. Execution

synthesis can synthesize schedules for deadlocks (Section 4.4.1) and data races (Section 4.4.2).

4.4.1 Synthesizing Thread Schedules for Deadlock Bugs

When looking for a path to a deadlock, the preemption points of interest are solely the calls to

synchronization primitives, like mutex lock and unlock. In most programs, there are orders-of-

magnitude fewer such calls than branches that depend (directly or indirectly) on symbolic inputs,

so the magnitude of the deadlock schedule search problem can be substantially smaller than that

of sequential path search.

Moreover, information about the deadlocked threads’ final call stacks provides strong clues as

to how threads must interleave in order to deadlock. ESD leverages these clues to bias the search

toward interleavings that are more likely to lead to the reported deadlock.

For the deadlock example in Listing 4.1, a coredump would indicate call stacks that (in stylized

form) would look like T1 : [... 12] and T2 : [... 9], meaning that thread T1 was blocked in a lock call

made from line 12, while T2 was blocked in a lock call made from line 9. The call stack shows the

call sequence that led to the lock request that blocked the thread. This lock request appears in the

last frame, and we refer to it as the thread’s inner lock. We call outer locks those that are already

held by the deadlocked thread. This naming results from the fact that a deadlock typically arises

from nested locks [85], where an inner lock is requested while holding an outer lock. At the time

of deadlock, the acquisitions of the outer locks are not visible in the call stack anymore.

For the example bug, the search goal for each thread is T1 :<12,T 2@9> and T2 :<9,T1@12>,

meaning that T1 blocks at line 12 while T2 blocks at line 9. ESD now seeks an interleaved execution

that leads to this goal, without any knowledge of where the outer locks were acquired.

Any time ESD encounters a lock or unlock operation, it forks off an execution state in which the

current thread is preempted. The running execution state maintains a pointer to that forked state,

in case ESD needs to return to it to explore alternate schedules. More generally, we augment each

execution state S with a map KS : mutex→ execution state. An element <M,S′>∈ KS indicates

that S is exploring one schedule outcome connected with the acquisition of mutex M, while S′ is the

starting point for exploring alternative scheduling outcomes. A snapshot entry <M,S′> is deleted

as soon as M is unlocked. The size of KS is therefore bounded by the program’s maximum depth

of lock nesting. ESD leverages Klee’s copy-on-write mechanisms at the level of memory objects
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to maximize memory sharing between execution states. As a result, snapshots are cheap.

We augment execution state S with S.scheduleDistance, an estimate of how much context

switching is required to reach the deadlock. For the case of two-thread deadlocks, this sched-

ule distance can take one of two values: far or near. ESD computes a weighted average of the

path distance estimate (Section 4.3.4) and the schedule distance estimate, with a heavy bias toward

schedule distance. The virtual state priority queues are kept sorted by this weighted average. The

bias ensures that low-schedule-distance execution states are selected preferentially over low-path-

distance states.

The general strategy for schedule synthesis is to help each thread “find” its outer lock as quickly

as possible.

If a thread T1 requests a mutex M that is free, ESD forks state S′ from S and allows the mutex

acquisition to proceed in S, while in S′ thread T1 is preempted before acquiring M. In S, ESD

must decide whether to let T1 continue running after having acquired M, or to preempt it. If, by

acquiring M, T1 did not acquire its inner lock (i.e., the S.pc of the lock statement is different from

that in the goal), then ESD lets T1 run unimpeded. However, if T1 just acquired its inner lock,

then ESD preempts it and marks S.scheduleDistance = near. This keeps M locked and creates the

conditions for some other thread T2 to request M; when this happens, it is a signal that M could be

T2’s outer lock. The updated schedule distance ensures state S is favored for execution over other

states that have no indication of being close to the deadlock.

If thread T1 requests mutex M, and M is currently held by another thread T2, ESD must decide

whether to “roll back” T2 to make M available to T1, or to let T1 wait. If M is T2’s inner lock, then

it means that M could be T1’s outer lock, so ESD tries to make M available, to give T1 a chance to

acquire it: ESD switches to state Sk (from the <M,Sk> snapshot taken just prior to T2 acquiring

M), which moves execution back to the state in which T2 got preempted prior to acquiring M.

ESD does this by setting, for each state in KS, the schedule distance to near. It then sets the

current state’s schedule distance to far, to deprioritize it. This creates the conditions for T1 to

acquire M, its potential outer lock. When T2 later resumes in a state in which T2 does not hold M,

mutex M is likely to be held by T1 and about to be requested by T2, thus increasing the chances of

arriving at the desired deadlock.

Whenever a mutex M is unlocked, the snapshot corresponding to M is deleted, i.e., KS ←

KS − <M,∗>. ESD deletes these snapshots because a mutex that is free (unlocked) cannot be

among the mutexes that cause a deadlock.

We illustrate on the example from Listing 4.1, for which the search goals are T1 :<12,T2@9>

and T2 :<9,T1@12>.

Thread T1 needs to get to line 12. ESD takes T1 rather uneventfully up to line 10, with

snapshots having been saved prior to the lock operations at line 8 and 9. Once ESD encounters
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condition mode = MOD_Y ∧ idx = 1 on line 10, it must follow the true-branch, because it is a

critical edge. This brings T1 eventually to line 12. By this time, due to the unlock on line 11,

there is only one snapshot left in KS = {<M2,S9>}, from the lock on line 9. At line 12, a copy

of the current state is forked and KS = {<M2,S9>, <M1,S12>}. T1 acquires M1 and then T1 is

preempted.

T2 runs until it reaches line 8, where it blocks for M1 (held by T1). Since M1 was acquired as

T1’s inner lock, ESD switches to state S12, in which T1 is preempted immediately prior to acquiring

M1. This allows T2 to run and acquire M1, but it blocks again on line 9 when trying to get M2 (held

by T1). T1 is scheduled back, and the program is now in the situation that T1 is holding M2 while

waiting for M1 at line 12, and T2 is holding M1 while waiting for M2 at line 9—the deadlock goal.

ESD saves the required inputs for getchar() and getenv() along with the synthesized schedule (i.e.,

the one in which T1 acquires M1 and M2, then releases M1, then T2 gets to run until it acquires M1

and blocks on M2, after which T1 gets to run again and blocks on M1).

This algorithm generalizes in a relatively obvious way to more than two threads. Our ESD

prototype can synthesize thread schedules for deadlocks involving an arbitrary number of threads,

even when it is just a subset of a program’s threads that are involved in the deadlock.

During schedule synthesis, ESD automatically detects mutex deadlocks by using a deadlock

detector based on a resource allocation graph [71]. Deadlocks involving condition variables are

more challenging to detect automatically—inferring whether a thread that is waiting on a condition

variable will eventually be signaled by another thread is undecidable in general. However, ESD can

check for the case when no thread can make any progress and, if all threads are waiting either to

be signaled, to acquire a mutex, or to be joined by another thread, then ESD identifies the situation

as a deadlock.

When searching for a schedule that reproduces a reported deadlock, ESD may encounter dead-

locks that do not match the reported bug. This means ESD has discovered a different bug. It

records the information on how to reproduce this deadlock, notifies the developer, rolls back to a

previous snapshot, and resumes the search for the reported deadlock.

4.4.2 Synthesizing Thread Schedules for Data Race Bugs

To find paths to failures induced by data races, ESD takes an approach similar to the one for dead-

locks: place preemptions at all the relevant places, then explore first those schedules most likely

to reveal the data race. Snapshotting is used in much the same way, piggybacking on the copy-on-

write mechanism for managing execution states. In addition to synchronization primitives, ESD

also introduces preemptions before instructions flagged as potential data races.
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ESD uses a dynamic data race detection algorithm similar to Eraser [105]: it keeps track of the

lockset for each memory address and detects a data race when the intersection of all locksets used

to synchronize the access to a particular memory address is void. ESD inserts preemption points

wherever potentially harmful data races [95] are detected. Normally, dynamic data race detectors

can miss races, because they only observe execution paths exercised by the given workload. How-

ever, by using symbolic execution, ESD can expose to the detection algorithm an arbitrary number

of different execution paths, independently of workload.

In order to avoid unnecessary thread schedules early in the execution of the program, ESD uses

an additional heuristic. It identifies the longest common prefix of the final thread call stacks in

the coredump and inserts preemptions only in executions whose call stacks contain this prefix. If

the last frame of the common prefix corresponds to procedure p, then p is set as an intermediate

goal for each thread—for the example in Listing 4.1, p would be the entry into CriticalSection.

Once all threads reach their respective goals (or when no threads can make any further progress),

ESD’s scheduler starts forking execution states on fine-grain scheduling decisions and checks for

data races. We found this heuristic to work well in practice, especially considering that many

applications run the same code in most of their threads.

For simplicity and clarity, we assume a sequential consistency model for memory shared among

threads, an assumption present in most recent systems dealing with concurrency bugs (such as

Chess [94]). An immediate consequence is that each machine instruction is assumed to execute

atomically with respect to memory, which simplifies the exploration process. In the case of shared

memory with relaxed consistency, ESD could miss possible paths, but will never synthesize an

infeasible execution leading to a bug goal.

Data race detection can be turned on even when debugging non-race bugs. In this way, ESD can

synthesize paths even to bugs (e.g., deadlocks, buffer overflows) that manifest only in the presence

of data races. Moreover, as with deadlocks, unknown data races may be fortuitously discovered.

In summary, ESD’s synthesis of bug-bound paths and schedules exploits features of the cor-

responding bug report to drastically reduce the search space. While ultimately equivalent to an

exhaustive exploration, ESD uses heuristics to aggressively steer exploration toward those portions

of the search space that have the highest likelihood of revealing the desired bug-bound execution.

4.5 Execution Playback

Once the execution synthesizer (Section 4.3–Section 4.4) reaches its goal, it generates an execution

file containing the playback information. This file is read by the ESD playback environment—the

subject of this section. The goal of playback is to provide developers an explanation of the bug
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symptoms, in a way that allows them to inspect the execution with a classic debugger.

4.5.1 The Output of Execution Synthesis

In order to achieve the highest possible fidelity, ESD plays back a reported bug using the native

binary that was run by the end user. The synthesized execution file contains concrete values for all

input parameters, all interactions with the external environment (e.g., through system calls), and

the complete thread schedule. For all program input, including that coming from the environment,

ESD solves the constraints found during execution synthesis and produces corresponding concrete

values (such as getchar()=‘m’ and getenv("mode")[0]=‘Y’). This is identical to what automated

test generators do (like DART [55] and Klee [23]), except that these test generators do not produce

thread schedules.

ESD saves the thread schedule of a synthesized execution in the form of happens-before rela-

tions [78] between specific program instructions. ESD can also save a strict schedule in the file,

by recording the exact instructions on which the context was switched during synthesis, along with

the switched thread identifiers. During the playback phase (Section 4.5.2), this strict schedule will

enforce literally a serial execution of the program, whereas the schedule based on happens-before

relations allows playback to proceed with the same degree of parallelism as the original execution.

4.5.2 Playing Back the Synthesized Execution

In order to steer a program into following the steps reflected in the synthesized execution file,

ESD relies on two components: one for input playback and one for schedule playback. For input

playback, ESD takes from the trace the values of command line arguments and passes them to the

program. ESD also intercepts via a custom library the calls to the environment and returns the

inputs from the execution file. To preserve the consistency of the execution, ESD also relies on

Klee’s symbolic filesystem and network models.

To play back the synthesized schedule, ESD gains control of the concrete execution by in-

tercepting synchronization calls with a shim library and by selectively instrumenting the binary.

The intercepted calls are then coordinated by ESD’s cooperative scheduler underneath the program

being played back. While, during execution synthesis, the threads of a program were emulated,

during playback the program is permitted to create native threads and invoke the native synchro-

nization mechanisms. The threads are context-switched only when this is necessary to satisfy the

happens-before relations in the execution file.

ESD can also record and play back an execution serially. One single thread runs at a time,

and all instructions execute in the exact same order as during synthesis. Serial execution play-

back makes it easier for a developer to understand how the bug is exercised, because the bug’s
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causality chain is more obvious. Serial execution is also more precise, if the program happens to

have race conditions. However, performance of parallel programs may be negatively affected by

serialization, and in some cases this might matter.

Developers run the buggy program in the playback environment and can attach to it with a

debugger at any time. They can repeat the execution over and over again, place breakpoints,

inspect data structures, etc. After fixing the bug, ESD can be re-run, to check whether there still

exists a path to the bug. This is particularly helpful for concurrency bugs, where patches often

do not directly fix the underlying bug, but merely decrease its probability of occurrence [85]. If

ESD can no longer synthesize an execution that triggers the bug, then the patch can be considered

successful.

4.6 Complexity Analysis

This section analyzes execution synthesis from a theoretical perspective, in order to determine its

expected performance and the bounds on various parameters that influence synthesis time, such as

the length of the execution path and the number of branch statements in the synthesized path that

depend on symbolic input. The final goal of this section is to derive bounds on how many seconds

of original native execution time can be synthesized in a feasible amount of time.

4.6.1 Notation

We assume that we use execution synthesis to reproduce a failure of depth d, where d is the total

number of executed branch statements from the start state of the program to the failure state. We

assume that on the path that reproduces the failure there are b branch statements that depend on

symbolic input. In our experience, few of the executed branches depend (directly or indirectly) on

symbolic input, therefore b≪ d.

4.6.2 Analysis

We model the native execution that occurred in production as requiring k · d time to reach the

failure state, where k is a constant that depends on the target program, the workload, and hardware

on which the program is executing. Of course, the target program could have a different value of k

compared to the value of k for the execution synthesis platform. For instance the program could be

mostly idle, waiting for I/O to complete, while during execution synthesis, I/O could be equivalent

to a no-op. However, for the purpose of this analysis, we consider that k is the same for both the

target program and for the execution synthesis tool.
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The Complexity of the Static Analysis Search

Execution synthesis first uses static analysis to trim the search space, and we assume that the static

analysis phase depends on d and takes SA(d) time.

The Complexity of Constraint Solving

After the static analysis phase, execution synthesis searches for the path that reproduces the bug.

Each symbolic branch encountered during the search requires constraint solving (to determine if

the path is feasible). In the best case, assuming an oracle searcher (i.e., no search has to be done

to determine a feasible path), execution synthesis still must solve one constraint to determine the

inputs that drive the program on the synthesized path. This constraint must have at least b terms.

Assuming each branch condition adds a constant number of terms to the constraint, then the total

time to solve the constraints is a function of b and we denote it by CS(b).

Depending on the program structure, constraints may not involve many of the symbolic vari-

ables, or they can be simplified. In this case the constraint solving time may not be a function of b.

Moreover, in practice one will time out if a constraint cannot be solved (the disadvantage of using

timeouts is a loss of completeness: the inability to explore some execution paths).

The Complexity of Dynamic Search

In the dynamic phase, execution synthesis explores the search space using various heuristics. Dy-

namic search is also a function of b, denoted by DS(b), and it is computed in the following way:

for every branch that depends on symbolic input, we need to select the best state from the queue

of states, solve the constraints associated with the chosen state, and to run the program along the

chosen branch. This process needs to be repeated for each encountered symbolic branch, which is

equivalent to the subset of the execution tree that is explored by the execution synthesis technique.

In principle, assuming we only explore paths containing up to b branches, the worst case explo-

ration time is proportional to 2b (assuming all paths are explored) and the best case exploration

time is constant and proportional to d (assuming an oracle searcher that explores a single path).

To estimate DS(b) more precisely, we make the following notations and assumptions. We

denote SD(b) to be the time required to make a search decision (e.g., pick a state from the available

states), CS(b) is the time required for constraint solving during the synthesis process, SET (b) is

the number of states in the subset of the execution tree that is explored. Moreover, execution

synthesis is typically done by running the target program in a special environment [133], which

introduces overhead for each executed instruction compared to the native execution. We assume

this overhead is a constant factor and is denoted by I. Since on average there are d
b

branches in

between two symbolic branches, we obtain that the time spent running the program in the special
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environment is on average I·d·k
b

for each search decision. Thus, we get that DS(b) = SD(b)+

CS(b)+SET(b) · I·d·k
b

.

Adding All Up

Thus, execution synthesis will require SA(d)+DS(b) = SA(d)+ SD(b)+CS(b)+ I·d·k
b
· SET (b)

to finish. Since the original execution takes d · k, then execution synthesis will be ES(b) =
SA(d)+SD(b)+CS(b)

d·k + I
b
·SET (b) times slower than the native execution.

Worst Case

In the worst case, execution synthesis time is exponential in b, since either CS(b) or SET(b) are

exponential. Figure 4.2 shows how worst case execution synthesis time varies with the number of

symbolic branches in the worst case scenario.
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Figure 4.2: Worst case execution synthesis time vs. # symbolic branches (log scale). We make
some assumptions about constants involved: i.e., SA(d), SD(b), and CS(b) are negligible compared
to the time of the original execution (d · k), that SET (b) = 10−9 · 2b. Thus, we assumed that only
the search space is exponential, and then obtain that ES(b) > 10−9 · 2b. This shows that, when
the complexity is exponential, soon after b exceeds 60, execution synthesis takes too long to be
practical.

Polynomial Case

We now make some assumptions about the complexity of the various parts of the execution syn-

thesis algorithm. These assumptions are optimistic, given that all the analysis problems are expo-

nential in the worst case, however, it does provide an interesting estimation for realistic cases in

which these problems are polynomial. The purpose of this analysis is not to show the best case.

In the best case, execution synthesis is faster than this example. Instead, the analysis shows that
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Figure 4.3: Example: execution synthesis time vs. # symbolic branches.

polynomial complexity may also be sufficient to limit the depth of the synthesized execution for

which execution synthesis is practical.

Thus, we assume that:

• I is 2. This is currently an under-approximation, since ESD’s interpreter typically introduces

more than 100× overhead. Running concretely in S2E [29] is faster, but still introduces

10−30× overhead. Nevertheless, it may be feasible to achieve lower values than 2 for I, as

shown in [107].

• We assume ESD’s heuristics are efficient, therefore little of the execution tree is explored,

such that SET (b) = set ·b4, where set is a constant, which we assume to be 10−8.

• CS(b) = cs · b4, where cs is a constant representing the time required to solve a constraint

involving a query based on a single branch (e.g., x > 0∧ x < 10). We optimistically assume

cs to be ≈ 10−8 seconds, which means we can approximate CS(b) to 10−8 ·b4.

• We assume that the static analysis is very fast and we ignore it for the purpose of this analysis.

Note that in practice, depending on the complexity of this analysis, SA(d) could also be

exponential in d.

• We assume the state selection process is fast, therefore SD(b)≈ 10−8 ·b2.

• In order to estimate k, we developed a tool based on PIN [86] to count the number of branches

in an execution. The tool found that in 10 seconds of native execution, on a 2 GHz quad-core

Xeon E5405 CPU, there are typically about 109 branches, so k = 10−8 seconds/branch. The

analysis was averaged over Firefox, Chrome, and Apache.
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• We optimistically assume that one in 106 branches is symbolic, therefore d = 104 · b. This

number largely depends on the structure of the program and the inputs it processes, etc,

therefore it is hard to do an accurate estimation even for a single program.

Thus, we further obtain that execution synthesis will be 10−4 · (b+ b3)+ 2 · 10−8 · b3 slower

than the native execution. Figure 4.3 shows how execution synthesis time varies with b in this

optimistic case. This graph shows that more than 1 week is necessary to handle b≥ 30,000, which

corresponds to a 3 second execution, given our assumption that d = 104 ·b and that k = 10−8.

Thus, the key to achieving scalability is to reduce b. We show in Chapter 5 how to reduce b

using reverse execution synthesis.

4.7 Discussion

In this section we discuss how to use ESD for debugging, ESD’s limitations, and how ESD can

complement static analysis tools.

Usage: When developers are assigned a bug report, they would pass the reported coredump to

ESD, along with a hint for the type of bug. For the current ESD prototype, this can be crash,

deadlock, or race condition. ESD compiles the program source code with the standard LLVM tool

chain and uses the resulting bitcode file. Developers can also instruct ESD to enable various types

of detection (e.g., data races) during path synthesis, using the following command line:

$ esd <coredump file> <program>

< --crash | --deadlock | --race >

[--with-race-det] [--with-deadlock-det]

ESD then processes the coredump, extracts the necessary information, and computes the <B,C>

goals for synthesis. It then performs the path and schedule search, and produces the synthesized

execution file. Developers then use the playback environment to reproduce the bug and optionally

attach to the program with their favorite debugger:

$ esd-play <orig program binary> <synthetic exec file>

We discuss usage models in more detail in Section 6.5.

Limitations: Our approach is based on heuristics and static analysis to trim down the search

space that would otherwise be too large to explore in a naive approach. Like any heuristic-based

technique, ESD could be imprecise; lack of precision can increase the time to find a bug, thus
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hurting ESD’s efficiency. We did not experience this situation for the bugs we reproduced with

ESD, but the theoretical possibility exists. If ESD is used as part of a bug triage system, then the

potentially long running times can be amortized by running them off the critical path of debugging,

unlike when ESD is directly used by a developer.

Execution synthesis may not always be able to reproduce a bug. Symbolic execution has inher-

ent limitations when solving complex constraints, such as finding a string m for which hashSHA-2(m)

= 0xf8e28ed7b8db9a. As a result, ESD would have a hard time finding a program input that would

exercise the then-branch of an if statement involving the above condition. If there is a bug that

manifests only when this condition holds, ESD will likely not be able to reproduce it—doing so

would amount to breaking the SHA-2 cryptographic hash function [96].

Some coredumps cannot be processed by ESD’s automated analyzer. For example, if a bug

corrupts the stack or the heap, ESD does not yet know how to repair the data structures before

extracting them and using them for synthesis. However, in some cases, it may be possible to

repair the stack trace by inspecting the control flow of the program. In other cases, obtaining from

the coredump the size of a dynamically allocated buffer can be challenging. ESD can obtain the

size of a dynamically allocated buffer by parsing the memory allocator metadata, but this requires

inferring some of the heap characteristics. E.g., for the glibc memory allocator, metadata is stored

relative to the base address of the allocated buffer and can be reliably retrieved only if the base

address can be inferred from the coredump.

From a theoretical point of view, execution synthesis does not provide debug determinism (Chap-

ter 3), since it only reproduces the failure and may reproduce a different root cause. Since exe-

cution synthesis does not have any false positives, k f p = 0, therefore debugging fidelity DFESD =
koriginal+

kother
n

koriginal+kother
. Execution synthesis can theoretically reproduce all possible n root causes (assuming

unbounded resources), so assuming it reproduces each possible root cause only once, its debugging

fidelity DFESD =
1+ n−1

n

1+n
, where n is the number of possible root causes. For instance, if n = 2, then

DFESD = 0.5. In our evaluation (Chapter 6), we found that execution synthesis finds the correct

root cause and (to the best of our knowledge) there is a single root cause for all the bugs found.

Thus, for the bug reports we used in our evaluation, execution synthesis had maximum debugging

fidelity, therefore it achieved debug determinism.

This chapter described an automated debugging technique that reproduces an full execution

using only the program and the bug report. The work described in this chapter appeared in [133]. In

the next chapter we describe reverse execution synthesis, a technique that synthesizes an execution

suffix instead of a full execution, in order to enable debugging of arbitrarily long executions.
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Chapter 5

Reverse Execution Synthesis

The previous chapter described a technique to reproduce an entire execution starting from the

program and a bug report. This chapter describes an automated debugging technique that uses the

same input to reproduce an execution suffix instead of the entire execution.

5.1 Definition

Definition 2 Given a program P and an execution E of P that produces coredump Core as a result

of a failure F, then reverse execution synthesis automatically computes a snapshot S of P’s state

and an execution suffix X of the unmodified program P, such that, executing X starting from S

deterministically reproduces the same failure F. Reverse execution synthesis computes S and X

without recording any information during the execution E.

5.2 Motivation

A fundamental challenge for debugging is that the coredump does not contain enough information

to reproduce the exact execution that led to the failure in the general case. However, this is not

really necessary: for debugging, it is sufficient to produce some execution that reproduces the ob-

served failure state and the root cause [131]. Execution synthesis accomplishes this by mimicking

a human developer: it does a backward analysis starting from the coredump, identifies in the space

of possible execution paths some key “reference points” that must be part of all failure-bound ex-

ecutions, and then uses forward dynamic search through the control flow graph of the program to

find a path that passes through the reference points and produces the coredump.

The problem, though, is that this approach does not work for arbitrarily long executions—in

fact, the longer the execution, the more ambiguity in the location of these reference points, and

67
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the harder it becomes (Section 4.6) to synthesize an execution all the way from the start of the

execution to the end failure state.

For such executions, we advocate a new approach that turns execution synthesis on its head;

we call it reverse execution synthesis (RES). The observation we leverage is that developers do not

really need a full execution from start to finish, but just a suffix of the failure-bound execution—as

long as developers can replay this suffix and it contains the root cause of the failure, it is sufficient

to debug it [131].

In essence, RES reverse-executes the program and reproduces the last few milliseconds of the

execution, enough to capture the root cause; the length of the full execution is irrelevant to this

approach. Unlike backward static analysis (e.g., PSE [87]), RES’s analysis provides an accurate

execution suffix that can be run deterministically in a debugger. Unlike execution synthesis, RES

interprets the entire coredump, not just the failure condition C (Section 4.3), which makes RES

strictly more powerful.

The rest of this chapter describes the technique in more detail (Section 5.3), describes sequen-

tial execution suffix synthesis (Section 5.4) and thread schedule suffix synthesis (Section 5.5), and

discusses the complexity of reverse execution synthesis (Section 5.6).

5.3 Overview

We need a tool that, for a given program P, can use a coredump Core to generate a suffix of a

feasible execution E that causes program P to produce coredump Core. The key requirements are

that (1) there is no recording at runtime; (2) the technique works for multi-threaded programs and

concurrency bugs; (3) the suffix is of a feasible execution; (4) the suffix contains the root cause

of the failure; (5) execution E deterministically leads to Core; and (6) no modifications are to be

made to P. Since it is predicated on the presence of a coredump, this tool would work for failures

that generate a coredump (e.g., crashes due to violations of memory safety properties, assertion

violations, deadlocks, etc.). Our current design for RES meets requirements (1), (2), (5), (6), and

aims to satisfy but cannot always guarantee (3) and relies on developers to achieve (4).

In proposing a technique for building such a tool, we rely on two enablers: First, E does not

need to be the execution that actually occurred in production and led to coredump Core—any ex-

ecution that reproduces the same root cause and failure is sufficient. Second, we assume that the

root cause is located fairly close to the failure (e.g., 85% of the bugs analyzed in [137] were exe-

cuted just a few instructions before the failure), so we expect a short execution suffix to suffice for

debugging.

What Are the Inputs and Outputs?
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Inputs: As suggested above, RES takes in the coredump Core that represents a snapshot of the

failed program’s state; this is typically a free by-product of a failed execution and is already being

collected by production systems [54, 116]. In addition to Core, RES takes in the program source

code PS, which should be available to developers. Thus, the input is < Core,PS >.

Outputs: RES produces a set of execution traces Ti that end with the program counter found

in the coredump; corresponding to each instruction trace, a memory image Mi (Section 5.4.2) is

also provided, representing the content of the program’s address space just before the execution

of the suffix—executing Ti starting with state Mi leads to a state identical to the coredump. The

execution suffix Ti consists of the inputs (e.g., system call returns) and the thread schedule required

to accomplish this. To replay a suffix in a debugger like gdb, a special environment is slipped

underneath the debugger to instantiate Mi and replay Ti; to the developer it looks as if the program

deterministically runs into the same failure as the original execution.

RES continues building up suffixes by moving backward through the execution until the user

stops it. If allowed to run to completion, RES would eventually either reconstruct a full start-to-

finish execution path, or conclude that no such path exists and therefore the coredump is likely due

to hardware failure.

5.4 Sequential Path Synthesis

5.4.1 The Challenge of Inferring the Past Based on the Present

RES requires moving backward in time through the unknown execution that led to the failure. One

thought might be to reverse the outcome of every instruction, but this is not feasible. For example,

reversing a memory write in the general case requires knowledge of what value was in that location

prior to the execution of the overwriting instruction. Further aspects that pertain mostly to CISC

instruction sets like x86 make the reversing of other instructions hard as well. A method has been

proposed for reverse-executing programs running on the RISC PowerPC [8], but even this method

needed heavyweight recording to recover missing information.

The main challenge then is how to accurately reconstruct past program state without having

recorded it. Prior work based on static analysis can compute backward program slices [87, 126]

or derive weakest preconditions [21, 25] for given memory safety bugs. These techniques are

typically imprecise, as they do not use the rich source of information present in the coredump. They

also work only on sequential programs, because reasoning statically about concurrent executions

is very hard.
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Figure 5.1: Simplified example illustrating the basics of RES on a program that crashed due to a
buffer overflow. RES creates symbolic snapshots S1 and S2 that correspond to program state just
prior to each possible predecessor basic block. Since x = 1 in the coredump, and only Pred1 ever
sets x to 1, then Pred1 must be part of the correct execution suffix; RES discards the execution
suffix that traverses Pred2. A symbolic snapshot contains both concrete and symbolic memory
(e.g., x has an unconstrained symbolic value in S1 because Pred1 overwrites x’s value, so x prior to
Pred1 could be anything).

5.4.2 Representing Past Program State with Symbolic Snapshots

RES combines precise dynamic symbolic analysis with static information from the coredump and

the control-flow graph of the program to reconstruct missing information. Unlike forward execu-

tion synthesis (Chapter 4), where the static analysis phase goes from the final state all the way

to the start state before engaging in dynamic analysis, RES alternates between static and dynamic

analysis for each basic block, incrementally producing a precise execution suffix. Because RES fo-

cuses both static and dynamic analysis on an execution suffix—which is substantially shorter than

the length of the entire execution—it alleviates the path explosion problem of forward execution

synthesis.

RES starts from the coredump and navigates P’s control-flow graph backward until it reaches

a basic block that has at least two predecessors (Pred1 and Pred2 in Figure 5.1). At this point,

RES determines statically which predecessors are possible, and infers P’s memory state just prior

to executing each predecessor block.

To do this, RES creates symbolic snapshots (S1 and S2 in Figure 5.1), one for each predecessor

basic block. A symbolic snapshot is a “hypothesis” of how program state may have looked prior to

executing that predecessor block. It is an image of P’s memory state in which some locations do

not have concrete values, but rather have stand-ins for any possible value (these are called symbolic

values, like in Chapter 4. Such symbolic values can also be subject to constraints, such as having

to be positive, or being in a certain range. A symbolic snapshot in RES is a mix of known, concrete
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values and as-of-yet unknown, symbolic values. The program counter of a symbolic snapshot is

set to the entry point of the corresponding predecessor basic block.

5.4.3 Reconstructing Past Program State

A symbolic snapshot Spre can be thought of as an overapproximation of all possible program states

just prior to executing the predecessor block B. At a high level, the idea is that, if Spost is the

program state after executing B, then we can obtain Spre from Spost by simply replacing every

memory location overwritten by B with an unconstrained symbolic value.

If we now execute B with Spre as a starting state, B will transform Spre into S′, a more con-

strained version of the symbolic snapshot Spre. This is because, as B executes, it overwrites values

in Spre with values computed either based on other values in Spre (which may be concrete or sym-

bolic) or based on program inputs. For example, a variable z may be unconstrained prior to execut-

ing B, but be constrained to z ∈ [0,10] after some arithmetic performed by B. Program inputs (e.g.,

incoming network packets, reads from disk) are handed to the program as unconstrained symbolic

values, since these inputs refer to system state that is not contained in program memory.

After executing the last instruction in B, RES compares Spost and S′, to check if the resulting

S′ is an overapproximation of Spost, meaning that the value of every location in Spost is a subset

of the possible values of that location in S′ (we denote this by S′ ⊃ Spost). If it is, then the just-

executed B is part of a feasible execution suffix, because it transformed program state in a way that

is compatible with the post-B state. If S′ 6⊃ Spost, then it means that B cannot be part of the suffix.

This reverse synthesis process is applied recursively to B’s predecessor block(s), incrementally

forming an execution suffix, one block at a time. The first step of RES is the base case of the

recursion, in which Spost is initialized with a copy of the coredump Core, and the first instance of

block B is the last basic block of the execution suffix.

When deriving Spre from Spost, the main challenge are memory read and write operations. RES’s

approach is described in Algorithm 2. When encountering a memory write instruction in B, there

is no way of knowing what value was overwritten by the instruction, so RES sets the corresponding

location in Spre to an unconstrained symbolic value (line 6). When encountering a memory read

instruction in B (line 8), RES faces two options: If that memory location will not be subsequently

overwritten by an instruction in B, then RES knows exactly what value the read should return: the

value is taken directly from Spost. If, however, that memory location will be overwritten somewhere

in the remaining part of B, then RES cannot know what value resided there, so it returns from the

read an unconstrained symbolic value. If there are any branch instructions that depend on symbolic

values, RES forks the execution and follows both paths using a symbolic execution engine [22].

RES uses a combination of static and dynamic analysis (line 10) to determine which memory
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Algorithm 2: Algorithm for reconstructing past program state
Input: coredump Core, snapshot Spre

Output: computes Spost (the state obtained after executing Spre), updates Spre accordingly
1 S′← Spre

2 (Spost,Spre)← execute(S′) // execute S′ until it reaches the same program counter as Core.

3 return (Spost, Spre)
4 /* execute() calls the beforeWrite and beforeRead functions before write and read instructions. */

5 function beforeWrite(memory object mo, address addr)
6 markSymbolicBytes(Spre, addr, mo.size)
7 return

8 function beforeRead(memory object mo, address addr)
9 // Determine if memory range will be overwritten

10 if checkNoOverwite(S′, adddr, mo.size) then

11 return // memory range will not be overwritten, so it is identical in Spre, S′, Spost, and Core.

12 else

13 markSymbolicBytes(S′, addr, mo.size) markSymbolicBytes(Spre, addr, mo.size) return

will be overwritten in subsequent execution. This optimization aims to avoid the path explosion

caused by merely returning unconstrained values for every memory read.

We have seen how RES synthesizes a sequential execution suffix. The next section describes

the reverse execution synthesis of multi-threaded executions.

5.5 Thread Schedule Synthesis

The previous sections described RES for sequential executions. This section describes how RES

synthesizes thread schedules for multi-threaded executions.

The gist of thread schedule synthesis is to use RES’s sequential path synthesis algorithm and

at the same time to explore multiple possible thread schedules and test if they can match the core-

dump. RES explores thread schedules by preempting threads at relevant points in their execution,

such as before and after synchronization operations and accesses to shared memory. The algorithm

used to explore thread schedules efficiently is inspired by CHESS [94].

For each possible execution suffix, RES uses three distinct analysis passes (Section 5.5.1, Sec-

tion 5.5.2, Section 5.5.3). Each pass uses the information computed by the previous pass.

5.5.1 Identifying Shared Memory

The purpose of this initial analysis pass is to identify the write set of each thread for the execution

suffix. This is an optimization pass meant to determine as many shared memory accesses as pos-

sible before running the second analysis pass. This pass can produce incomplete and inaccurate
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results, which are further refined in the next pass.

This pass analyzes a single path and a single thread schedule. It executes the program starting

from a program snapshot that is almost identical to the coredump. The only difference between

the initial snapshot and the coredump is that, in the snapshot, all threads have their PCs set back to

the entry basic block of the last function on the call stack. At this stage RES does not infer what

memory was overwritten in the snapshot, therefore the snapshot does not contain any symbolic

memory and is unlikely to be a feasible program state. Executing this infeasible snapshot is likely

to cause the program to crash (e.g., due to a buffer overflow) at arbitrary program locations. Thus,

to be able to execute the program, RES uses a form of failure-oblivious computing [104] to execute

the snapshot (i.e., it allocates buffers on-demand if the program accesses unallocated memory).

Despite using failure-oblivious computing, the execution may not always reach the program loca-

tions in the coredump (the PCs of the threads may not be identical to the PCs of the threads in the

coredump), so RES will stop threads from executing when it can determine that they can no longer

reach a state that is aligned with the coredump or when the number of executed instructions by

each thread exceeds a certain threshold.

Thus, the outcome of the initial analysis pass is a set of program counters at which different

threads read or write to shared memory. These program counters are candidate preemption points

for the next passes. This set is imprecise and it is neither an over- nor an under-approximation.

5.5.2 Synthesizing an Over-Approximate Thread Schedule

The goal of this second pass is to synthesize an over-approximate thread schedule. To achieve

this, RES performs a backward analysis pass similar to reverse sequential path synthesis (Sec-

tion 5.4), the main difference being that reads from shared memory locations return unconstrained

symbolic values. Thus, both outcomes (i.e., then and else) of the branch conditions that depend

on these symbolic values will be explored in this pass. Even though this pass explores a single

thread schedule, it effectively over-approximates the effects of shared memory interactions be-

tween threads, therefore it over-approximates the possible states of the program under all thread

schedules.

Any execution that matches the coredump is considered feasible, and the associated symbolic

snapshots are passed to the next RES pass.

This pass detects additional shared memory locations that may have been missed by the previ-

ous pass. RES may need to backtrack in this pass if new shared memory is discovered. The number

of times RES could backtrack is bounded (by the number of program locations in the program), but

it may still be large, so RES caps it to a small number of iterations.

The outcome of this pass is an over-approximation of the possible execution suffixes of the
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program, since shared memory values are treated as being unconstrained symbolic memory.

5.5.3 Synthesizing an Accurate Thread Schedule Based on the

Over-Approximation

The goal of this third pass is to synthesize an accurate thread schedule based on the over-approximation

computed in the previous pass. This is the final pass of the thread schedule synthesis algorithm.

The pass reasons explicitly about concurrency, determines how to interleave threads, and its out-

come is an execution suffix that contains the synthesized thread schedule.

This pass starts from the feasible symbolic snapshots computed by the previous pass and exe-

cutes starting from each of these snapshots.

The main difference from the previous pass is that it explores all possible thread schedules,

within a configurable preemption bound. It introduces thread schedule preemptions at each shared

memory location and synchronization primitive, and uses the technique described in Section 4.4.2

to search through the set of possible thread schedules while limiting the number of preemptions.

Another difference from the previous pass is that reads from shared variables do not return sym-

bolic unconstrained data, but rather their real values (which may be concrete or symbolic), simi-

larly to the way ESD operates. Therefore, this analysis pass refines the possible symbolic snapshots

computed by the previous pass.

In this final analysis pass, any execution that matches the coredump is considered feasible, and

the execution suffix is presented to the user.

5.6 Complexity Analysis

This section analyzes reverse execution synthesis from a theoretical perspective, in order to de-

termine its expected performance and the bounds on the length of the execution suffix for which

reverse execution is practical.

5.6.1 Notation

We assume that we use reverse execution synthesis to reproduce the failure in a coredump Core

of size coreSize, of which W bytes are symbolic in the symbolic snapshot at the beginning of the

execution suffix (i.e., they have been overwritten by the execution suffix). We denote by d the

number of instructions of the execution suffix required for debugging (i.e., from the root cause to

the failure). We also denote p to be the number of unique predecessor basic blocks for all the basic

blocks of the execution suffix.
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5.6.2 Analysis

At each step of the reverse execution synthesis algorithm, RES performs a check to see if the

candidate execution suffix matches the coredump. For the concrete bytes in the symbolic snapshot,

this test is simply a comparison. For the symbolic bytes, the check requires solving a constraint, to

determine if they can match the coredump. The number of symbolic bytes in the symbolic snapshot

is at least equal to the number of bytes overwritten during the execution of the execution suffix,

since RES over-approximates the set of overwritten bytes. The size of the constraint depends on

the number of overwritten bytes W and the length of the execution suffix d, therefore we denote

the total time required to solve constraints CS(W,d). The constraint solving time depends on the

structure of the program and on the actual d instructions.

Similarly to forward execution synthesis, reverse execution synthesis uses dynamic search,

except that for reverse execution this search is backward from the coredump and is a function of

the execution suffix length d, unlike the case of forward execution synthesis, for which d stands

for the length of the entire execution. Another difference from forward execution synthesis is that

RES searches through all predecessors of a basic block, while execution synthesis makes search

decisions only at branches that depend on symbolic input. We denote the dynamic search time

DS(p).

Thus, reverse execution synthesis will require RES(W,d, p) =CS(W,d)+DS(p) time to syn-

thesize the correct execution suffix.

Similarly to forward execution synthesis, reverse execution synthesis is in the worst case ex-

ponential in d, since CS is exponential in d and DS is exponential in p, which means that RES

is practical only for small values of d. This may still be sufficient for a short execution suffix,

depending on the size of the constants. For instance, it may still be feasible to find the correct

execution suffix for d < 10 and p < 10 in a reasonable amount of time.

Similarly to the complexity analysis of execution synthesis, we now analyze a scenario that is

more optimistic than the worst case exponential case, since it assumes polynomial complexity. We

do not analyze the best case, instead we assume polynomial complexity with a large exponent. We

assume that both CS and DS are polynomial problems: For instance, CS(W,d) = cs ·W 2 · d3 and

DS(p) = ds · p4 and d = 10 · p, where cs, and ds are constants. With these assumptions, we get that

RES(W,d, p) = cs ·W 2 ·d3 +10−4 ·ds ·d4. If we further assume values for cs = 10−8 seconds and

ds = 10−8 seconds, and that W = 10 ·d (i.e., the number of overwritten bytes is proportional to the

length of the execution suffix), we obtain that RES(W,d, p) = 10−10 ·d5 +10−12 ·d4 (Figure 5.2).

Thus, in this case, it is feasible to infer an execution suffix size of 1500 instructions in one week.

Of course, this is just an example scenario and it does not represent the best case, therefore reverse

execution synthesis can synthesize larger execution suffixes.
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Figure 5.2: Example: reverse execution synthesis time vs. suffix length.

5.7 Discussion

The main limiting factor for RES is the size of the execution suffix. If the root cause of the failure

is far from the failure, or the failure requires reproducing complex thread schedule interleavings,

RES will encounter the unavoidable path explosion problem [18].

There are cases in which reversing executions requires inverting a difficult code construct (e.g.,

a hash function or a cryptographic function). RES, as described, might not be able to produce

a suffix that goes beyond the difficult code construct. However, such code constructs may be

regenerated otherwise, e.g., the inputs to the hash function may still be on the stack, and RES could

re-execute the function instead of reverse-analyzing it.

Full coredumps may not always be available. RES can work with smaller dumps, but this may

reduce its ability to compute long execution suffixes. However, RES could implement on-demand

collection of additional data (e.g., broader memory dumps, log files), as in WER [54].

RES does not currently handle memory or stack corruption, because they may cause the CFG

of the program to also be corrupted, and RES requires an accurate CFG and an accurate stack.

RES may not always identify the exact root cause that led to the observed failure, therefore

it may not offer debug determinism (Chapter 3). However, RES’s accuracy promises to be good,

mainly owing to the fact that any execution suffix must match the full coredump exactly. In our

experience, even small deviations from the real execution suffix lead to a different coredump.

Furthermore, one could argue that every root cause of a failure should be fixed by developers; after

fixing a root cause, RES can be run again to identify the other root cause, and so on until all root

causes are fixed. Our initial experience with RES shows that it can provide accurate execution

suffixes for complex bugs.

Theoretically—assuming unbounded resources—reverse execution synthesis can find all pos-
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sible root causes, but it may also produce false positives (infeasible execution suffixes). Thus,

unlike execution synthesis, k f p can be > 0, so we cannot simplify it from the generic formula of

debugging fidelity: DFRES =
koriginal+

kother
n

koriginal+kother+k f p
. If RES is run until completion (i.e., until it finds

full execution paths), it will produce the same outcome as ESD, therefore it will have the same

debugging fidelity as well. Otherwise, due to the fact that RES may synthesize infeasible suffixes,

it will have lower debugging fidelity than ESD.

This chapter showed how to synthesize an execution suffix in order to debug arbitrarily long

executions. The work described in this chapter appeared in [135].

The next chapter describes the implementation and empirical evaluation of ESD and RES, as

well as several uses cases of the two techniques.
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Chapter 6

Evaluation and Use Cases

Having described the design of ESD and RES, in this chapter we describe the prototypes of these

two techniques (Section 6.1) and their effectiveness in reproducing real bugs in real systems (Sec-

tion 6.2). We also compare ESD to other approaches (Section 6.3), analyze ESD’s performance (Sec-

tion 6.4), and discuss several use cases for ESD and RES.

6.1 Prototypes

The ESD prototype currently works for C programs, and we verified that it works seamlessly with

the gdb debugger. For symbolic execution, we adopted KLEE [23] and extended it in several

ways; the most important one is support for multi-threaded symbolic execution. We first describe

this extension in brief, and then provide a few details related to the implementation of synthesis

and playback.

KLEE is a symbolic virtual machine designed for single-threaded programs. To allow ESD to

explore various thread schedules, we added support for POSIX threads. We later improved support

for POSIX threads in Cloud9 [22].

Our extended version supports most common synchronization API calls,such as thread, mutex

and condition variable management, including thread-local storage functions. The new KLEE

thread functions are handlers that hijack the program’s calls to the native threads library. To create a

simulated thread, ESD resolves at runtime the associated start routine and sets the thread’s program

counter to it, creates the corresponding internal thread data structures and a new thread stack, and

adds the new thread to the ESD scheduler queue. ESD also maintains information on the state of

mutex variables and on how threads are joined.

ESD runs one thread at a time. The decision of which thread to schedule next is made before

and after each call to any of the synchronization functions, or before a load/store at a program

location flagged as a potential data race. Each execution state has a list of the active threads. To

79
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schedule a thread, ESD replaces the stack and instruction pointer of the current state with the ones

of the next thread to execute.

ESD preserves KLEE’s abstraction of a process with an associated address space, and adds

process threads that share this address space. As a result, the existing copy-on-write support for

forked execution states can be leveraged to reduce memory consumption—this is key to ESD’s

scalability.

For the execution synthesis phase, ESD compiles the program to LLVM bitcode [79], a low-

level instruction set in static single assignment form. We chose LLVM because KLEE operates

on LLVM and because the associated compiler infrastructure provides rich static analysis facilities.

LLVM provides load and store instructions up to word-level granularity, thus providing sufficient

control for ESD to synthesize thread schedules that reproduce the desired data races.

We speed up the computation of the distance to the goal during synthesis by caching previ-

ously computed distances and using specialized data structures to track search state information.

This optimization is crucial, because execution states in ESD can be switched at the granularity of

individual instructions (i.e., is done frequently), so the selection of the next state to execute must

be efficient.

For dynamic data race detection, ESD can use any existing algorithm. ESD implements a ver-

sion of the Eraser [105] data race detection algorithm, modified to record, for each memory ad-

dress, the last PC that accessed that particular memory address. This information is necessary to

identify the program locations that are potentially racing, where ESD introduces preemption points.

During playback, ESD allows the program to create native threads and to call the real synchro-

nization operations with the actual arguments passed by the program. The calls are intercepted

in a library shimmed in via LD_PRELOAD. In here, synchronization operations can be delayed as

needed to preserve the ordering from the synthesized execution file.

ESD prototype currently relies on a 32-bit version of KLEE, which means that it can address at

most 4 GB of memory. For large real programs, this can cause ESD to run out of memory before

finding the desired path. Porting ESD to 64-bit architectures will enable it to make use of the

increasing amounts of physical memory available on modern machines.

We implemented a prototype of RES for LLVM [79] binaries (e.g., generated from C/C++

source code). RES supports multi-threaded programs and is implemented on top of the Cloud9 [22]

symbolic execution engine. Currently, RES assumes sequential memory consistency when synthe-

sizing execution suffixes, but we plan to lift this limitation in future work.

6.2 Effectiveness for Real Bugs in Real Systems

ESD succeeds in automating the debugging of real systems code. Table 6.1 shows examples of the
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programs we ran under ESD, ranging in size across three orders of magnitude: from over 100,000

LOC (SQLite) down to 100 LOC (mkfifo). All reported experiments ran on a 2 GHz quad-core

Xeon E5405 CPU with 4GB of RAM, under 32-bit Linux. ESD had a total of 2GB of memory

available.

System Bug manifestation Execution synthesis time

SQLite hang 150 seconds
HawkNL hang 122 seconds
ghttpd crash 7 seconds
paste crash 25 seconds
mknod crash 20 seconds
mkdir crash 15 seconds
mkfifo crash 15 seconds
tac crash 11 seconds

Table 6.1: ESD applied to real bugs: ESD synthesizes an execution in tens of seconds, while other
tools cannot find a path at all in our experiments capped at 1 hour (see Section 6.3).

One class of bugs results in hangs. For example, bug #1672 in SQLite 3.3.0 is a deadlock in

the custom recursive lock implementation. SQLite, an embedded database engine, is a particularly

interesting target, since it has a reputation for being highly reliable and the developer-built test

suites achieve 99% statement coverage [108]. This makes us believe that the remaining bugs are

there because they are particularly hard to reproduce. Another hang bug appears in HawkNL

1.6b3 [3], a network library for distributed games. When two threads happen to call nlClose() and

nlShutdown() at the same time on the same socket, HawkNL deadlocks.

Other bugs result in crashes. A security vulnerability in the ghttpd [2] Web server is caused

by a buffer overflow when processing the URL for GET requests [52]. The overflow occurs in the

vsprintf function when the request is written to the log. A bug in the paste UNIX utility [32]

causes an invalid free for some inputs. The four bugs in the tac, mkdir, mknod, and mkfifo UNIX

utilities [32] are all segmentation faults, with the last three occurring only on error handling paths.

The UNIX utilities bugs are reported in [23].

ESD synthesized the bug-bound execution paths entirely automatically. For most bugs, ESD

was able to automatically retrieve from the coredump the goal <B,C> of the synthesized path.

The only exception was ghttpd, whose coredump contained a corrupt call stack; it took a few

minutes to manually reconstruct the correct call stack with gdb. ESD consistently synthesized an

execution path to the bug under consideration, output the synthesized execution file (a couple MB

in each case), and played it back deterministically.

Using ESD, we were able to play back each bug inside gdb. We perceived no overhead during

playback, leading us to subjectively conclude that ESD does not hurt the developer’s debugging

experience. Even so, performance is rarely of importance, given that playback is repeatable and
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deterministic.

It is worth noting that ESD is effective not only for programs, but also for shared libraries, such

as SQLite and HawkNL. Debugging libraries often has higher impact than debugging individual

programs, because bugs inside libraries affect potentially many applications. For example, SQLite

is used in Firefox, iPhone, Mac OS X, McAfee anti-virus software, Nokia’s Symbian OS, PHP,

Skype, and others [108]. In order to reproduce library bugs with ESD, one writes a program that

exercises the library through the suspected buggy entry points; ESD then analyzes and symbolically

executes these driver programs along with the library.

We evaluated RES on three synthetic concurrency bugs. These programs had 3 threads and

around 100 LOC. The failures for these bugs were crashes due to buffer overflows. The root cause

of these bugs were data races or atomicity violations. In all the cases RES was able to identify the

correct root cause in less than 1 minute. RES only produced execution suffixes that reproduced the

correct root cause, therefore it had no false positives.

6.3 Comparison to Alternate Approaches

Having seen ESD to be effective and fast, we now examine how it stacks up against alternate

approaches.

The first approach to reproduce the bugs is brute force trial-and-error. To measure objectively,

we ran several series of stress tests and random input testing for several hours. Neither of these

efforts caused any of the bugs in Table 6.1 to manifest.

Bug finding tools, like KLEE [23] and Chess [94], can also be used to find paths to bugs—these

tools produce test cases meant to reproduce the found bugs. Such a comparison is not entirely fair,

for several reasons. On the one hand, ESD can synthesize execution paths for bugs that occur in

production, away from ESD, whereas bug finding tools can only reproduce bugs that occur under

their own close watch. On the other hand, bug finding tools are not guided toward a specific

bug; their goal is to find previously unknown bugs and typically aim for high code coverage.

Nevertheless, since we are not aware of other execution synthesis tools, we analyze the efficiency

of ESD’s search via this comparison.

We extended KLEE with support for multi-threading and implemented Chess’s preemption-

bounding approach for exploring multi-threaded executions [94]. We name the resulting tool KC—

a hybrid system that embodies the KLEE and Chess techniques. We compare ESD to two different

KC search strategies inherited directly from KLEE: DFS, which can be thought of as equivalent

to an exhaustive search, and RandPath, a quasi-random strategy meant to maximize global path

coverage. We augmented the corresponding strategies to encompass all active threads and limit

preemptions to two, as done in [94].
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We ran both KLEE and KC to find a path leading to each of the sample bugs in Table 6.1. After

running for over one hour for each bug, neither tool found a path. The five bugs in UNIX utilities

were originally found with KLEE and reported in [23]. Our experiments did not find them perhaps

due to differences in the KLEE version and search strategies. ESD was built on top a KLEE code

snapshot that was generously provided to us by its authors in Aug. 2008. In order to still have a

practical baseline for comparison, we introduced four null-pointer-dereference bugs in the ls UNIX

utility, for which KC does find a path in less than one hour. The ls utility has 3 KLOC.

Figure 6.1 shows the time it takes ESD to find a path vs. KC’s two different search strategies.

ESD is one to several orders of magnitude faster at finding the path to the target bug. We do not

know if KC would eventually find a path to the bugs in Table 6.1 and, if it did, how long that would

take.
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Figure 6.1: Comparison of time to find a path to the bug: ESD vs. the two variants of KC. Bars that
fade at the top indicate KC did not find a path by the end of the 1-hour experiment.

6.4 Performance Analysis

In order to analyze the impact of zero-tracing execution path synthesis and the corresponding

heuristics, we developed a microbenchmark, called BLIB (Branches-Inputs-Locks Benchmark).

The main purpose of BLIB is to profile ESD without the measurements being influenced by envi-

ronment interactions, such as library calls or system calls. For the more general case, BLIB can

serve as a way to compare the performance of automated debugging tools like ESD.

BLIB produces synthetic programs that hang and/or crash. These programs have conditional

branch instructions that depend on program inputs. When using more than one thread, the crash/hang

scenarios depend on both the thread schedule and program inputs. BLIB allows direct control of
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five parameters for program generation: number of program inputs, number of total branches,

number of branches depending (directly or indirectly) on inputs, number of threads, and number

of shared locks.

We performed experiments with eight configurations of BLIB, comprising different program

sizes. All data points correspond to programs with two threads and two locks, in which every

branch instruction depends (directly or indirectly) on program inputs. There is one deadlock bug

in each generated program. We varied the number of branch instructions from 23 to 210, which

means that the number of possible branches varied from 24 to 211. We explored other benchmark

configurations as well, but, given the results shown here, the results were as expected.

In an attempt to quantify the deadlock probability in the generated programs, we ran stress

tests for one hour on each program. Neither of them deadlocked, suggesting that each program

has a low probability of deadlocking “in practice,” making these settings sufficiently interesting

for our measurements. We then fed the programs to ESD and required it to synthesize an execution

path exhibiting the deadlock bug. We confirmed that the synthesized executions indeed lead to the

deadlock, by playing them back in gdb.

Figure 6.2 shows the time to synthesize an execution as a function of program complexity (in

terms of branches). We find that ESD’s performance varies roughly as expected; one exception

is the jump from 28 to 29 branches—we suspect that structural features of the larger program

presented an extra challenge for ESD’s heuristics. Nevertheless, ESD performs well, keeping the

time to synthesize a path to under 2 minutes, which is a reasonable amount of time for a developer

to wait. We also included, for reference, the time taken by KC with the RandPath search strategy; it

found a path within one hour only for the two simplest benchmark-generated programs. The DFS

strategy did not find any path.
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Figure 6.2: Synthesis time for programs of varying complexity for ESD and KC.

An alternate perspective on these results is to view them in terms of program size. Figure 6.3

shows the same data, but in terms of KLOC in the generated programs.
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We conclude that ESD offers a practical way to automatically debug reported bugs, starting

from just the corresponding bug report. Our evaluation shows that, whereas exhaustive or even

improved random searches are unlikely to succeed in finding a path to the target bugs, ESD’s

execution synthesis heuristics are effective in guiding the search toward reproducing otherwise-

elusive bugs.

6.5 Use Cases

We now present several use cases for execution synthesis and reverse execution synthesis: triaging

bug reports (Section 6.5.1), detecting failures caused by hardware errors (Section 6.5.2), and auto-

mated debugging (Section 6.5.3). We compare the way execution synthesis and reverse execution

synthesis address these uses cases.

6.5.1 Triaging Bug Reports

Debugging a large software development is hard, because the sheer volume of bug reports can be

overwhelming [54]. In this context, accurately and automatically prioritizing reports from millions

of users is particularly difficult yet crucial in cutting down the maintenance costs.

The main challenge in bug triaging is that a single bug can lead to different failures, and differ-

ent bugs can lead to the same failure point. The state of the art in triaging bug reports is Windows

Error Reporting (WER) [54]. Despite proving its utility in over ten years of operation, WER relies

on simple heuristics and the law of large numbers. For instance, WER uses heuristics such as de-

prioritizing reports that suggest bugs in core OS code, which is deemed to be correct. Thus, WER

can incorrectly bucket up to 37% of the bug reports [54].
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RES can complement WER by reconstructing the execution suffix and more precisely identi-

fying the root cause of the failure. RES can process incoming bug reports and triage them based

on the execution suffix and the likely root cause. Determining the root cause in the general case is

hard; however, in several cases it is possible. For example, RES can detect reads from freed mem-

ory, which are likely to generate failures with different call stacks. A naive triaging technique that

only looks at the call stack in the coredump would classify these failures in different buckets, while

RES could improve accuracy by triaging based on the root cause. Similarly, a naive triaging might

mis-triage bugs for which the root cause is not in the functions on the call stack. To cope with root

causes that are hard to infer automatically, RES can use human feedback: once developers find the

root cause of a failure, they can write RES annotations for the particular root cause, which would

help RES triage other bug reports into the same bucket.

RES can also be used to classify bugs as exploitable by an attacker. For instance, say RES

traces a failure to a buffer overflow and then further determines that the data copied to the buffer

was tainted by external data that could be supplied by an attacker (e.g., a system call that reads a

network packet). Such a verdict would automatically classify the bug as remotely exploitable and

increase the priority level for the bug report. However, without RES, such a remotely exploitable

bug, which typically generates many different failures (all with different call stacks), would be

bucketed incorrectly (each failure in its own bucket). This could (1) cause the exploit to fly un-

der the radar, because each instance of it would seem to be a different bug, and (2) burden the

developers who have to inspect many buckets, all due in fact to the same bug.

This use case can also be addressed by execution synthesis, however, it is out of reach for ESD

for the cases in which the execution is long (this is typically the case for executions that correspond

to WER bug reports), therefore it is more suitable for RES.

6.5.2 Detecting Failures Caused by Hardware Errors

Hardware errors are common, correlated, and recurrent [97]. Machines that crash once due to a

hardware error are two orders of magnitude more likely to crash a second time [97]. Moreover,

hardware errors are not software bugs, therefore developers waste time debugging them instead of

filtering them out. RES could be used to reduce this significant source of noise.

It is difficult to distinguish a hardware error from a software error, because both can manifest in

similar ways. In some simple cases, as with machine check exception (MCE) CPU errors, it is easy

to diagnose a hardware error, because the hardware detects the error in the first place. However,

in other cases, such as memory errors, one cannot reliably differentiate between a software error

(e.g., memory corruption) and a multi-bit DRAM failure or DMA writes from a faulty device.

Prior work [97] used manual post-hoc analysis to identify likely hardware failures in the CPU
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subsystem, one-bit memory flips, and disk system failures. These are cases in which manual

analysis is easy. For instance, CPU errors are the ones that trigger an MCE and checks for one-bit

memory flips are limited to the kernel image, which is meant to be read-only and can be compared

to the vanilla kernel image.

The open question that could be solved with RES is how to automate this manual process

and extend it to more challenging cases (e.g., for memory that is not read-only). For instance,

while analyzing a coredump, RES can discover inconsistencies between the coredump and the

execution of the program prior to generating the coredump, indicating that the likely explanation

is a hardware error. One example are memory errors: if on all the possible paths to the coredump

the program writes the value 1 to a certain memory address, but the coredump contains the value

0, this would likely indicate a memory error. Another example are CPU errors: say the CPU

miscomputed an addition, and this led to a crash. If RES retrieves the result and the operands from

the coredump, and on all possible suffixes it obtains a different result for the addition, it concludes

the likely explanation for this is a hardware error. Of course, diagnosing a hardware error with full

accuracy requires exploring all possible execution suffixes; this may be possible for short suffixes.

This use case is suitable for RES, but it is not suitable for ESD. The first reason is the limited

ability of (forward) execution synthesis to deal with long executions (similarly to the previous

case). The second reason is that execution synthesis cannot typically prove that a certain execution

suffix is infeasible. To achieve this, execution synthesis would have to exhaustively explore all

executions for which it cannot statically prove they cannot reach the coredump. This set may be

arbitrarily large even for short executions, so execution synthesis would not be practical. On the

other hand, reverse execution synthesis may only need to analyze a small set of execution suffixes

to prove that the root cause is a hardware error.

6.5.3 Automated Debugging

ESD enables several debugging aids on top of traditional debuggers like gdb: synthesizing an exe-

cution, reconstructing past state (the symbolic snapshots), and the ability to do reverse debugging

without the need to record the execution. Additionally, RES automatically computes the read and

write sets of the execution suffix, therefore it automatically focuses developers’ attention on the

recently read or written state, which, for debugging, is more likely to be important than the rest of

the coredump.

RES could also be used to automate the testing of various hypotheses formulated during debug-

ging, such as “what was the program state when the program was executing at program counter

X ,” or “was a thread T preempted before updating shared memory location M?”

Unlike ESD, RES reproduces any failure that generates a coredump, therefore it is not restricted
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to a particular type of bugs—even semantic bugs (e.g., captured by assert statements) can be

reproduced.

Similarly to the previous two use cases, this use case may not always be amenable to execution

synthesis due to the length of the execution.

This section discussed three uses cases for forward execution synthesis and reverse execution

synthesis. By virtue of addressing arbitrarily long executions, reverse executions synthesis is more

applicable to these use cases than forward execution synthesis.



Chapter 7

The Synthesis-Time vs. Runtime-Overhead

Trade-Off

Identifying the cause of a bug based on a bug report is often difficult because there is a gap between

the information available at the time of a software failure and the information actually shipped to

developers in the bug report. Augmenting bug reports with recorded runtime information can

help debugging, however, there is an inherent trade-off between runtime recording overhead and

the fidelity/ease of subsequently reproducing bugs. The spectrum of solutions has full system re-

play [42] at one end, and execution synthesis at the other. This spectrum is still poorly understood,

and an important question remains: which is the least amount of information that is practical to

record at runtime, yet still makes it easy to diagnose bugs of a certain type?

The main challenge for execution synthesis is synthesizing deep paths. Similarly, the main

challenge for reverse execution synthesis is synthesizing long execution suffixes. As described

in Chapter4 and Chapter 5, the reason for both of these challenges is that the synthesis process

relies on search algorithms that are often exponential in the depth of the synthesized path (or of the

synthesized execution suffix in the case of reverse execution synthesis).

This chapter describes a hybrid technique that aims to make execution synthesis and reverse

execution synthesis more efficient for deeper execution paths. This technique trades runtime over-

head for execution synthesis time by recording small pieces of runtime information about the

execution and using these pieces as intermediate goals during execution synthesis. We call the

recorded pieces of information “execution breadcrumbs”.

Intuitively, execution breadcrumbs have the same role in execution synthesis as the bread-

crumbs used by the two main characters of the Hansel and Gretel story [59]: Hansel and Gretel

used breadcrumbs to “record” a trace of their way back home. Even though the breadcrumbs were

sparse, they were close enough for Hansel and Gretel to efficiently find a path back home.

This hybrid technique is different from execution synthesis, since the definition of execution

89
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synthesis (Section 4.1) does not include recording. Instead, this technique resembles record-replay

systems that provide relaxed determinism (e.g., ODR [9], PRES [102], Oasis [35]).

Unlike record-replay systems that record all non-determinism, hybrid execution synthesis aims

to perform little recording. The requirements we set forth are the following:

• Low runtime overhead:

Overhead less than 1% is likely to be considered acceptable for production use, while over-

head higher than 1% will impede wide adoption.

• No modifications to applications:

Requiring developers to change applications will also impede wide adoption. Instead, mod-

ifying a shared library that can be linked with applications to make them more amenable to

hybrid execution synthesis is acceptable.

• Improve synthesis time:

Execution breadcrumbs should help reduce the execution synthesis time for deep execution

paths.

This chapter describes how to record small pieces of runtime information to speed up the

debugging of deadlocks (Section 7.1) and how the recorded thread schedule of an execution can be

used in conjunction with execution synthesis to accurately classify data race bugs (Section 7.2).

7.1 Recording Bug Fingerprints to Speed Up the Debugging of

Deadlock Bugs

We propose bug fingerprints—an augmentation of classic automated bug reports with runtime

information about how the reported bug occurred in production. Bug fingerprints contain additional

small amounts of highly relevant runtime information that helps understand how the bug occurred.

7.1.1 Problem Statement

Our observation is that, given a class of bugs, it is possible to record a small amount of bug-specific

runtime information with negligible overhead, and this information can substantially improve de-

bugging. Based on this observation, we propose bug fingerprints, small additions to classic bug

reports that contain highly relevant “breadcrumbs” of the execution in which the bug occurred.

These breadcrumbs ease the reconstruction of the sequence of events that led to the failure.
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We show that this idea works for deadlocks, an important class of concurrency bugs. We built

DCop, a prototype deadlock fingerprinting system for C/C++ software—it keeps track at runtime of

each thread’s lock set and the callstacks of the corresponding lock acquisitions; when a deadlock

hangs the application, this information is added to the bug report. DCop’s runtime overhead is

negligible (e.g., less than 0.17% for the Apache Web server), yet these breadcrumbs enable faster,

even automated, debugging.

Despite being frequent (e.g., 30% of the bugs reported in [85] are deadlocks), deadlock bug

reports are scarce, because deadlocks do not produce a coredump—instead, they render the appli-

cation unresponsive. Normal users restart the application without submitting a bug report, while

expert users may attach a debugger to the program and capture each thread’s callstack. Systems

such as WER [54] can be used to create a coredump, but it is still hard to debug deadlocks based

on this information that describes only the end state of the program.

7.1.2 Design

Deadlocks become straightforward to debug if we have information on how the program acquired

every mutex involved in the deadlock. In particular, the callstacks of the calls that acquired mu-

texes held at the time of deadlock, together with the callstacks of the blocked mutex acquisitions,

provide rich information about how the deadlock came about. Alas, the former type of callstack

information is no longer available at the time of the deadlock, and so it does not appear in the

coredump.

Fortunately, it is feasible to have this information in every bug report: First, the amount of

information is small—typically one callstack per thread. Second, it can be maintained with low

runtime overhead, because most programs use synchronization infrequently. As it turns out, even

for lock-intensive programs DCop incurs negligible overhead.

DCop’s deadlock fingerprints contain precisely this information. Regular deadlock bug reports

contain callstacks, thread identifiers, and addresses of the mutexes that are requested—but not

held—by the deadlocked threads. We call these the inner mutexes, corresponding to the inner-

most acquisition attempt in a nested locking sequence. Additionally, deadlock fingerprints contain

callstack, thread id, and address information for the mutexes that are already held by the threads

that deadlock. We call these the outer mutexes, because they correspond to the outer layers of

the nested locking sequence. Outer mutex information must be collected at runtime, because the

functions where the outer mutexes were acquired are likely to have already returned prior to the

deadlock.

We illustrate deadlock fingerprints with the code in Fig. 7.1a, a simplified version of the global

mutex implementation in SQLite [108], a widely used embedded database engine. The bug occurs
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when two threads execute sqlite3EnterMutex() concurrently. Fig. 7.1b shows the classic bug report,

and Fig. 7.1c shows the deadlock fingerprint.
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     void sqlite3EnterMutex(){ 

pc
1 
:    pthread_mutex_lock(&m1);

       if (inMutex==0) {

pc
2 
:      pthread_mutex_lock(&m2);

         ...

       }

pc
3 
:    pthread_mutex_unlock(&m1);

       ++inMutex;

     }

     void main(){

       ...

pc
4 
:    sqlite3EnterMutex();

       ...

pc
5 
:    sqlite3EnterMutex();

       ...

(a) (c)

(b)

Figure 7.1: (a) SQLite deadlock bug #1672. (b) Regular bug report. (c) DCop-style deadlock
fingerprint.

A regular bug report shows the final state of the deadlocked program: t1 attempted to lock

mutex m1 at pc1 and t2 attempted to lock mutex m2 at pc2—we invite the reader to diagnose how

the deadlock occurred based on this information. The bug report does not explain how t1 acquired

m2 and how t2 acquired m1, and this is not obvious, since there are several execution paths that can

acquire mutexes m1 and m2.

The deadlock fingerprint (Fig. 7.1c) clarifies the sequence of events: t1 acquired m2 at pc2 in a

first call to sqlite3EnterMutex, and t2 acquired m1 at pc1. This allows a developer to realize that,

just after t1 unlocked m1 at pc3 and before t1 incremented the inMutex variable, t2 must have locked

m1 at pc1 and read variable inMutex, which still had the value 0. Thus, t2 blocked waiting for m2 at

pc2. Next, t1 resumed, incremented inMutex, called sqlite3EnterMutex the second time, and tried

to acquire m1 at pc1. Since m1 was held by t2 and m2 was held by t1, the threads deadlocked. This

is an example of how DCop can help debug the deadlock and reveal the data race on inMutex.

To acquire this added information, DCop uses a lightweight instrumentation layer that inter-

cepts the program’s synchronization operations. It records the acquisition callstack for currently

held mutexes in a per-thread event list. A deadlock detector is run whenever the application is

deemed unresponsive, and it determines whether the cause is a deadlock.

The runtime monitor is designed to incur minimal overhead. First key decision was to avoid

contention at all costs, so each thread records the callstack information for its lock/unlock events
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in a thread-local private list. The private lists are merged solely when a deadlock is found (and

thus the application threads are stuck anyway). This avoids introducing any additional runtime

synchronization.

A second design choice was to trim the private lists and keep them to the minimum required

size: every time a mutex is unlocked, DCop finds the corresponding lock event in the list and

discards it—mutexes that are no longer held cannot be involved in deadlocks. Thus, DCop only

keeps track of mutexes that have not yet been released, and so the size of a per-thread event list is

bounded by the maximum nesting level of locking in the program. In our experience, no event lists

ever exceeded 4 elements.

As a result of this design, DCop’s runtime overhead is dominated by obtaining the backtrace on

each mutex acquisition. To reduce this overhead to a minimum, DCop resolves backtrace symbols

offline, since this is expensive and need not be done at runtime.

The deadlock detection component of DCop is activated when the user stops an application

due to it being unresponsive. The detector processes each thread’s list and creates a resource

allocation graph (RAG) based on the events in the lists. The RAG contains a vertex for each active

thread and mutex, and edges correspond to mutex acquisitions (or acquisition requests that have

not succeeded yet). Edges are labeled with the thread id of the acquiring thread and the callstack

corresponding to the lock operation. Once the RAG is constructed, the detector checks for cycles in

the graph—a RAG cycle corresponds to a deadlock. If a deadlock is found, the detector assembles

the corresponding fingerprint based on the callstacks and thread identifiers found on the cycle’s

edges.

DCop’s deadlock detector has zero false positives. Furthermore, since the size of the threads’

event lists is small, assembling a deadlock fingerprint is fast.

For the cycle detection, performed in the monitor, execution time is linear in the average num-

ber of events in the per-thread list and linear in N · (|V |+ |E|) (where RAG = [V,E] and N = the

average number of active threads), because we use optimal colored DFS [76] for detecting cycles.

7.1.3 Implementation

We implemented DCop inside FreeBSD’s libthr POSIX threads library; our changes added 382

LOC. One advantage of recording fingerprints from within the existing threading library is the

opportunity to leverage existing data structures. For example, we added pointers to DCop’s data

structures inside the library’s own thread metadata structure. An important optimization in DCop

is the use of preallocated buffers for storing the backtrace of mutex acquisitions—this removes

memory allocations from the critical path.



94 CHAPTER 7. THE SYNTHESIS-TIME VS. RUNTIME-OVERHEAD TRADE-OFF

 7000

 7100

 7200

 7300

 40  60  80  100  120  140  160  180  200  220
#

 R
e

q
u

e
s
ts

 /
 S

e
c
o

n
d

# Concurrent Clients

Baseline
DCop

Figure 7.2: Comparative request throughput for the Apache 2.2.14 server at various levels of client
concurrency.

7.1.4 Evaluation

Having discussed DCop’s design and implementation, we now turn our attention to the key ques-

tion of whether it is suitable for use in production? We evaluate DCop’s performance on a work-

station with two Intel 4×1.6GHz-core CPUs with 4GB of RAM running FreeBSD 7.0.

First, we employ DCop on interactive applications we use ourselves, such as the emacs text

editor. There is no perceptible slowdown, leading to the empirical conclusion that user-perceived

overhead is negligible. However, since recording mutex operations adds several instructions at

each synchronization operation, (e.g., obtaining the backtrace for a lock operation), some lock

intensive programs may exhibit more overhead.

Next, we use DCop for the Apache Web server with 50 worker threads. We vary the number

of concurrent clients and, for each concurrency level, we execute 5×105 GET requests for a 44-

byte file. In Fig. 7.2 we compare the aggregate request throughput to a baseline without DCop.

The overhead introduced by DCop is negligible throughout, with the worst-case being a less than

0.17% drop in throughput for 200 concurrent clients. Both baseline and DCop throughput decrease

slightly with concurrency level, most likely because there are more clients than worker threads. The

maximum synchronization throughput (lock operations/second) reaches 7249 locks/second.

To analyze DCop’s overhead in depth, we wrote a synchronization-intensive benchmark that

creates 2 to 1024 threads that synchronize on 8 shared mutexes. Each thread holds a mutex for

δin time, releases it, waits for δout time, then tries to acquire another mutex. δin and δout are

implemented as busy loops, thus simulating computation done inside and outside a critical section.

The threads randomly call multiple functions within the microbenchmark, in order to build up

highly varied callstacks (“fingerprints”).

We measure how synchronization throughput varies with the number of threads. In Fig. 7.3 we

show DCop’s overhead for δin=1 microsecond and δout=1 millisecond, simulating a program that

grabs a mutex, updates in-memory shared data structures, releases the mutex, and then performs
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Figure 7.3: Overhead of collecting deadlock fingerprints as a function of the number of threads.

computation outside the critical section. The worst case overhead is less than 0.33% overhead.

The decreasing overhead shows that indeed DCop introduces no lock contention. Instead, the

application’s own contention amortizes DCop’s overhead.

We repeat the experiment for various combinations of 1 ≤ δin ≤ 104 and 1 ≤ δout ≤ 104 mi-

croseconds, simulating applications with a broad range of locking patterns. The measured over-

head ranges from 0.06% in the best case to 0.77% in the worst case. The maximum measured

synchronization throughput reaches 831,864 locks/second.

These results confirm that DCop introduces negligible runtime overhead, thus making it well

suited for running in production, even for server applications. We hope this advantageous cost/ben-

efit trade-off will encourage wider adoption of deadlock fingerprinting.

7.1.5 Discussion

Augmenting bug reports with bug fingerprints can substantially speed up debugging. For example,

a developer debugging a deadlock can get from the deadlock fingerprint all mutexes involved in

the deadlock and the callstacks corresponding to their acquisition calls. This allows the developer

to insert breakpoints at all outer mutex locations and understand how the deadlock can occur.

Bug fingerprints can improve the efficiency of execution synthesis, since they help disam-

biguate between possible executions. Bug fingerprints contain clues that can substantially prune

this search space. For example, a major challenge in execution synthesis for deadlocks is identi-

fying the thread schedule that leads to deadlock. DCop’s deadlock fingerprints narrow down the

set of possible schedules, thus reducing search time. In preliminary measurements, we find that

for a program with three threads and an average lock nesting level of three, the thread schedule

synthesis phase of execution synthesis can be reduced by an order of magnitude.
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Bug Fingerprints for Other Bug Types

Choosing what runtime information to include in a given fingerprint is specific to each class of

bugs. We illustrate this process with two examples: data races and unchecked function returns.

A bug fingerprint for a data race-induced failure contains information on the races that mani-

fested during execution prior to the failure in the bug report. This way, it is possible to determine

which potential data races influenced the execution and which did not. However, monitoring mem-

ory accesses efficiently is not easy.

An efficient data race fingerprinting system employs static analysis to determine offline, prior

to execution, which memory accesses are potential data races [73, 81]. It then monitors at runtime

only these accesses. We see two options to perform such monitoring with low overhead: debug

registers and transactional memory (TM). x86 debug registers [64] can be configured to deliver an

interrupt to a monitor thread whenever two memory accesses to the same address are not ordered

by a happens-before relation and at least one of the access is a write (i.e., a data race occurred).

The corresponding program counters and memory address are then saved for later inclusion in the

bug report, should a failure occur. One drawback is that today’s CPUs can monitor only a small

set of addresses at a time, so debug registers can be used to watch only a subset of the statically-

discovered potential races. An alternative approach is to use the conflict detection mechanism of

TM to detect data races, and record the fingerprint. If TM features are available in hardware, this

can be done quite efficiently.

Another interesting class of bugs appears in code that “forgets” to check all possible return

values of a library function. For example, not checking whether a socket read() call returned

-1 can lead to data loss (if caller continues as if all data was read) or even memory corruption (if

return value is used as an index). For such unchecked-return bugs, the fingerprint contains (a) the

program locations where a library function call’s return value was not checked against all possible

return values, and (b) the actual return value. Such fingerprinting can be done with low overhead

by statically analyzing the program binary to determine the places in the program where library

calls are not properly checked (e.g., using the LFI callsite analyzer [88]), and monitoring at runtime

only those locations.

For most bug types, a general solution is to incrementally record the execution index [122] and

include it in the bug fingerprint. The execution index is a precise way to identify a point in an

execution and can be used to correlate points across multiple executions. Such a bug fingerprint

can be used to reason with high accuracy about the path that the program took in production, but

has typically high recording overhead (up to 42% [122]). It is possible to reduce the overhead by

recording only a partial execution index (e.g., by sampling) that, although less precise, can still

offer clues for debugging.

It is practical to fingerprint any class of bugs, as long as the runtime information required to



7.2. AUTOMATICALLY CLASSIFYING DATA RACE BUGS 97

disambiguate possible executions that manifest the bug can be recorded efficiently. Fingerprinting

mechanisms can leverage each other, so that collecting fingerprints for n classes of bugs at the

same time is cheaper than n times the average individual cost.

This section described how to speed up the debugging of several types of bugs using small

pieces of recorded runtime information. This work appeared in [134].

7.2 Recording the Thread Schedule to Automatically Classify

Data Race Bugs

Even though most data races are harmless, the harmful ones are at the heart of some of the worst

concurrency bugs. Alas, spotting just the harmful data races in programs is like finding a needle in

a haystack: 76%-90% of the true data races reported by state-of-the-art race detectors turn out to

be harmless [95].

We built Portend [72], a tool that not only detects races but also automatically classifies them

based on their potential consequences: Could they lead to crashes or hangs? Could their effects

be visible outside the program? Are they harmless? Portend achieves high accuracy by efficiently

analyzing multiple paths and multiple thread schedules in combination.

Multi-path analysis in Portend is based on hybrid execution synthesis: Portend records the

thread schedule of an execution and then uses execution synthesis to find alternative executions

that follow the same thread schedule. The additionally synthesized executions help increase clas-

sification accuracy.

We ran Portend on 7 real-world applications: it detected 93 true data races and correctly clas-

sified 92 of them, with no human effort. 6 of them are harmful races. Portend’s classification ac-

curacy is up to 89% higher than that of existing tools, and it produces easy-to-understand evidence

of the consequences of harmful races, thus both proving their harmfulness and making debugging

easier. We envision Portend being used for testing and debugging, as well as for automatically

triaging bug reports.

7.2.1 Problem Statement

Data races are some of the worst concurrency bugs. As programs become increasingly parallel, we

expect the number of data races they contain to increase. Eliminating all data races still appears

impractical. First, synchronizing all racing memory accesses would introduce performance over-

heads that may be considered unacceptable. For example, for the last year, developers have not

fixed a race in memcached that can lead to lost updates—ultimately finding an alternate solution—

because it leads to a 7% drop in throughput [91]. Performance implications led to 23 data races
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in Internet Explorer and Windows Vista being purposely left unfixed [95]. Similarly, several races

have been left unfixed in the Windows kernel, because fixing those races did not justify the associ-

ated costs [69].

Another reason why data races go unfixed is that 76%–90% of data races are considered harm-

less by developers [69, 95, 44, 117]—harmless races do not affect program correctness, either

fortuitously or by design, while harmful races lead to crashes, hangs, resource leaks, even memory

corruption or silent data loss. Deciding whether a race is harmful or not involves a lot of human la-

bor (with industrial practitioners reporting that it can take days, even weeks [57]), so time-pressed

developers may not even attempt this high-investment/low-return activity. On top of all this, static

race detectors can have high false positive rates (e.g., 84% of races reported by [117] were not true

races), further disincentivizing developers. Alas, automated classifiers [66, 69, 95, 111] are often

inaccurate (e.g., [95] reports a 74% false positive rate in classifying harmful races).

In this thesis we will only focus on how hybrid execution synthesis is used in Portend. A full

description of Portend is available in [72] and is beyond the scope of this thesis. In the rest of this

chapter we provide a high level overview of Portend (Section 7.2.2) and evaluate the contribution

of hybrid execution synthesis to classification accuracy (Section 7.2.3).

7.2.2 Design

Classification Categories

Portend automatically classifies data races into four categories: “specification violated”, “single

ordering”, “output differs”, and “k-witness harmless”. We illustrate this taxonomy in Fig. 7.4.

true posi�ves false posi�ves

harmful harmless

specViol outDiff k-witness singleOrd

Figure 7.4: Portend taxonomy of data races.

“Spec violated” corresponds to races for which at least one ordering of the racing accesses

leads to a violation of the program’s specification. These are, by definition, harmful. For example,

races that lead to crashes or deadlocks are generally accepted to violate the specification of any

program; we refer to these as “basic” specification violations.

“Output differs” is the set of races for which the two orderings of the racing accesses can lead

to the program generating different outputs, thus making the output depend on scheduling. Such

races are often considered harmful: one of those outputs is likely “the incorrect” one. However,
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“output differs” races can also be harmless, whether intentional or not. For example, a debug

statement that prints the ordering of the racing memory accesses is intentionally order-dependent,

thus an intentional harmless race.

“K-witness harmless” are races for which the harmless classification is performed with some

quantitative level of confidence: the higher the k, the higher the confidence. Such races are guar-

anteed to be harmless for at least k combinations of paths and schedules; this guarantee can be as

strong as covering a virtually infinite input space (e.g., a developer may be interested in whether

the race is harmless for all positive inputs, not caring about what happens for zero or negative in-

puts). Depending on the time and resources available, developers can choose k according to their

needs—in our experiments we found k = 5 to be sufficient to achieve 99% accuracy for all the

tested programs.

“Single ordering” are races for which only a single ordering of the accesses is possible, typ-

ically enforced via ad-hoc synchronization [123]. In such cases, although no explicit synchro-

nization primitives are used, the shared memory could be protected using busy-wait loops that

synchronize on a flag. We consider this a race because the ordering of the accesses is not enforced

using synchronization primitives, even though it is not actually possible to exercise both interleav-

ings of the memory accesses (hence the name of the category). Such ad-hoc synchronization, even

if bad practice, is frequent in real-world software [123]. Previous data race detectors generally

cannot tell that only a single order is possible for the memory accesses, and thus report this as a

race; such cases turn out to be a major source of harmless data races [66, 111].

Overview

The challenge in accurately classifying data races is finding multiple executions that exercise the

same data race: more executions provide higher classification accuracy. Portend’s race analy-

sis starts by executing the target program and dynamically detecting data races using a dynamic

happens-before [78] data race algorithm. For each of the data races, Portend records the thread

schedule and uses it as a trace of execution breadcrumbs. Subsequently, Portend uses execution

synthesis to find multiple executions that match the same breadcrumbs and thus increase data race

classification accuracy.

First, Portend replays the schedule in the trace up to the point where the race occurs (Fig. 7.5a).

Then, it explores two different executions: one in which the original schedule is followed (the

primary) and one in which the alternate ordering of the racing accesses is enforced (the alternate).

Some classifiers compare the primary and alternate program state immediately after the race, and,

if different, flag the race as potentially harmful. Even if program outputs are compared rather

than states, “single-pre/single-post” analysis (Fig. 7.5a) may not be accurate, as we will show

below. Portend uses “single-pre/single-post” analysis to record the execution breadcrumbs and to
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Figure 7.5: Increasing levels of completeness in terms of paths and schedules: [a. single-
pre/single-post]≪ [b. single-pre/multi-post]≪ [c. multi-pre/multi-post].

determine whether the alternate schedule is possible at all. In other words, this stage identifies any

ad-hoc synchronization that might prevent the alternate schedule from occurring.

If there is a difference between the primary and alternate post-race states, Portend does not

consider the race as necessarily harmful. Instead, we allow the primary and alternate executions to

run, independently of each other, and we observe the consequences. If, for instance, the alternate

execution crashes, the race is harmful. Of course, even if the primary and alternate executions

behave identically, it is still not certain that the race is harmless: there may be some unexplored

pair of primary and alternate paths with the same pre-race prefix as the analyzed pair, but which

does not behave the same. This is why single-pre/single-post analysis is insufficient, and we need

to explore multiple post-race paths. This motivates “single-pre/multi-post” analysis (Fig. 7.5b), in

which multiple post-race execution possibilities are explored—if any primary/alternate mismatch

is found, the developer must be notified.

Even if all feasible post-race paths are explored exhaustively and no mismatch is found, one

still cannot conclude that the race is harmless: it is possible that the absence of a mismatch is an

artifact of the specific pre-race execution prefix, and that some different prefix would lead to a

mismatch. Therefore, to achieve higher confidence in the classification, Portend uses hybrid exe-

cution synthesis to explores multiple feasible paths even in the pre-race stage, not just the one path

witnessed by the race detector. This is illustrated as “multi-pre/multi-post” analysis in Fig. 7.5c.

The advantage of doing this vs. considering these as different races is the ability to systematically

explore these paths.

Portend combines multi-path analysis with multi-schedule analysis, since the same path through

a program may generate different outputs depending on how its execution segments from different

threads are interleaved. The branches of the execution tree in the post-race execution in Fig. 7.5c

correspond to different paths that stem from both multiple inputs and schedules.

Hybrid Execution Synthesis

The “multi-pre” analysis in Portend is done using hybrid execution synthesis.
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The goal of this step is to explore variations of the single paths found in the previous step (i.e.,

the primary and the alternate) in order to expose Portend to a wider range of execution alternatives.

First, Portend uses hybrid execution synthesis to find multiple primary paths that satisfy the

input trace, i.e., they (a) all experience the same thread schedule (up to the data race) as the input

trace, and (b) all experience the target race condition. These paths correspond to different inputs

from the ones in the initial race report.

To synthesize multiple paths that traverse the same execution breadcrumbs (the recorded thread

schedule), Portend now executes the primary symbolically. This means that the target program

is given symbolic inputs instead of regular concrete inputs. When an expression with symbolic

content is involved in the condition of a branch, both options of the branch are explored, if they are

feasible. The resulting path(s) are annotated with a constraint indicating that the branch condition

holds true (respectively false). Thus, instead of a regular single-path execution, we get a tree of

execution paths, similar to the search space of execution synthesis.

During hybrid execution synthesis, Portend prunes the paths that do not obey the thread sched-

ule (the execution breadcrumbs) in the trace, thus excluding the (many) paths that do not enable

the target race. Moreover, Portend attempts to follow the original trace only until the second racing

access is encountered; afterward, it allows execution to diverge from the original schedule trace.

This enables Portend to find more executions that partially match the original schedule trace.

In this section we discussed how hybrid execution synthesis is used in Portend to find multiple

executions that reproduce the same data race. In the next section we empirically evaluate the

contribution of this technique to data race classification accuracy.

7.2.3 Evaluation

In this section we will briefly describe Portend’s results and then analyze the influence that Por-

tend’s hybrid execution synthesis component has on classification accuracy.

We apply Portend to 7 applications: SQLite, an embedded database engine (used, for example,

by Firefox, iOS, Chrome, and Android), that is considered highly reliable, with 100% branch

coverage [108]; Pbzip2, a parallel implementation of the widely used bzip2 file compressor [53];

Memcached [47], a distributed memory object cache system (used, for example, by services such

as Flickr, Twitter and Craigslist); Ctrace [90], a multi-threaded debug library; Bbuf [125], a shared

buffer implementation with a configurable number of producers and consumers; Fmm, an n-body

simulator from the popular SPLASH2 benchmark suite [120]; and Ocean, a simulator of eddy

currents in oceans, from SPLASH2.

Portend classifies with 99% accuracy the 93 known data races we found in these programs,

with no human intervention, in under 5 minutes per race on average.
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Figure 7.6: Breakdown of the contribution of each technique toward Portend’s accuracy. We start
from single-path analysis and enable one by one the other techniques: ad-hoc synchronization
detection, multi-path analysis, and finally multi-schedule analysis.

Multi-path multi-schedule exploration—which uses hybrid execution synthesis—proved to be

crucial for Portend’s accuracy. Fig. 7.6 shows the breakdown of the contribution of each technique

used in Portend: ad-hoc synchronization detection, multi-path analysis, and multi-schedule anal-

ysis. In particular, for 16 out of 21 “output differs” races (6 in bbuf, 9 in ctrace, 1 in pbzip2) and

for 1 “spec violated” race (in ctrace), single-path analysis revealed no difference in output; it was

only multi-path multi-schedule exploration that revealed an output difference (9 races required

multi-path analysis for classification, and 8 races required also multi-schedule analysis). With-

out multi-path multi-schedule analysis, it would have been impossible for Portend to accurately

classify those races by just using the available test cases.

This section described how to use hybrid execution synthesis to synthesize multiple executions

that reproduce the same data race, in order to improve the accuracy of a data race classifier. This

work was published in [72].

The following chapter describes future work ideas on how to improve the debugging techniques

described in this thesis.



Chapter 8

Future Work

In this chapter we discuss several future work ideas related to both forward and reverse execution

synthesis.

One drawback of the proximity-guided search used by execution synthesis is that it does not

learn from the paths that are proven to be infeasible. To illustrate this, assume that execution

synthesis finds a path that reproduces the failure, but this path would be proven infeasible by the

constraint solver. The next path picked by ESD’s dynamic searcher would be the one with the best

proximity to the goal (e.g., the failure location). However, if this path proves to be infeasible for a

similar reason (e.g., a previous if branch was taken by both paths in the execution tree), ESD does

not attempt to identify the reason. Instead, ESD is agnostic to the structure of the constraint that

makes paths infeasible. A solution to this problem is to gain visibility into the constraint solver

and identify the reason why a path is infeasible. This can be done using existing algorithms that

compute the UNSAT core [84, 31] of a constraint. UNSAT cores are the minimal unsatisfiable

subsets of a constraint solver query. The UNSAT core can provide ESD a way to transform an

infeasible execution path into another execution path that is more likely to reach the coredump.

Thus, leveraging the UNSAT core can help execution synthesis better search through the execution

tree for a path that explains the coredump.

We see a clear opportunity in using ESD to weed out false positives generated by static analysis

tools, such as race and deadlock checkers [44]. Static analysis is powerful and typically complete,

but these properties come at the price of soundness: static analyzers commonly produce large

numbers of false positives, and selecting the true positives becomes a laborious human-intensive

task. Fortunately, the output of such tools is already similar to a bug report, so ESD could be used

“out of the box” to validate each suspected bug: if ESD finds a path to the bug, then it is a true

positive. We plan to explore in future work the synergy between such tools and our execution

synthesis technique.

Existing hardware can help record some runtime information without any overhead. However,
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this information is not currently leveraged for debugging (i.e., it is not part of the coredump). For

instance, the Last Branch Record (LBR) in Intel CPUs stores the source and destination addresses

of the last 16 branches with virtually no overhead. LBR provides a precise execution suffix that

can substantially trim the search space in RES. The length of the trace provided by LBR can be

extended by configuring the hardware to filter information that can be easily inferred offline (e.g.,

LBR could filter taken conditional branches, and RES would use the CFG of the program to reverse

engineer the taken conditional branches). One challenge is saving the LBR logs from all the cores

to the coredump right when the failure occurs.

In future work, we plan to augment coredumps with the Last Branch Record (LBR) logs. We

plan to identify other sources of readily available short-term log information available in hardware,

in addition to LBR. LBR is a suitable source of information because it does not incur any perfor-

mance penalty at runtime. If runtime overhead is acceptable, we could use Cyrus [63], a hardware

solution for recording the traces of thread interleaving with low runtime overhead. However the

hardware on which Cyrus is based on is not yet available in commodity CPUs.

Our current RES prototype is implemented on top of Cloud9 [22] and LLVM [79], however we

plan to implement it on top of S2E [29] in order to make it applicable to program binaries. The

main challenge in implementing a prototype based on S2E is loss of semantic information from

LLVM to x86, which will limit the effectiveness of the static analysis used by RES.

A prototype based on S2E would also enable RES to analyze the coredumps produced by a vir-

tual machine monitor (VMM), such as VMWare [115]. Focusing on VMM coredumps has several

advantages compared to other programs. First, the scale of the problem is smaller: the execution

paths are short (on the order of a few microseconds at most, because the VMM is designed to run

infrequently for short periods of time, handle privileged operations and then cease control of the

execution to the virtual machine or the guest operating system), the call stacks in the coredumps

are typically a few frames, and the address space is small (e.g., 4MB for the 32-bit version of

VMWare Workstation). Second, vendors such as VMWare have a large collection of VMM core-

dumps [116], and most of them have already been manually assigned to known bugs, which would

facilitate evaluating RES on coredumps from a real deployment.



Chapter 9

Conclusion

This thesis introduces execution synthesis, a technique for automatically debugging real software.

Execution synthesis starts from a bug report and automatically synthesizes an execution that causes

the bug to manifest. Developers can then deterministically play back this execution in their favorite

debugger as many times as necessary to generate a fix. Execution synthesis requires no program

modifications and no runtime tracing, thus introducing no runtime overhead.

The thesis presents a theoretical evaluation and an empirical evaluation of execution synthesis,

showing how ESD, an embodiment of the execution synthesis technique, can reproduce, with no

human intervention, concurrency bugs and crashes reported in real applications. It took less than

three minutes to synthesize explanations for these bugs, which suggests ESD is practical for fre-

quent use during development and debugging. To the best of our knowledge, ESD is the first tool

that can automatically synthesize fully accurate executions that can be played back to reproduce

bugs that occurred in the field, without incurring the overhead of execution tracing.

In order to automatically debug arbitrarily long executions—the main limitation of execution

synthesis—this thesis introduced reverse execution synthesis. Like execution synthesis, reverse

execution synthesis automates the debugging of failures that occur in production systems, without

having to resort to runtime recording. Reverse execution synthesis takes as input a program and

a coredump, and outputs the suffix of an execution that leads that program to that coredump. By

reproducing just an execution suffix instead of the entire execution, reverse execution synthesis is

suitable for arbitrarily long executions for which the root case and the failure are close to each

other. Reverse execution synthesis could be used to improve a wide range of debugging-related

tasks, such as automatic triaging of bug reports, identifying failures caused by hardware faults, and

automating debugging processes that are human labor-intensive.

This thesis also shows how execution synthesis can be coupled with the lightweight recording

of execution breadcrumbs in order to accurately diagnose data race bugs or to speed up deadlock

debugging.
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