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Threshold modeling of extreme spatial rainfall

E. Thibaud,1 R. Mutzner,2 A.C. Davison,1

Abstract. We propose an approach to spatial modeling of extreme rainfall, based on
max-stable processes fitted using partial duration series and a censored threshold like-
lihood function. The resulting models are coherent with classical extreme-value theory
and allow the consistent treatment of spatial dependence of rainfall using ideas related
to those of classical geostatistics. We illustrate the ideas through data from the Val Fer-
ret watershed in the Swiss Alps, based on daily cumulative rainfall totals recorded at
24 stations for four summers, augmented by a longer series from nearby. We compare
the fits of different statistical models appropriate for spatial extremes, select that best
fitting our data and compare return level estimates for the total daily rainfall over the
stations. The method can be used in other situations to produce simulations needed for
hydrological models, and in particular for the generation of spatially heterogeneous ex-
treme rainfall fields over catchments.

1. Introduction

The spatial modeling of rainfall is a long-standing topic
in the environmental sciences, and has grown in importance
with the realisation that a warming world is likely to bring
more intense precipitation events, and thus higher risk to
infrastructure and populations. The topic is currently a
highly active research area, some recent articles being Yang
et al. [2005], Cooley et al. [2007], Feng et al. [2007], Vrac and
Naveau [2007], Zheng and Katz [2008], Van de Vyver [2012],
Shang et al. [2011] and Villarini et al. [2011]. Wilks and
Wilby [1999] and Chandler et al. [2006] review the earlier
literature. The emphasis on rare events means that extreme
value statistics [Coles, 2001; Beirlant et al., 2004] are widely
used to estimate return levels and associated quantities.
Classical statistics of extremes [Katz et al., 2002] underpins
standard approaches to the analysis of annual maximum or
partial duration series, using block maxima or peaks over
threshold methods respectively, but tools for spatial analy-
sis that extend the classical extreme-value models have only
recently begun to be used. The simplest approach to spa-
tial analysis is to fit extreme-value distributions separately
to each of many time series, as for example in Feng et al.
[2007], and then to ignore any spatial correlation between
the individual fits, though Madsen et al. [2002] suggest a
more sophisticated approach. In some cases this type of
model may be appropriate, but in others involving spatial
quantities such as joint return levels or areal rainfall, spa-
tial dependence must be taken into account, and models are
then needed that respect appropriate dependence properties
of extremal distributions.

Max-stable processes [de Haan, 1984; de Haan and Fer-
reira, 2006; Davison et al., 2012] extend the generalized
extreme-value distribution, which is widely used to describe
univariate maxima, to the spatial setting, and thus provide
consistent multivariate distributions for maxima in arbitrary
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dimensions. Although proposed some time ago [Smith, 1990;
Coles, 1993; Coles and Tawn, 1996] such processes have
been little applied until very recently. Padoan et al. [2010]
show how composite likelihood methods can be used to fit
max-stable processes, and illustrate this with US rainfall
data. Shang et al. [2011] use them to gauge the effect of El
Niño–Southern Oscillation on winter rainfall in California,
and Westra and Sisson [2011] use them to understand how
extreme rainfall in Eastern Australia depends on explana-
tory variables such as the Southern Oscillation index and
sea surface temperature. All three papers have the limita-
tions of using block maxima and fitting only a single family
of max-stable models, however, whereas in many applica-
tions it would be preferable to use threshold exceedances,
which make more efficient use of the data, and to be able
to compare several model classes. Indeed, Davison et al.
[2012] found that other max-stable models fit extreme rain-
fall data appreciably better than the Smith [1990] model
used by Shang et al. [2011] and Westra and Sisson [2011].
Huser and Davison [2013a] show that the Smith model also
has theoretical drawbacks. Renard [2011] describes another
approach to annual maximum rainfall analysis, based on
Bayesian hierarchical models using a copula approach [Sang
and Gelfand , 2010], but mentions that use of max-stable
modeling of spatial dependence might constitute an im-
provement. Davison et al. [2012] found that max-stable
models indeed provided better estimates of extreme spatial
rainfall than did Bayesian and standard copula approaches.
The copula approach of Salvadori and Michele [2010] is in-
tended for a given network of gauge stations rather than for
a truly spatial analysis. Buishand et al. [2008] use a rather
special max-stable model to simulate daily spatial rainfall in
a homogeneous region of North Holland, but their approach
would be difficult to generalise to more complex settings.

The contributions of the present paper are to explain how
max-stable models for extreme spatial rainfall may be fitted
to several simultaneous partial duration series using thresh-
olds and a censored likelihood approach, to fit a variety of
models to daily rainfall data in a small spatial domain, and
to extend the max-stable models themselves by fitting so-
called inverted max-stable models, which allow more flexible
forms of tail behaviour that are coherent with recent devel-
opments in statistics of extremes. We illustrate the ideas
using data from 24 rainfall time series over a small upland
domain, supplemented by a longer series from a nearby site.

Section 2 describes briefly the study site and details how
the data we analyze were collected. Section 3 presents the
main results about extremes used in this paper. Inference
tools, which are based on Gaussian models and composite
likelihood, are explained in Section 4 and applied in Sec-
tion 5. Functions for fitting our models were written in R
[R Development Core Team, 2012].
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2. Study area and available data

The dataset used in this study stems from an experimen-
tal catchment (see Figure 1) located in the Val Ferret re-
gion in the Swiss Alps, a valley in the southernmost ridge
that borders Italy. The study area covers a total surface of
20.4 km2 with elevation ranging from 1773 m above mean
sea level (amsl) at the outlet of the catchment to 3206 m
amsl; its mean elevation is 2423 m amsl. It is character-
ized by moderate to steep slopes (mean slope: 31.6◦, max-
imum: 88.9◦). The watershed is mainly oriented southeast
to northwest and is a sub-catchment of the Dranse de Ferret,
a tributary of the Rhone. The land use consists mostly of
vegetation (mountain grassland 58 % and shrubs 2 %) and
bare ground (bedrock outcrops 24.7 % and rocks 12.7 %).
A small glacier and three small lakes feed the Dranse de
Ferret throughout the year. During spring, snowmelt is the
main contributor to the discharge, though extreme rainfall
events and occasional snowfall are more important in early
autumn and can lead to large rainfall runoff peaks in the
hydrograph.

The site was chosen because there is the very little an-
thropogenic influence on the hydrological regime and micro-
meteorological processes, and its representativeness of small
alpine watersheds. Since 2008, it has been heavily moni-
tored with gauging stations and a wireless network of small
meteorological stations relying on Sensorscope technology
[SensorScope, Ingelrest et al., 2010]. Cumulative precipi-
tation is measured every minute with tipping bucket rain
gauges (Davis Rain Collector II), along with air humidity
and temperature, skin temperature, wind speed and direc-
tion, incoming solar radiation, soil moisture and suction.
In such complex terrain, meteorological characteristics may
vary greatly over small spatial scales, and this is usually not
captured by remote sensing techniques. In order to mea-
sure this spatial variability, ten Sensorscope stations were
deployed in 2009, 15 in 2010, 26 in 2011 and 24 in 2012.
There are three permanent stations, but the others are usu-
ally only deployed from May to October, due to the many
avalanches in the area. Using these data, the impact of
the spatial variability of the main hydrological forcings on
hydrological models has been assessed [Simoni et al., 2011]
and degree-day snowmelt models have been improved [Tobin
et al., 2012].

In this study, we restrict our analysis to a subset of 24
stations, of which eight were deployed during the four field
campaigns. Some stations were moved and thus are consid-
ered to be different for the different years. About 58% of
the data in the 24 time series are missing, with 470 days
of records for the longer time series and only 47 for the
shortest; but with more than 100 days for 21 series. We
could have excluded stations with very few data, but we kept
them in order to improve the estimation of spatial associ-
ation. The high number of missing data is mainly because
not all the stations were deployed each year. Moreover, due
to the harsh conditions in this high altitude catchment, the
remote location of the stations and some wireless commu-
nication failures, data from some stations exhibit gaps of
several days. However, the missing data is independent of
the rainfall amounts and thus will not bias our analysis.

With such a short period of records, estimates of ex-
tremal characteristics are very variable. We therefore added
another station located outside the catchment. The Swiss
federal office of climatology and meteorology, MétéoSuisse,
deploys weather stations all over the country, one of which
is situated at the Col du Grand St-Bernard (GSB), only
5 km away from most of the stations deployed in the Val
Ferret. This station is located at 2472 m amsl, with simi-
lar topographic conditions to those of the catchment. More
than 31 years of data (from 1982 to 2012) are recorded at
this station with good quality sensors, and with few missing

data. Inclusion of these data can be expected to improve our
estimation of the marginal distribution of extreme events.

To reduce the strong temporal dependence, the precipi-
tation is cumulated on a daily basis centered at noon. The
resulting daily cumulative rainfall time series for the 24 sta-
tions of the Val Ferret catchment, some of which are shown
in Figure 2, display the expected strong dependence across
series, but only limited serial dependence. The most ex-
treme daily value recorded in the catchment during these
four summers is 58 mm, and 109 mm at the GSB during the
31 summers (see Figure 3). Statistical models that are ca-
pable of consistent extrapolation beyond available data are
needed to estimate probabilities for higher rainfall levels,
and these are provided by extreme value theory.

3. Extreme value theory

3.1. Univariate theory

Extreme value theory began with results of Fisher and
Tippett [1928] on the limiting distributions of linearly
rescaled maxima of a sample of independent random vari-
ables. If such a limiting distribution H exists and is non-
degenerate, then it must be max-stable, i.e.,

Hn(αnx+ βn) = H(x), (1)

for all n > 1 and for some αn > 0 and βn. In the univariate
case, max-stable distributions are of the form [Coles, 2001,
Ch. 3]

H(x) = exp

[

−
{

1 + ξ
(

x− µ

σ

)}−1/ξ

+

]

, (2)

where a+ = max(a, 0) for a real number a, with location
parameter −∞ < µ < ∞, scale parameter σ > 0, and shape
parameter −∞ < ξ < ∞; the case ξ = 0 is interpreted as
the limit for ξ → 0. The generalized extreme-value (GEV)
distribution H encompasses the Weibull (ξ < 0), Gumbel
(ξ = 0) and Fréchet (ξ > 0) cases. The shape parameter
determines the weight of the tail of H ; in particular, H has
a finite upper limit for ξ < 0. The distributions of other
extreme order statistics and of threshold exceedances are
closely related to this basic result on maxima.

Partial duration series analysis was developed by hydrol-
ogists in the 1940s [see Langbein, 1949] and became increas-
ingly popular in the 1970s [Todorovic and Rousselle, 1971;
Todorovic and Zelenhasic, 1970]. Following theory devel-
oped by Pickands [1975], these threshold models were gen-
eralized by Davison and Smith [1990]. Under suitable con-
ditions and for a sufficiently high threshold u, the upper tail
distribution of a wide class of random variables X can be
well approximated by

G(x) = 1− Pr(X > x)

= 1− ζu

{

1 + ξ

(

x− u

τ + ξu

)}−1/ξ

+

, x > u, (3)

where τ +ξu > 0, −∞ < ξ < ∞ and ζu = Pr(X > u). Here
ζu is the probability that the threshold u is exceeded, and τ
and ξ are respectively scale and shape parameters determin-
ing the distribution of exceedances, ξ corresponding to those
of the limiting distribution of maxima (2). The parametriza-
tion of the generalized Pareto distribution (GPD), whose
survivor function appears in the braces on the right of (3),
is different from the usual one [Coles, 2001, Ch. 4] and has
the advantage that the parameters τ and ξ do not depend
on the choice of threshold u.
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Equation (3) provides a model for the extremes of inde-
pendent stationary data. To account for dependence and
non-stationarity, declustering and covariate regression are
often used [Chavez-Demoulin and Davison, 2012], some-
times using nonparametric methods [Davison and Ramesh,
2000; Hall and Tajvidi , 2000; Ramesh and Davison, 2002;
Chavez-Demoulin and Davison, 2005]. Examination of
our data shows no evidence of temporal or spatial non-
stationarity, but in order to avoid dealing with intra-day
effects we model daily cumulative rainfall.

One way to investigate dependence in extremes of a sta-
tionary time series {Xt} is through the extremogram [Davis
and Mikosch, 2010], various choices of which are possi-
ble. We employ the tail dependence coefficient [Ledford and
Tawn, 1996],

̺(h) = lim
u→∞

Pr(Xt > u | Xt+h > u), h = 1, 2, . . . , (4)

which can be estimated by considering the joint exceedances
of Xt and Xt+h above some fixed finite u. Figure 4 shows
this with u corresponding to the empirical 90% quantile of
the daily rainfall data for a subset of the data. There is
slight dependence for h = 1, but it vanishes as u increases.
For simplicity we model daily rainfall fields as independent
from day to day; this should have little impact on our con-
clusions.

3.2. Spatial extremes

Ignoring the spatial nature of extreme events is inappro-
priate in situations involving estimation of quantities that
depend on the multivariate distribution of the process, for
example, joint return levels of rainfall at several locations
or the discharge from the catchment; see Davison and Gho-
lamrezaee [2012]. Spatial modeling of extremes is needed for
such purposes. Below we present the natural spatial exten-
sion of the univariate extreme value distributions, namely
max-stable processes.

Max-stable processes are spatial extensions of the max-
stable distributions satisfying (1). By analogy with the uni-
variate case, they arise as the only possible class of limits for
rescaled component-wise maxima of spatial processes. Con-
sider independent stochastic processes {Si(x)}

∞
i=1 defined

for x lying within a spatial domain X and with continuous
sample paths, and suppose that there exist rescaling func-
tions an(x) > 0 and bn(x) such that the sequence of rescaled
maxima

Zn(x) =
max{S1(x), . . . , Sn(x)} − bn(x)

an(x)
, x ∈ X ,

converges weakly to a process Z(x) having a non-degenerate
distribution for each x ∈ X . Then the only possibility is
that the limiting process {Z(x)}x∈X is max-stable [de Haan
and Ferreira, 2006, Chap. 9]: in analogy with (1), after
a suitable linear rescaling, for any positive integer k, the
pointwise maximum of k independent copies of {Z(x)}x∈X

has the same distribution as does {Z(x)}x∈X itself. For
each site x, the scalar Z(x) has a GEV distribution, and for
any finite set of sites {x1, . . . , xD} ∈ X , the corresponding
variates Z(x1), . . . , Z(xD) have a multivariate extreme-value
distribution [Tawn, 1988]. There is a close analogy here to
a spatial Gaussian process, all of whose finite-dimensional
margins are Gaussian.

Just as it is convenient to standardize the marginal dis-
tributions of a Gaussian process, it is convenient to trans-
form the max-stable process Z(x) to have a unit Fréchet
marginal distribution, i.e., Pr{Z(x) ≤ z} = exp(−1/z), for
x ∈ X and z > 0. In this case the process {Z(x)}x∈X is
called simple max-stable, the renormalising sequences are
an(x) ≡ n, bn(x) ≡ 0, and the joint distribution function of

Z(x1), . . . , Z(xD) can be written as

Pr {Z(x1) ≤ z1, . . . , Z(xD) ≤ zD} = exp {−V (z1, . . . , zD)} , z1, . . . , zD > 0,

(5)

where the so-called exponent measure function V satis-
fies tV (tz1, . . . , tzD) = V (z1, . . . , zD) for any t > 0 and
V (+∞, . . . ,+∞, zd,+∞, . . . ,+∞) = 1/zd for each d =
1, . . . , D.

A key result stemming from the work of de Haan [1984]
is that every simple max-stable process can be represented
in the form

Z(x) = max
i≥1

Wi(x)/Ti, x ∈ X , (6)

where 0 < T1 < T2 < · · · are the points of a unit-rate Pois-
son process on the positive half-line and the Wi(x) are inde-
pendent replicates of a non-negative random process W (x)
that satisfies E{W (x)} = 1 for each x ∈ X . Expression
(6) can be interpreted in terms of a “rainfall-storms” model,
where the T−1

i are the storm amplitudes, the Wi(x) are their
shapes, and Z(x) represents the effect of the largest storm
observed at x. This interpretation of max-stable processes
has affinities to the stochastic rainfall models of Rodriguez-
Iturbe et al. [1987, 1988] and Cox and Isham [1988], and
Huser and Davison [2013b] exploit this to construct a space-
time model for extreme hourly rainfall. In terms of W (x),
the exponent measure function in (5) may be written as

V (z1, . . . , zD) = E

[

max
d=1,...,D

{

W (xd)

zd

}]

, (7)

but although this function can usually be computed for
D = 2, it is only available for D ≥ 3 in a few special cases.
We discuss the consequences of this in §4.

Max-stable processes are asymptotically dependent [Led-
ford and Tawn, 1996], when the limit

lim
z→∞

Pr{Z(x1) > z | Z(x2) > z} = 2− θ(x1, x2) ≥ 0 (8)

is strictly positive for pairs of sites x1, x2 ∈ X . The so-
called extremal coefficient θ(x1, x2) lies in the interval [1, 2]
and summarizes the asymptotic dependence between Z(x1)
and Z(x2). If θ(x1, x2) = 2, then the extremes at x1 and
x2 are ultimately independent for very high z, whereas if
θ(x1, x2) = 1, they are completely dependent. It is straight-
forward to see that θ(x1, x2) = V (1, 1), where V is the ex-
ponent measure function given by (5) and (7) for Z(x1) and
Z(x2), i.e., in the case D = 2.

The discussion above and the existing literature focus
on maxima of spatial processes, but in applications thresh-
old modeling is preferable for the reasons discussed in §3.1.
Huser and Davison [2013b] extend the threshold approach
and use it to fit a model for extreme spatio-temporal rain-
fall, based on the bivariate threshold likelihood described
by Coles [2001, §8.3.1]. Let (Y1, Y2) be a bivariate process
whose large values are to be modeled. First, note that if Y1

and Y2 have marginal unit Fréchet distributions, then un-
der the conditions needed for the joint distribution of their
maxima to be max-stable, we have for sufficiently large z1
and z2 that [Coles, 2001, §8.3.1]

Pr(Y1 ≤ z1, Y2 ≤ z2) ≈ exp {−V (z1, z2)} . (9)

Expression (9) implies that we can use the joint distribution
for maxima to approximate the joint upper tail of (Y1, Y2),
for sufficiently large values of these variables.

In practice the marginal distributions of Y1 and Y2

will not be unit Fréchet. However the monotone increas-
ing transformations t1(x) = −1/ log Ĝ1(x) and t2(x) =



X - 4 THIBAUD, MUTZNER AND DAVISON: THRESHOLD MODELING OF EXTREME SPATIAL RAINFALL

−1/ log Ĝ2(x), where Ĝ1, Ĝ2 are fitted generalized Pareto
distributions (3), are such that the bivariate random vari-
able (t1(Y1), t2(Y2)) has approximately unit Fréchet margins
for Y1 > u1 and Y2 > u2, where u1 and u2 are high thresh-
olds for Y1 and Y2. Then

Pr(Y1 ≤ z1, Y2 ≤ z2) = Pr{t1(Y1) ≤ t1(z1), t2(Y2) ≤ t2(z2)}

≈ exp[−V {t1(z1), t2(z2)}], (10)

for z1 > u1, z2 > u2. In §4 we show how this may be used
for inference on the model.

3.3. Asymptotic independence models

Although max-stable processes arise as the natural ex-
tension of standard scalar and multivariate extreme value
models, they can be inappropriate for modeling real data.
In the threshold approach, if the threshold is chosen too
low, the dependence structure may not have converged to
the max-stable limit. Moreover, if the true limiting distri-
bution yields independent extremes, this may be impossi-
ble to verify on data, for which some dependence will al-
ways be present because the limit is never attained in prac-
tice. In such cases it will be preferable to model thresh-
old exceedances using a model in which the degree of de-
pendence varies according to the severity of the extreme
event. de Carvalho and Ramos [2012] review related mod-
els and techniques, and Wadsworth and Tawn [2012] de-
scribe an approach to constructing models that capture
this phenomenon in spatial extremes, by inverting max-
stable models. Another class of asymptotic independence
models involves Gaussian copulas. All can be fitted us-
ing the methods for max-stable processes described in §4.
Wadsworth and Tawn [2012] also propose hybrid models,
based on max-mixtures of max-stable and asymptotically
independent models, that are asymptotically dependent but
not max-stable and can smoothly approach max-stability in
the extremes. Owing to our limited data we do not fit them
in this paper.

Wadsworth and Tawn [2012] show that if the process Z(x)
is simple max-stable on the domain X , then the inverted
process

Z′(x) = g{Z(x)} = −1/ log[1− exp{−1/Z(x)}], x ∈ X ,

(11)

has unit Fréchet margins and asymptotically independent
extremes, except in the pathological case never met in prac-
tice where the extremes of Z are perfectly dependent. In-
verted max-stable models for exceedances of (Y1, Y2) over
thresholds u1 and u2 are easily derived in terms of g, the
transformations t1 and t2 applied in (10), and the exponent
measure V of Z(x), yielding

Pr{Y1 ≤ z1, Y2 ≤ z2} = 1− exp[−1/g{t1(z1)}]− exp[−1/g{t2(z2)}] (12)

+ exp (−V [g{t1(z1)}, g{t2(z2)}]) , z1 > u1, z2 > u2.

In max-stable models the strength of dependence between
pairs of extremes is summarized by expression (8), whereas
that in asymptotic independence models is summarized by
the coefficient of tail dependence η ∈ [1/2, 1], which appears
through the expression [Ledford and Tawn, 1996]

Pr{Z′(x1) > z | Z′(x2) > z} ∼ L(z)z1−1/η(x1,x2), z → ∞,

(13)

where L(z) is a slowly varying function, i.e., one satisfying
limt→∞ L(tz)/L(t) = 1, for any z > 0. The process Z′(x) is
asymptotically independent if η < 1, since in that case the

limit of (13) equals zero; interest then focuses on the rate of
approach to zero, which is determined by η. Models derived
by applying the inversion transformation (11) to a max-
stable process with pairwise extremal coefficient θ(x1, x2)
have η(x1, x2) = 1/θ(x1, x2). Thus a max-stable field in
which θ(x1, x2) ≈ 1, so that extremes of Z(x1) and Z(x2)
are highly dependent, will give a transformed field with unit
Fréchet marginal distributions and with η(x1, x2) ≈ 1, so
that the corresponding Z′(x1) and Z′(x2), though asymp-
totically independent, approach this limit only slowly. If on
the other hand θ(x1, x2) ≈ 2, then Z′(x1) and Z′(x2) will
approach asymptotic independence much more rapidly.

Ledford and Tawn [1996] proposed a simple estimator of
η, but with only a few data, as in our application, their
estimator is too variable to help in distinguishing between
asymptotic dependence and independence, and so we must
rely on models. In the next section we discuss max-stable
models for spatial extremes, from which asymptotic inde-
pendence models may be constructed through the inversion
transformation (11), and describe how they may be fitted.

Another class of asymptotically independent models, re-
lated to the classical theory of geostatistics and kriging [Dig-
gle and Ribeiro, 2007], corresponds to fitting a Gaussian
copula to threshold exceedances, or equivalently to fitting
a Gaussian process to transformed margins. The standard
bivariate normal distribution function Φ2(·, ·; ρ) with corre-
lation ρ is used to model threshold exceedances through

Pr(Y1 ≤ z1, Y2 ≤ z2) = Φ2{t
⋆
1(z1), t

⋆
2(z2); ρ}, z1 > u1, z2 > u2,

(14)

for transformations t⋆1 and t⋆2 defined such that
(t⋆1(Y1), t

⋆
2(Y2)) follow a standard bivariate normal distri-

bution. If ρ < 1, then Y1 and Y2 are asymptotically inde-
pendent with η(x1, x2) = {1 + ρ(h)}/2 [Ledford and Tawn,
1996], where h = x1 − x2 is the lag vector, yielding another
asymptotic independence model.

4. Inference

4.1. Gaussian models

Various parametric models have been proposed for the
process Wi(x) appearing in equation (6); see Smith [1990],
Schlather [2002], de Haan and Pereira [2006], Kabluchko
et al. [2009], Blanchet and Davison [2011], Davison et al.
[2012], Davison and Gholamrezaee [2012] and Wadsworth
and Tawn [2012]. We concentrate here on models based
on the Gaussian distribution, which are easily interpretable,
and are related to classical geostatistics via the inclusion of
correlation functions and variograms.

A first class of models takes W (x) to be a probability
density function. The Gaussian model of Smith [1990] takes
W (x − s) to be a multivariate normal density with covari-
ance matrix Σ and mean s uniformly chosen on X . Then
the exponent measure of the process Z(x) at x1 and x2 is

V (z1, z2) =
1

z1
Φ
(

a

2
+

1

a
log

z2
z1

)

+
1

z2
Φ
(

a

2
+

1

a
log

z1
z2

)

,

(15)

where Φ is the standard normal cumulative distribution
function and a2 = hTΣ−1h.

A second, the Brown–Resnick model [Brown and Resnick ,
1977; Kabluchko et al., 2009], is obtained by taking W (x) =
exp{ε(x)− γ(x)}, where ε(x) is a centered intrinsically sta-
tionary Gaussian process with semi-variogram γ and ε(0) =
0 almost surely. Then the exponent measure of the pro-
cess Z(x) has the form (15) with a2 = 2γ(h). Popular
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semi-variograms include the power-law, or stable, function
[Banerjee et al., 2004, p. 28]

γ(h) = (‖h‖/λ)κ, λ > 0, 0 < κ ≤ 2, (16)

where ‖.‖ denote the Euclidean norm. Taking κ = 2 is
equivalent to using the Smith model with a symmetric co-
variance matrix Σ [Huser and Davison, 2013a].

Schlather [2002] proposes a third model, taking W (x)
proportional to the positive part of a stationary centered
Gaussian process with unit variance and correlation func-
tion ρ(h). The corresponding exponent measure is

V (z1, z2) =
1

2

(

1

z1
+

1

z2

)

(

1 +

[

1− 2
{ρ(h) + 1}z1z2

(z1 + z2)2

]1/2
)

.

Various choices of ρ(h) are available, though we only use
the stable correlation function ρ(h) = exp{−γ(h)} with
γ(h) defined in (16). Extremes from Schlather models
cannot attain independence for any correlation function,
since V (1, 1) ≤ 1.838 for all pairs of sites x1 and x2 in X
[Schlather , 2002].

Further models have been suggested by Wadsworth and
Tawn [2012], but since these are more complex we do not
attempt to fit them using our limited data. Asymptotic in-
dependence models can be obtained by taking any of these
exponent measure functions and applying the transforma-
tion leading to (12).

4.2. Pairwise composite likelihood

Given data (yk
1 , . . . , y

k
D)k=1,...,n consisting of n indepen-

dent replicates from a max-stable process observed at D
sites, the likelihood for the models described above cannot
easily be expressed for general D, for two reasons. First,
exact computation of the joint cumulative distribution func-
tion (5) would entail calculating (7), and except in special
cases this is out of reach for D > 2. Second, even if an
explicit form for (7) were available, computation of the like-
lihood function would involve D-fold differentiation of (5),
and this leads to a combinatorial explosion [Davison and
Gholamrezaee, 2012]; with D = 25 the number of terms in
the likelihood is of order 1018. However, if the bivariate
margins can be computed and the model parameters θ can
be identified from them, then it is possible to estimate θ by
maximising the pairwise log likelihood [Lindsay , 1988; Varin
et al., 2011]

ℓ(θ) =

n
∑

k=1

∑

i<j

log f(yk
i , y

k
j ; θ), (17)

where f denotes the likelihood contribution from two dis-
tinct observations from the same replicate. The marginal
and dependence parameters are estimated simultaneously,
as suggested by Padoan et al. [2010].

Under essentially the same regularity conditions as those
needed for the limiting normality of the standard maxi-
mum likelihood estimator, the maximum pairwise likelihood
estimator θ̂ has a limiting multivariate normal distribu-
tion with mean θ and covariance matrix of sandwich form
J(θ)−1K(θ)J(θ)−1 as n → ∞, where

K(θ) = E

[

∂ℓ(θ)

∂θ

∂ℓ(θ)

∂θT

]

, J(θ) = −E

[

∂2ℓ(θ)

∂θ∂θT

]

,

are the variance of the score function and the expected in-
formation matrix derived from (17). An estimate Ĵ of J(θ) is
easily obtained from the Hessian given by the optimization
algorithm. When independent replications of the process

are available, an estimate K̂ of K(θ) can be obtained by the
empirical variance of the score contribution of each observa-
tion [Varin et al., 2011]. We have found this to be somewhat
unstable, so we instead approximate J(θ)−1K(θ)J(θ)−1 by
the covariance matrix of bootstrap copies of the estimates
[Varin et al., 2011], and then obtain K̂ by multiplying both
sides of this covariance matrix by Ĵ .

Model selection may be guided by minimizing the com-
posite likelihood information criterion CLIC = −2{ℓ(θ̂) −
tr(K̂Ĵ−1)} [Varin and Vidoni , 2005], but its values can be
huge because of the numbers of terms in (17), so we pre-
fer CLIC∗ = (D − 1)−1CLIC, which corresponds closely to
the usual AIC for independent observations. Similarly, we
define a scaled pairwise log likelihood, ℓ∗(θ).

In applying pairwise likelihood we must account for the
fact that exceedances may occur in both variables, in one
variable or in neither, and to do so we apply the censoring
approach described by Coles [2001, §8.3.1]. If the bivari-
ate distribution above thresholds u1 and u2 is F , then the
likelihood contribution is

f(y1, y2; θ) =











∂2
12F (y1, y2; θ), y1 > u1, y2 > u2,

∂1F (y1, u2; θ), y1 > u1, y2 ≤ u2,
∂2F (u1, y2; θ), y1 ≤ u1, y2 > u2,
F (u1, u2; θ), y1 ≤ u1, y2 ≤ u2,

where ∂i denotes differentiation with respect to zi. Thus
observations that lie below a threshold contribute only a
censored contribution to the likelihood. These equations are
used to derive composite likelihoods for the different mod-
els of equations (10), (12) and (14). If one observation of a
pair is missing, then the marginal GPD contribution from
the remaining observation is included in the likelihood, and
contributes to estimation of τ and ξ.

5. Modeling extreme rainfall in Val Ferret

In this section we fit asymptotic dependence and indepen-
dence models (10), (12) and (14) to the data from the 24
stations in the Val Ferret region and to the 31 years of data
at the GSB. The daily records are viewed as independent
replicates of a spatial rainfall process, at least for extreme
levels. Estimation of the extremal dependence is challeng-
ing, because it relies on a subset of 575 days of data, with
about 58% missing. Marginal estimation is made more pre-
cise because of the use of the longer series of GSB data.
The threshold for each station cannot be taken too high,
but must be high enough that the extremal models fit ad-
equately. One consequence of having limited data is that
standard errors of our estimates are large, and that return
levels have large confidence intervals. With longer time se-
ries, predictions would be more accurate.

We first chose the thresholds for fitting model (3) at each
station by taking ζu = 0.1, corresponding to the 90% em-
pirical quantiles for each series. For the 24 stations in the
catchment, this choice corresponds to an estimated thresh-
old of between 7 and 15 mm, but these are affected by the
number of missing values. Bootstrap 95% confidence inter-
vals associated to these estimates contain 11 mm for all but
one of the stations, so we decided to use a fixed threshold
of 11 mm throughout. For the GSB station, the thresh-
old was estimated to be 17 mm. These different thresholds
might be explained by the different climatic conditions inside
and outside the catchment. The corresponding exceedance
probabilities can be supposed to equal 10%. These choices
produce reasonable fits of the marginal GPD model (3).

Expressions (10), (12) and (14) then model the marginal
distributions and dependence structure of the rainfall series
above the chosen thresholds. Taking higher thresholds had
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little effect on the parameter estimates and did not improve
the fits.

We use the composite likelihood approach described in
§4.2 to fit max-stable and asymptotic independence models
under the assumption that the marginal parameters τ and
ξ in (3) are constant for all stations of the catchment, but
with a different scale parameter τGSB for the GSB station.
This is because we can expect different behaviour for rain-
fall inside or outside the catchment. The shape parameter
ξ was taken to be constant as it is usually difficult to esti-
mate. We compare the fits of the different models using the
CLIC∗; see Table ??. For the max-stable models, the values
of CLIC∗ indicate that the Schlather model is better than
the Smith and Brown–Resnick models. The Smith model
is by far the worst in terms of CLIC∗, agreeing with the
findings of Davison et al. [2012] that it may be too smooth
to adequately model complex environmental processes. The
likelihood maximisation fails to converge for the inverted
Smith model. Among the other asymptotic independence
models, the best CLIC∗ is for the inverted Schlather model;
it is similar to that for the inverted Brown–Resnick model.
The Gaussian copula model, whose likelihood is greater than
those for all max-stable models, has however a larger CLIC∗.
Asymptotic independence models based on inverted max-
stable processes seem better overall, since they outperform
max-stable models both in terms of likelihood and in terms
of CLIC∗. The Gaussian copula model seems to fit poorly:
the uncertainty for its estimated range is rather large and
this inflates the CLIC∗. These results suggest that the lim-
iting distribution is not yet attained and higher thresholds
may be preferred, but we tried using thresholds up to 20 mm
without any change to the conclusions. The results are sim-
ilar to those found for extreme summer rainfall over a larger
region of Switzerland by Davison et al. [2013], which also
suggest that daily rainfall processes are asymptotically in-
dependent. Buishand [1984] found similar results for annual
maximum daily rainfall in the Netherlands, at larger spatial
scales.

In light of the above results, we base further discussion
on the max-stable and asymptotic independence Schlather
models. Table ?? shows that the marginal parameters are
very similar, with ξ > 0 corresponding to the Fréchet distri-
bution, but the standard errors do not allow any clear dis-
tinction of the sign of ξ for asymptotic independence mod-
els. The estimates of the range and smoothness parame-
ters λ and κ indicate dependence at fairly long ranges but
rough processes with small scale variation. The confidence
intervals for the range parameters are highly asymmetric,
showing that it is impossible to estimate the upper bound
of the dependence owing to the small size of the catchment.
We tried to include nugget parameters [Diggle and Ribeiro,
2007, §3.5] in the correlations and semi-variogram to account
for very small variation and measurement error, but it was
then difficult to estimate both the smoothness and nugget
parameters.

To assess the validity of our marginal models we first
checked the quantile-quantile plots (QQ-plots) for data from
each station (not shown). As we assumed the same marginal
model for all the locations of the catchment, we also com-
puted a pooled QQ-plot for the 24 stations (Figure 5), with
confidence bounds based on the overall best model, i.e., the
inverted max-stable model based on the Schlather model,
thus taking into account the spatial dependence in the data.
This QQ-plot indicates a reasonable fit. It is unsurprising
that stationarity seems to be reasonable, considering the
size of the study region and of the dataset. QQ-plots for the
other models (not shown) are similar.

Max-stable random fields can be simulated using the R
package SpatialExtremes [Ribatet , 2011], and simulations
from inverted models are then easily obtained using equa-
tion (11). Spatial rainfall can then be simulated by marginal
transformation of the simulated max-stable random fields,

using (3) above the threshold and the empirical distribu-
tions below the threshold. Since the empirical distributions
contain zero rainfall values, so too do the simulated ones.
In our case the threshold is constant across our (small) re-
gion, so we simply merged the empirical distributions below
the threshold, but over larger regions a suitable interpola-
tion procedure could be used. Our transformation simulates
rainfall having the estimated extremal dependence structure
both above and below the thresholds, and this dependence
structure may be inappropriate below them. However, the
marginal distributions below the thresholds are correct, and
the dependence structure for low rainfall should have little
impact on conclusions for extreme events.

Figure 6 shows rainfall processes simulated from the fitted
Smith and Schlather models, and a simulation from the in-
verted Schlather model. They show the general behavior of
simulated rainfall extremes for the different models, though
for ease of comparison the maximum value is around 50 mm
in all three cases. The elliptic contours of the Smith model
look quite unrealistic, and the Schlather model seems more
plausible. The difference between the Schlather max-stable
and the inverted models is striking. Extremes of the latter
are more local, but a realisation with a maximum of 50 mm
is more likely to appear than for the two max-stable models.

Figure 7 shows the estimated extremal coefficients and co-
efficients of tail dependence for the max-stable and asymp-
totic independence models respectively. Empirical estimates
of θ and η are obtained respectively using the likelihood es-
timator of Schlather and Tawn [2003], and that of Ledford
and Tawn [1996]. To reduce the uncertainty of the estimated
extremal coefficients, we have grouped pairs of stations into
distance classes. The fitted Smith model is non-isotropic and
its extremal coefficients lie in the dashed polygon. Although
the confidence intervals are large, the Smith model is not
flexible enough to capture the general pattern of extremal
dependence. The Schlather and Brown–Resnick model esti-
mates are very close and seem to provide a better fit. For
all these max-stable models η = 1, which seems acceptable
considering the empirical estimates and their confidence in-
tervals. However, asymptotically independent models seem
to perform better, since they capture the decrease of η with
distance. The two inverted models are indistinguishable.
The Gaussian copula model produces a rather different fit
that does not lie within the confidence interval based on the
most distant pairs.

After having used CLIC∗ to identify the best station-
ary models for our data, we attempted to fit non-stationary
models in which the scale parameter τ of the marginal GPDs
depends on covariates such as altitude, latitude and longi-
tude; we kept ξ constant. The QQ-plots (not shown) show
no real improvement, so we retain the stationary model.

We now examine results for our selected models, which
are based on Schlather random fields. For comparison we
also consider the Gaussian copula model, which represents
a standard geostatistical approach. As a pairwise diagnostic,
Figure 8(a) shows the conditional exceedance probabilities

p(y) = Pr{Y (x1) > y | Y (x2) > y}

predicted by the different models, for distances 1 and 5 km.
The panel shows that the differences between max-stable
and asymptotic independence models are small for the lower
rainfall levels, indicating that all the models can adequately
fit the observed data, but they differ in their predictions for
higher levels.

Simulations from our models provide information about
quantities depending on the spatial rainfall process, such as
return levels for the total amount of rainfall at the 24 sta-
tions of the catchment in one day. For a random variable
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X of daily records, the r-day return level xr has probabil-
ity Pr(X > xr) = 1/r of being exceeded on one particular
day. Return levels for the peaks over threshold model can
be derived by inverting (3), and return levels for the total
daily rainfall at the 24 stations can be derived by simulation
from our model; since we model daily rainfall for summer
months, the return levels are expressed in terms of summer
days. The estimates shown in Figure 8(b) were obtained by
simulating 200,000 summer days and taking empirical quan-
tiles of the total amount of rainfall at the 24 stations. The
confidence intervals, which are obtained from bootstrapping
200 times using all the summer days of the original data, are
rather wide, but the asymptotic independence models give
lower estimated return levels. The predictions based on the
max-stable model can be seen as giving an upper bound for
joint extreme quantities, such as return levels. Figure 8(b)
also shows the return levels corresponding to a spatially in-
dependent model whose marginal parameters are the same
as those estimated for the max-stable Schlather model; this
gives much lower return levels and would lead to severe un-
derestimation of risk.

6. Discussion

In this paper we propose the use of extreme value mod-
els to estimate the extremes of spatial daily rainfall. Our
approach consists of fitting generalized Pareto distributions
to marginal threshold exceedances and modeling spatial de-
pendence using max-stable models or asymptotic indepen-
dence models based upon them. For comparison we also con-
sider a model based on the Gaussian copula. The models
are fitted to threshold exceedances using a censored pair-
wise likelihood. Non-stationary models could be fitted by
regression on covariates, with model selection performed us-
ing CLIC∗. Daily rainfall fields can be simulated over the
whole catchment. Estimates of quantities depending on spa-
tial extremes, such as joint return levels, can be derived by
simulation from the fitted model.

Our application to the Val Ferret watershed, a small
mountainous catchment in Swiss Alp, shows that station-
ary max-stable and inverted max-stable models seem ap-
propriate for modeling extreme rainfall in this small catch-
ment. Although max-stable models are natural models for
extremes of random fields, model selection seems to favor
asymptotic independence models, for which the very rarest
events are increasingly local. Simulations from the max-
stable model, which assumes stronger dependence, give an
upper bound for the effects of joint extremes. Schlather
models give simulations that look reasonable, but the Smith
model produces unrealistically smooth extremes and is also
worst in terms of the information criterion CLIC∗. The
Schlather model seems to be appropriate for rainfall in small
regions such as Val Ferret, though it cannot model the inde-
pendence that would be expected to arise at larger spatial
scales. This must be introduced using a Brown–Resnick
model or a random set [Davison and Gholamrezaee, 2012].
Indeed, Huser and Davison [2013b] find that a Schlather
model with a random set is suitable for a larger hourly sum-
mer rainfall dataset, though at a much bigger spatial scale.

Rainfall can be simulated over the whole region by apply-
ing a marginal transformation to max-stable simulations.
In case of spatial non-stationarity, rainfall could be simu-
lated by specifying a marginal model for the threshold [as in
Northrop and Jonathan, 2011] and then applying the proce-
dure described in §5, with a suitable spatial extrapolation
of the empirical distribution functions from observed rainfall
sites to ungauged ones. We do not include temporal non-
stationarity in our model but with more extensive data this
could easily be added.

The interpolation of rainfall values at unobserved sites
from nearby observations is generally solved via kriging [Dig-
gle and Ribeiro, 2007], but although this yields “optimal”
prediction for Gaussian processes, it may produce unrealis-
tic predictions for extremes owing to the unsuitability of a
joint Gaussian model. A more appropriate max-stable ap-
proach uses conditional simulation of rainfall at ungauged
sites [Dombry et al., 2013].

Our approach could be used in other situations where
spatial simulation of extreme rainfall is needed. The pro-
posed model is appropriate at time-scales for which consec-
utive records appear to be independent, which was assumed
in our application, but if finer temporal resolution is re-
quired, stronger serial correlation will be present and spatio-
temporal models will be needed. Max-stable processes have
been used for spatio-temporal rainfall by Huser and Davison
[2013b], though fitting and simulating from their model is
burdensome.

In many hydrological models for rainfall run-off simula-
tion, temperature and other variables that affect predictions
from hydrological models are also needed. An open chal-
lenge is the joint modeling of these various dependent pro-
cesses, taking into account the extremes of some of them.
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(2002), Regional estimation of rainfall intensity-duration-
frequency curves using generalized least squares regression of
partial duration series statistics, Water Resources Research,
38 (11), 1239, doi:10.1029/2001WR001125.

Northrop, P. J., and P. Jonathan (2011), Threshold modelling of
spatially dependent non-stationary extremes with application
to hurricane-induced wave heights (with Discussion), Environ-
metrics, 22, 799–809, doi:10.1002/env.1106.

Padoan, S. A., M. Ribatet, and S. A. Sisson (2010),
Likelihood-based inference for max-stable processes, Journal
of the American Statistical Association, 105, 263–277, doi:
10.1198/jasa.2009.tm08577.

Pickands, J. I. (1975), Statistical inference using extreme
order statistics, Annals of Statistics, 3, 119–131, doi:
10.1214/aos/1176343003.

R Development Core Team (2012), R: A Language and Environ-
ment for Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, ISBN 3-900051-07-0.

Ramesh, N. I., and A. C. Davison (2002), Local models for ex-
ploratory analysis of hydrological extremes, Journal of Hydrol-
ogy, 256/1–2, 106–119, doi:10.1016/S0022-1694(01)00522-4.

Renard, B. (2011), A Bayesian hierarchical approach to regional
frequency analysis, Water Resources Research, 47, W11,513,
doi:10.1029/2010WR010089.

Ribatet, M. (2011), SpatialExtremes: Modelling Spatial Ex-
tremes, R package version 1.8-1.

Rodriguez-Iturbe, I., D. R. Cox, and V. S. Isham (1987), Some
models for rainfall based on stochastic point processes, Pro-
ceedings of the Royal Society of London, Series A, 410, 269–
288, doi:10.1098/rspa.1987.0039.

Rodriguez-Iturbe, I., D. R. Cox, and V. S. Isham (1988), A point
process model for rainfall: Further developments, Proceedings
of the Royal Society of London, Series A, 417, 283–298, doi:
10.1098/rspa.1988.0061.

Salvadori, G., and C. D. Michele (2010), Multivariate multipa-
rameter extreme value models and return periods: A cop-
ula approach, Water Resources Research, 46, W10,501, doi:
10.1029/2009WR009040.

Sang, H., and A. Gelfand (2010), Continuous Spatial Process
Models for Spatial Extreme Values, Journal of Agricultural,
Biological, and Environmental Statistics, 15 (1), 49–65, doi:
10.1007/s13253-009-0010-1.

Schlather, M. (2002), Models for stationary max-stable random
fields, Extremes, 5 (1), 33–44, doi:10.1023/A:1020977924878.

Schlather, M., and J. A. Tawn (2003), A Dependence
Measure for Multivariate and Spatial Extreme Values:
Properties and Inference, Biometrika, 90, 139–156, doi:
10.1093/biomet/90.1.139.

Shang, H., J. Yan, and X. Zhang (2011), El Niño–Southern Os-
cillation influence on winter maximum daily precipitation in
California in a spatial model, Water Resources Research, 47,
W11,507, doi:10.1029/2011WR010415.

Simoni, S., S. Padoan, D. F. Nadeau, M. Diebold, A. Porporato,
G. Barrenetxea, F. Ingelrest, M. Vetterli, and M. B. Parlange
(2011), Hydrologic response of an alpine watershed: Applica-
tion of a meteorological wireless sensor network to understand
streamflow generation, Water Resour. Res., 47 (10), W10,524,
doi:10.1029/2011WR010730.

Smith, R. L. (1990), Max-Stable Processes and Spa-
tial Extremes, unpublished manuscript, Univer-
sity of Surrey, Guildford GU2 5XH, England.
http://www.stat.unc.edu/postscript/rs/spatex.pdf.

Tawn, J. A. (1988), Bivariate extreme value theory:
Models and estimation, Biometrika, 75, 397–415, doi:
10.1093/biomet/75.3.397.

Tobin, C., B. Schaefli, L. Nicotina, S. Simoni, G. Barrenetxea,
R. Smith, M. Parlange, and A. Rinaldo (2012), Improving
the degree-day method for sub-daily melt simulations with
physically-based diurnal variations, Advances in Water Re-
sources, doi:10.1016/j.advwatres.2012.08.008, in press.

Todorovic, P., and J. Rousselle (1971), Some problems of
flood analysis, Water Resour. Res., 7 (5), 1144–1150, doi:
10.1029/WR007i005p01144.

Todorovic, P., and E. Zelenhasic (1970), A stochastic model
for flood analysis, Water Resour. Res., 6 (6), 1641–1648, doi:
10.1029/WR006i006p01641.

Van de Vyver, H. (2012), Spatial regression models for extreme
precipitation in Belgium, Water Resources Research, 48 (9),
W09,549, doi:10.1029/2011WR011707.

Varin, C., and P. Vidoni (2005), A note on composite likelihood
inference and model selection, Biometrika, 92 (3), 519–528,
doi:10.1093/biomet/92.3.519.

Varin, C., N. Reid, and D. Firth (2011), An overview of composite
likelihood methods, Statistica Sinica, 21, 5–42.



THIBAUD, MUTZNER AND DAVISON: THRESHOLD MODELING OF EXTREME SPATIAL RAINFALL X - 9

Villarini, G., J. A. Smith, M. L. Baeck, T. Marchok, and
G. A. Vecchi (2011), Characterization of rainfall distribu-
tion and flooding associated with U.S. landfalling tropical
cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne
(2004), Journal of Geophysical Research, 116, D23,116, doi:
10.1029/2011JD016175.

Vrac, M., and P. Naveau (2007), Stochastic downscaling of pre-
cipitation: From dry events to heavy rainfalls, Water Resour.
Res., 43 (7), W07,402, doi:10.1029/2006WR005308.

Wadsworth, J. L., and J. A. Tawn (2012), Dependence mod-
elling for spatial extremes, Biometrika, 99 (2), 253–272, doi:
10.1093/biomet/asr080.

Westra, S., and S. A. Sisson (2011), Detection of non-
stationarity in precipitation extremes using a max-stable
process model, Journal of Hydrology, 406, 119–128, doi:
10.1016/j.jhydrol.2011.06.014.

Wilks, D. S., and R. L. Wilby (1999), The weather gen-
eration game: a review of stochastic weather mod-
els, Progress in Physical Geography, 23, 329–357, doi:
10.1177/030913339902300302.

Yang, C., R. E. Chandler, V. S. Isham, and H. S. Wheater
(2005), Spatial-temporal rainfall simulation using generalized
linear models, Water Resour. Res., 41 (11), W11,415, doi:
10.1029/2004WR003739.

Zheng, X., and R. W. Katz (2008), Simulation of spatial depen-
dence in daily rainfall using multisite generators, Water Re-
sour. Res., 44 (9), W09,403, doi:10.1029/2007WR006399.

E. Thibaud, Ecole Polytechnique Fédérale de Lausanne,
EPFL-FSB-MATHAA-STAT, Station 8, 1015 Lausanne, Switzer-
land. (emeric.thibaud@epfl.ch)

R. Mutzner, School of Architecture, Civil and Environmental
Engineering, Ecole Polytechnique Fédérale de Lausanne, Station
2, 1015 Lausanne, Switzerland. (raphael.mutzner@epfl.ch)

A. C. Davison, Ecole Polytechnique Fédérale de Lausanne,
EPFL-FSB-MATHAA-STAT, Station 8, 1015 Lausanne, Switzer-
land. (anthony.davison@epfl.ch)



X - 10 THIBAUD, MUTZNER AND DAVISON: THRESHOLD MODELING OF EXTREME SPATIAL RAINFALL

Figure 1. The Val Ferret watershed, showing the sites of
the meteorological stations, with contours showing their
elevations above mean sea level in meters.

0 100 300 500

0
20

40
60

1

Time

m
m

0 100 300 500

0
20

40
60

2

Time

m
m

0 100 300 500

0
20

40
60

3

Time

m
m

0 100 300 500

0
20

40
60

4

Time

m
m

Figure 2. Daily cumulative rainfall totals for 575 days in
summers 2009 to 2012, recorded by Sensorscope stations
1–4 in the Val Ferret region. Vertical dashed lines sepa-
rate the four years. White spaces correspond to missing
data.
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Figure 3. Daily cumulative rainfall totals for 31 years
in summers 1982 to 2012, recorded by MétéoSuisse at the
Grand St-Bernard.
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Figure 4. Extremogram (4) for the daily cumula-
tive rainfall time series at four locations computed with
thresholds corresponding to the 90% quantile for each se-
ries. Horizontal dashed lines show the upper 0.975 con-
fidence limit for independent data, obtained by random
permutation of the data.
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Figure 5. Pooled unit Fréchet QQ-plot for the marginal
fits of model (12) with the Schlather model. The same
marginal model is fitted to the data from all the 24
locations in the catchment. Dotted lines are the 95%
confidence bounds, obtained by simulating from fitted
model (12). The solid diagonal line indicates a perfect
fit.
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Figure 6. Simulation of max-stable random fields, on
the original data scale (mm), from the fitted (a) Smith
and (b) Schlather models and (c) an inverted max-stable
process based on the Schlather model. Black dots show
the locations of the 24 stations. Distances (km) have
as origin the Swiss coordinate system (CH1903) and the
contour shows the Val Ferret watershed, as in Figure 1.
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Figure 7. Fitted extremal coefficients (a) and tail de-
pendence coefficients (b) for the different models. In (a),
the hatched polygon shows the limits of the Smith ex-
tremal coefficient curves, which are direction-dependent.
In (b), the solid line corresponds to the Gaussian cop-
ula model. In both plots, dashed lines correspond to the
Schlather model and dotted lines to the Brown–Resnick
model. Points are the estimated coefficients for pairs of
stations grouped into distance classes, with 95% con-
fidence intervals, obtained by bootstrapping the daily
data, shown as grey vertical lines.
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Figure 8. Comparison of results from max-stable
and asymptotic independence models. Panel (a): the-
oretical conditional probabilities of exceedances p(y) =
Pr{Y (x1) > y | Y (x2) > y} for pairs of locations {x1, x2}
1 km apart (plain lines) and 5 km apart (dashed lines).
Panel (b): return levels (solid) with 95% confidence in-
tervals (dotted), for the total daily rainfall falling at the
24 stations in the Val Ferret watershed. In both panels,
blue lines correspond to the Schlather max-stable model,
red lines to the inverted max-stable Schlather model and
green lines to the Gaussian copula model. Black lines
in (b) correspond to a spatially independent model.


