
Available online at www.sciencedirect.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
www.elsevier.com/locate/actamat

ScienceDirect

Acta Materialia 61 (2013) 6396–6405
Numerical simulation of precipitation in multicomponent Ni-base alloys

Luc Rougier a,b, Alain Jacot a,⇑, Charles-André Gandin c, Paolo Di Napoli a,
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Abstract

A comprehensive particle size distribution model has been developed for the simulation of c0 precipitation in multicomponent Ni
alloys. Nucleation, growth and coarsening of the precipitates are described by a particle size distribution. The growth rate of each pre-
cipitate class is calculated with a multi-component diffusion model formulated for non-diagonal matrices of diffusion coefficients. The
model is fully coupled with CALPHAD calculations of the thermodynamic equilibrium at the interface, including a direct treatment
of the effect of curvature through modification of the Gibbs free energy. An optimization strategy was developed to minimize the com-
putational cost. The model was used to simulate ageing heat treatment at 600 �C of Ni–7.56 at.% Al–8.56 at.% Cr, which was studied
experimentally by Booth-Morrison and others (Booth-Morrison C, Weninger J, Sudbrack CK, Mao Z, Noebe RD, Seidman DN. Acta
Mater 2008;56:3422; Mao Z, Booth-Morrison C, Sudbrack CK, Martin G, Seidman DN. Acta Mater 2012;60:1871). The comparisons
showed that the precipitation stages of c0 precipitates are correctly captured by the numerical model. It was shown that non-diagonal
diffusion coefficients substantially influence the selection of the operating tie-line and the overall transformation kinetics. With non-diag-
onal diffusion matrices, complex phenomena such as uphill diffusion of Cr due to the Al gradients were evidenced and explained.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Nickel-base superalloys are widely used in the aerospace
industry for their outstanding mechanical properties at
high temperatures [1]. Their creep resistance depends on
the volume fraction and average size of the c0 precipitates
formed in the c matrix. Over the last two decades consider-
able effort has been made to develop numerical models for
the description of precipitation in metallic systems. A first
approach is to calculate the evolution of the average radius
of the precipitates as a result of Ostwald ripening [2]. The
mean radius approach proposed by Langer and Schwarz
also includes the nucleation and growth regimes that pre-
cede and partly overlap with the coarsening regime [3]. This
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approach was limited to a dilute binary alloy and suffers
from limitations in the case of complex nucleation
sequences, in particular for non-isothermal heat treat-
ments, which can lead to complex particle size distributions
(PSDs). For this reason, precipitation models are preferen-
tially based on a direct representation of the PSD, follow-
ing the numerical model initially proposed by Kampmann
and Wagner [4]. The nucleation rate is calculated from the
homogeneous or heterogeneous nucleation theory and the
concept of critical nucleation radius. Specific examples of
the PSD approach are found in Refs. [5–8]. Several models
address the problem of precipitation in multicomponent
alloys by using the extremum principle and the mean-field
approach [9,10]. Other modelling approaches are based on
the Monte Carlo technique [11] and the cluster dynamic
method [12], or simply on the integration of Time Temper-
ature Transformation (TTT) diagrams [13]. These models
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are aimed at being coupled with related additional micro-
structural features [14] and prediction of mechanical prop-
erties [15]. Some of these models have been coupled with
the CALPHAD approach [8,16,17].

Modelling precipitation in Ni-base superalloys implies
several difficulties. First, the alloy chemistry is very com-
plex, with a large number of alloying elements. For a quan-
titative prediction of the precipitation kinetics, a
multicomponent formulation is thus required and the
model should be directly or indirectly coupled with CALP-
HAD calculations in order to compute the thermodynamic
equilibrium. Another difficulty is related to the final vol-
ume fraction of precipitates in Ni-base superalloys, which
is very large (60% or more). Due to the high supersatura-
tions, some of the usual assumptions regarding the growth
kinetics are no longer valid [8]. The role of the cross-diffu-
sion, i.e. non-diagonal matrices of diffusion coefficients, is
also known to be important in Ni-base alloys [18] and
should not be neglected. While individual solutions to these
problems already exist, they are seldom combined. More-
over, another difficulty in addressing this problem is to
keep a good computational efficiency, in particular when
the model is coupled to external CALPHAD computation
modules.

In this paper, we present a comprehensive PSD model
which addresses the aforementioned difficulties. A particu-
lar emphasis is put on the coupling with the CALPHAD
approach and the numerical aspects associated with it.
The model is applied to a ternary alloy of the Ni–Al–Cr
system for which detailed experimental data have been
published [19].

2. Modeling

The model is based on the discretization of the particle
size distribution into size classes. Each class k corresponds
to a category of precipitates, having its own values of pre-
cipitation variables such as the radius, the number density,
the interface and average concentrations. Using the termi-
nology introduced by Perez [20], a so-called Lagrange-like
approach is used to track the PSD. As opposed to the Eule-
rian approach, where a class represents a fixed size interval
and particle fluxes between adjacent classes are calculated
to describe the evolution of the PSD [21], the Lagrange-like
approach consists of tracking the evolution of the precipi-
tation variables of a series of classes of precipitates whose
population is normally fixed. Each class represents a family
of particles that have nucleated within the same time inter-
val and are assumed to evolve in the same way. The popu-
lation in a given class is normally kept constant until the
class potentially disappears due to the dissolution
phenomena.

2.1. Nucleation

The nucleation rate of the precipitates, I (m�3 s�1), is
calculated with classical nucleation theory (CNT) [22,23]:
I ¼ n0ð1� gc0 ÞZbe�
DG�
kBT ð1� e�

t
sÞ ð1Þ

where n0 is the density of potential nucleation sites (m�3),
gc0 is the volume fraction of precipitates,

Z ¼ ðV c0

mDGc0

nuclÞ= ð8p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrc=c0 Þ3kBT

q
Þ is the Zeldovich factor,

b ¼ ð4pðR�Þ2=a4ÞminiðjDc
iij=�X c

i Þ is the rate of attachment
of solute atoms on a critical precipitate (s�1), kB is the
Boltzmann constant (J K�1), T is the temperature (K), t
is the time (s), a is the lattice parameter (m), s = 2/(pbZ2)
is the incubation time (s), rc/c0 is the c/c0 interfacial energy

(J m�2), DGc0

nucl is the chemical driving force (J m�3) for the
nucleation of a critical spherical precipitate of radius R*

(m) and V c0

m is the molar volume of the c0 phase (m3 mol�1),
assumed to be equal to the molar volume of the parent
phase c. Dc

ii and �X c
i are, respectively, the diagonal diffusion

coefficient (m2 s�1) and the average concentration in c, for
the solute elementi. The nucleation barrier, DG* (J), is given
by:

DG� ¼ 16p
3

ðrc=c0 Þ3

ðDGc0

nuclÞ
2

ð2Þ

Nuclei are considered to be stable only beyond an effec-
tive radius, Reffective, which is larger than the critical radius
from the CNT, R*. This hypothesis allows accounting for
the size fluctuations of the critical precipitates [20,24]:

Reffective ¼ R� þ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
kBT
prc=c0

r
ð3Þ

with

R� ¼ � 2rc=c0

DGc0

nucl

ð4Þ

A new PSD class is created if the density of precipitates
that have nucleated since the creation of the last class,
ncumul, is larger than a user-defined minimum number of
particles in a class, nmin. This condition expresses mathe-
matically as:

ncumul ¼
Z t

tlast

IðtÞdt > nmin ð5Þ

where tlast is the time of the last class creation event.
If ncumul is larger than a user-defined maximum number,

nmax, the time-step is reduced in order to limit the number
of particles in a class. The choice of nmin and nmax deter-
mines the accuracy of the PSD discretization. Typical val-
ues for the calculations presented hereafter are 1019 and
1022 m�3, respectively.

2.2. Growth/coarsening

The growth rate is calculated in each class as a function
of the current radius, the interface concentrations and the
average concentrations of the matrix. Following a mean
field approximation, the average concentrations of the
matrix are assumed to be common for all classes.
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Fig. 1. Schematic concentration fields around the c0 spherical precipitate/c
matrix interface for class k, and the cell representation used to compute
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Neglecting the gradients in the c0 phase and assuming equal
molar volumes in c and c0 for all elements, the growth rate
in a given class k of radius Rk must satisfy the following
local solute balances:

vkðX c0�

i;k � X c�
i;kÞ þ J c�

i;k ¼ 0 for i ¼ 1; . . . ;N ð6Þ

where N is the number of solute elements, and X c�
i;k and X c0�

i;k

are the atomic fractions of element i in class k at the inter-
face in c and c0, respectively.

The solute flux of element i in c at the c/c0 interface in
class k is obtained from the effective diffusion matrix in
the c phase, Dc

ij, and the concentration gradients at the
interface:

J c�
i;k ¼ �

XN

j¼1

Dc
ij

@X c
j;k

@r

����
r¼Rk

for i ¼ 1; . . . ;N ð7Þ

The concentration gradient of element j in c near the c/c0

interface in class k is estimated with the following
expression:

@X c
j;k

@r

����
r¼Rk

¼
�X c

j � X c�
j;k

dj;k
for i ¼ 1; . . . ;N ð8Þ

where di,k is the length of the diffusion layer around the pre-
cipitates of class k for the solute element i. It is linked to the
supersaturation Xi;k ¼ ð�X c

i � X c�
i;kÞ=ðX

c0�

i;k � X c�
i;kÞ with the ex-

act analytical solution of the diffusion problem in a semi-
infinite matrix for a binary alloy [8,25]:

di;k ¼
Xi;k

2k2
i;k

Rk for i ¼ 1; . . . ;N ð9Þ

where ki,k is defined by the following equation:

2k2
i;k � 2k3

i;k

ffiffiffi
p
p

expðk2
i;kÞerfcðki;kÞ ¼ Xi;k for i ¼ 1; . . . ;N

ð10Þ
Assuming that the interface concentrations are given by

the local equilibrium corrected for the Gibbs–Thomson
effect, the growth rate of a precipitate class k can be calcu-
lated by solving the following set of non-linear equations:

vkðX c0�

i;k � X c�
i;kÞ ¼

XN

j¼1

Dc
ij

�X c
j � X c�

j;k

dj;k
for i ¼ 1; . . . ;N ð11Þ

X c0�

i;k ¼ ki;kðT ;Rk;X
c�
1;k; . . . ;X c�

N ;kÞX
c�
i;k for i ¼ 1; . . . ;N ð12Þ

T ¼ T solvusðRk;X
c�
1;k; . . . ;X c�

N ;kÞ ð13Þ

where ki,k are the partition coefficients defining the tie-lines
and Tsolvus is a function representing the solvus tempera-
ture. These quantities depend on the precipitate radius
due to the Gibbs–Thomson effect. If the functions ki,k

and Tsolvus are described by a CALPHAD approach, the
Gibbs–Thomson effect can be taken into account by adding
the following contribution to the Gibbs free energy of the c0

phase:

DGc0

GT ;k ¼
2rc=c0V c0

m

Rk
ð14Þ
The model assumes equal mole and volume fractions of
phases and elements. At a given temperature T, Eqs. (11)–
(13) form a set of 2N + 1 equations which can be solved
directly to obtain the 2N unknown interface concentra-
tions, X c�

i;k and X c0�

i;k , and the unknown interface velocity,
vk. This problem is, however, non-linear and difficult to
solve directly if the phase diagram information is obtained
from the CALPHAD approach. The chosen strategy is to
decompose the problem into a kinetic step and an equilib-
rium step, during which the local equilibrium at the inter-
face is calculated, taking into account the Gibbs-
Thomson effect. The method consists of defining a spheri-
cal volume (or cell) around the precipitate/matrix interface,
as schematized in Fig. 1. This cell is assumed to be at local
thermodynamic equilibrium (with the interface curvature
contribution). The volume of c0 considered in the cell
depends on the assumption made for the diffusion in the
precipitates. If diffusion is neglected in c0, the thickness of
c0 embedded in the spherical shell, hc0

k , is equal to the thick-
ness of c, hc

k, which is taken to be proportional to the min-
imum depth of the diffusion layers in c defined by the
smallest di,k value (Eq. (9)). If complete mixing is assumed
in c0, the whole precipitate is embedded in the cell and
hc0

k ¼ Rk. This assumption offers the advantages of a simpler
formulation and a higher numerical stability, together with
a lower computational cost.

The average concentrations in the cell are first calculated
from the equilibrium concentrations and the local phase
fractions at the previous time-step (t superscript):

�X cell;t
i;k ¼ uc0;t

k X c0� ;t
i;k þ ð1� uc0 ;t

k ÞX
c�;t
i;k ð15Þ

where uc0 ;t
k is the volume fraction of c0 in the cell. These

quantities are then updated based on the solute fluxes at
the interface:

�X cell;tþDt
i;k ¼ �X cell;t

i;k � J c�
i;k

Sk

V k
Dt ð16Þ

where Dt is the time step, Sk is the outer surface of the
precipitate, Vk is the volume of the cell and J c�

i;k is the flux
obtained from Eqs. (7)–(10).
local equilibrium.
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The new average concentrations in the cell are then used
as a condition to compute the local equilibrium with a call
to the software Thermo-Calc through the TQ interface [26],
or, alternatively, with an optimization method which will
be described in the next paragraph.

The equilibrium calculation provides a new volume frac-
tion of c0 in the cell, uc0;tþDt

k , which can be converted into a
new c0 radius:

RtþDt
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uc0 ;tþDt

k ½ðRt
k þ hc

kÞ
3 � ðRt

k � hc0

k Þ
3� þ ðRt

k � hc0

k Þ
33

q
ð17Þ

and thus to a radius increment DR ¼ RtþDt
k � Rt

k and a
growth rate vk = DR/Dt.

At each time step, average quantities for the population
of the c0 precipitates such as the total number density, ntot,
the fraction of c0 phase, gc0, the number averaged radius,
�Rn, and the fraction averaged radius, �R, are calculated as
follows (the time step superscript is omitted for simplicity):

ntot ¼
X

k

nk ð18Þ

gc0 ¼ 4p
3

X
k

ðnkR3
kÞ ð19Þ

�Rn ¼
1

ntot

X
k

nkRk ð20Þ

�R ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3gc0

4pntot

3

s
ð21Þ

The average concentration of the matrix, �X c
i , is deduced

from a global solute balance:

�X c
i ¼

X 0;i � gc0 �X c0

i

1� gc0
ð22Þ

where X0,i is the alloy nominal concentration of solute ele-
ment i and �X c0

i is the average concentration in the precipi-
tates, calculated as follows:

�X c0

i ¼
P

knkR3
k
�X c0

i;kP
knkR3

k

ð23Þ

where �X c0

i;k is the average concentration of solute element i

in c0 for class k.
If a uniform concentration profile is assumed in c0, �X c0

i;k is
directly given by the interface concentration X c0�

i;k (full mix-
ing assumption in the c0 phase). If the diffusion coefficients
are assumed to be 0 in c0, the average concentrations of the
precipitates are calculated from the differences of interface
concentrations and volumes between two time steps in the
case of growth. In the case of dissolution �X c0

i is assumed to
remain constant in the class. To represent the PSD, the
density of the distribution in a given class k, Dk (m�4), is
given by the ratio of the precipitate number density, nk

(m�3), to the size interval:

Dk ¼
nk

Rkþ1 � Rk
ð24Þ
where Rk and Rk+1 are the radii of two consecutive classes
of the PSD. The cumulative size distribution up to class k is
calculated as follows:

ncum
k ¼

Xk�1

i¼0

ni þ nk
Rk � Rk�1

Rkþ1 � Rk�1

ð25Þ

The normalized distribution, Dnorm
k , is calculated using

the values of Dk, �Rn and ntot:

Dnorm
k ¼ Dk

�Rn

ntot
ð26Þ

Dnorm
k is generally represented as a function of the normal-

ized radius, qk, which is defined by:

qk ¼
Rk

�Rn
ð27Þ

During the last stages of precipitation, the number of
size classes quickly decreases due to coarsening. In order
to keep a smooth evolution of the average quantities,
new classes are inserted following the method described
by Perez et al. [20].

2.3. Optimized CALPHAD coupling

In order to increase the calculation speed, the number of
equilibrium calculations performed with the software
Thermo-Calccanbesubstantially reducedbyusing simplified
phase diagrams for the calculation of interface concentra-
tionsandphase fractions.Forgivenvaluesof theaveragecon-
centrations and curvature energy, DGc0

GT , the c solvus is
approximated for each size class by the following equation:

T solvus Rk;X
c�
1;k; . . . ;X c�

N ;k

� �
ffi T ref

solvus;k þ
XN

i¼1

ai;k X c�
i;k � X c�;ref

i;k

� �

þ bk DGc0

GT ;k � DGc0 ;ref
GT ;k

� �
ð28Þ

where ai,k is the solvus slope with respect to the
concentration of solute element i, and bk is the
sensitivity coefficient with respect to the curvature
energy:

ai;k ¼
@T solvusðRk;X

c�
1;k; . . . ;X c�

N ;kÞ
@X c�

i
ð29Þ

bk ¼
@T solvusðRk;X

c�
1;k; . . . ;X c�

N ;kÞ
@DGGT

ð30Þ

The matrix and precipitate concentrations are related by
linearized partition coefficients as follows:

X c0�
i;k ¼ ki;k T ;Rk ;X

c�
1;k ; . . . ;X

c�
N ;k

� �
X c�

i;k

ffi kref
i;k þ

XN

j¼1

aij;k X c�
j;k�X c�;ref

j;k

� �
þbi;kðDGc0

GT ;k�DGc0 ;ref
GT ;k Þ

" #
� X c�

i;k

ð31Þ
where aij,k and bi,k are the sensitivity coefficients with re-
spect to the interface concentrations of solute elements j
and the curvature energy, respectively:



Table 1
Diffusion coefficients (m2 s�1) in the c matrix used to simulate precipita-
tion in Ni–7.56 at.% Al–8.56 at.% Cr at 600 �C (calculated from Ref. [27]).

Dc
Al;Al Dc

Al;Cr Dc
Cr;Al Dc

Cr;Cr

2.08 � 10�20 8.59 � 10�21 8.13 � 10�21 3.82 � 10�21

Table 2
Input parameters of the precipitation model used for the full simulations.

rc/c0 Vm No

0.027 J m�2 [19] 6.8 � 10�6 m3 mol�1 8.9 � 1028 m�3
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Fig. 2. Time evolution of (a) the mean precipitate radius, �R, (b) the total
number density, ntot and (c) the volume fraction of the c0 precipitates, gc0,
in heat-treated Ni–7.56 at.% Al–8.56 at.% Cr at 600 �C. The symbols
correspond to the experimental data of Booth-Morrison et al. [19].
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aij;k ¼
@ki;k Rk;X

c�
1;k; . . . ;X c�

N ;k

� �
@X c�

j
ð32Þ

bi;k ¼
@ki;k Rk;X

c�
1;k; . . . ;X c�

N ;k

� �
@DGc0

GT

ð33Þ

The reference values for each class k, T ref
solvus;k, X c�;ref

i;k ,
DGc0

GT ;k and kref
i;k , are computed by calling Thermo-Calc

using the current temperature T and the curvature energy
contribution corresponding to the class radius. The partial
derivatives, aij,k, bi,k, ai,k and bk, are obtained by a series of
equilibrium calculations using perturbed values of the
interface concentrations and of the curvature energy.

In the equilibrium cell previously defined, the average
concentrations can be expressed, for each size class, as
follows:

�X cell
i;k ¼ ½ð1� uc0

k Þ þ uc0

k ki�X c�
i ð34Þ

Combining with Eqs. (31) and (34), the 2N + 1
unknowns X c�

i;k, X c0�
i;k and uc0

k can now be determined. This
set of equations is solved with the Newton–Raphson
numerical method. The linearized phase diagram represen-
tation is used as long as the two following criteria are
satisfied:

max
i

jX c�
i;k � X c�;ref

i;k j
X 0;i

 !
< elin

X ð35Þ

jDGGT ;k � DGref
GT ;kj

DGGT ;k
< elin

DG ð36Þ

where elin
X and elin

DG are parameters arbitrarily fixed to 1%. If
one of the conditions is not fulfilled, the reference values
and sensitivity coefficients of the solvus are updated by di-
rect equilibrium computations, as described in the previous
paragraph. The above optimized coupling allows for a sub-
stantial reduction of the CPU time.

3. Results and discussion

3.1. Simulations of isothermal ageing of Ni–7.56 at.% Al–

8.56 at.% Cr

The model was used to simulate isothermal heat treat-
ment of Ni–7.56 at.% Al–8.56 at.% Cr at 600 �C during
4 � 106 s. These conditions correspond to those studied
by Booth-Morrison et al. [19] and Mao et al. [27] for the
atom probe tomography characterization of c0 precipitates
in Ni–Al–Cr alloys. Initially, the alloy was assumed to be
free of c0 precipitates. The diffusion matrix used in the sim-
ulation is given in Table 1. The values were calculated from
data published by Mao et al. [27], which are based on
Monte Carlo simulations of the diffusion-driven growth
of c0 precipitates. The other input parameters are summa-
rized in Table 2. Nucleation was assumed to be homoge-
neous, with a number density of potential nucleation
sites, n0 = Nav/Vm, where Nav is the Avogadro number
(mol�1) and Vm is the constant molar volume (m3 mol�1).

The evolution of �R, ntot, and gc0 is shown in Fig. 2 (thick
black curves). During the first regime (t < 200 s), the num-
ber density of precipitates quickly increases, whereas
almost no change of the average radius can be noticed.
The c0 fraction remains close to 0 due to the small size of
the precipitates. This regime corresponds to the nucleation
of c0 precipitates. As shown in Fig. 2b, growth occurs essen-
tially in the time interval 200 s < t < 104 s, during which the
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nucleation rate diminishes due to the decrease of the super-
saturation of the matrix and thus the nucleation driving
force. During this regime, the volume fraction of precipi-
tates increases due to the diffusion-controlled growth and
nucleation (Fig. 2c). At about t = 104 s the maximal num-
ber density is reached, and growth is the only mechanism
contributing to the increase of gc0. As the supersaturation
of c decreases, curvature effects have a larger influence on
the evolution of the precipitate sizes, number density and
volume fraction. At longer ageing times, coarsening
becomes dominant, which is characterized by a very slow
increase of the volume fraction, while the averaged radius
keeps increasing. The time dependencies of �R and ntot are
close to t1/3 and t�1, respectively, as predicted by the clas-
sical LSW theory. This is illustrated by the dashed grey
curves in Fig. 2a and b.

Fig. 3 shows the cumulative size distributions at differ-
ent ageing times. The maximum value of the cumulated dis-
tribution increases from the initial stage to 104 s, due to the
nucleation. Simultaneously, the distributions are shifted to
higher precipitate sizes without significant changes of
shape, this being determined by the growth of the nucleated
precipitates. At 1.3 � 104 s, the maximum density is the
same as at 104 s, but the radius of the smallest precipitates
is less. This can be explained by the dissolution of the
smallest precipitates. For longer ageing times, broadening
of the distribution and decrease of the maximum value
occur simultaneously, which corresponds to a mixed
growth/coarsening regime with an increasing influence of
coarsening as gc0 approaches the equilibrium value. This
can also be seen in Fig. 4, where the normalized size distri-
butions are shown at different times. At t = 1.3 � 104 s, the
dissolution of the smallest precipitates is not completely
achieved. However, the shape of the corresponding cumu-
lated distribution indicates a very fast shrinking, which will
lead to the total dissolution of the smallest classes and
cause the decrease of the total precipitate density observed
in Figs. 2b and 3. After 106 s, the shape of the normalized
distributions remains similar, with a single maximum cor-
responding to a normalized radius of �1.2. One can
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Fig. 3. Calculated cumulative size distributions at 2000 s, 3000 s, 4000 s,
5000 s, 104 s, 1.3 � 104 s, 105 s and 4 � 106 s.
observe in Fig. 4 that a steady state has been reached after
106 s. The final normalized distribution does not superim-
pose exactly with the theoretical Lifshitz–Slyozov–Wagner
(LSW) distribution also plotted in Fig. 4. This could indi-
cate that coarsening is not the only operating phenomenon.
Another explanation could be that the assumptions of the
LSW theory do not apply exactly here, due to the residual
supersaturation of c and the complex dependency of inter-
face concentrations with respect to the radius of the c0 pre-
cipitates. Indeed, the LSW theory was formulated for
binary alloys with the approximation of an ideal dilute
solution, which is not the case for the numerical model.
Finally, the cross-diffusion can have a strong influence on
the growth/dissolution kinetics, which may also result in
differences with the theoretical distribution. This aspect will
be analysed in more detail in the next paragraphs.

3.2. Comparisons with experimental data

The experimental data published by Booth-Morrison
et al. [19] have been reported in Figs. 2 and 5. As can be
seen in Fig. 2a, the average precipitate radii predicted by
the model (black curve labelled ”Dcross”) are in good
agreement with the measured values. The trends are also
similar for the total number density ntot, although in the
simulation the maximal value of the precipitate density is
higher than in the experiments (Fig. 2b). These discrepan-
cies can be explained by the assumption of homogeneous
nucleation. One can note that the differences in gc0 reflect
those observed for ntot.

Fig. 5 shows the paths of the simulated and measured con-
centrations in c and c0 during precipitation. In the simula-
tion, the final average concentrations, labelled (e), lie on
the equilibrium tie-line given by the thermodynamics data-
base [28]. Measurements are also found close to the equilib-
rium tie-line at points (e), but at different positions compared
with the simulation. In c0, important discrepancies between
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calculated and measured concentrations are observed. The
initial Al concentrations, labelled (s), are significantly lower
in the simulation than in the measurements (by �3 at.%).
Also, the model does not predict the global decrease of the
average Cr concentration in c0 observed experimentally.

A possible source of discrepancies between simulation
and experiments is the mean field approach used for the con-
centration fields, which does not take into account the local
shapes of the concentration profiles influenced by the high
particle density and the relative positions of the precipitates.
In the model, coarsening is assumed to occur only via the dif-
fusion fluxes in the matrix, whereas in real systems, direct
contacts between c0 precipitates can occur and lead to coales-
cence or coagulation events, as reported in Ref. [19]. Sub-
stantial differences are observed on the equilibrium
concentrations, which are directly linked to the thermody-
namic database [28]. Finally, the role of vacancies, which
may have a strong influence on the diffusion kinetics and pos-
sibly also on nucleation, is not accounted for in the simula-
tion. In spite of these limitations, the overall
transformation kinetics (average radius and volume fraction
of precipitates) are well reproduced by the model. It is worth
mentioning that the results of the simulation were obtained
with the assumption of homogeneous nucleation, which,
unlike heterogeneous nucleation laws, does not involve
adjustable parameters. The interfacial energy used in the
simulation, 27 mJ m�2, lies in the experimental range given
by Booth-Morrison et al. (24 ± 6 mJ m�2) [19].

3.3. Importance of cross-diffusion

The role of the non-diagonal diffusion coefficients on the
precipitation response of the alloy has been analysed in
more detail by performing calculations with different diffu-
sion matrices. Three new cases were considered. They
correspond to simplified versions of the diffusion matrix
shown in Table 1. In the case which will be referred to as
“Trinf”, the term Dc

Al;Cr was set to 0, whereas in the case
“Trsup”, Dc

Cr;Al was set to 0. The case referred to as “Diag”

corresponds to the diagonal matrix where both non-diago-
nal terms are ignored: Dc

Al;Cr ¼ Dc
Cr;Al ¼ 0. The diagonal

coefficients were always those given in Table 1.
The results obtained for the three new cases are reported

in Fig. 2, where they are compared with the results for the
full diffusion matrix (“Dcross”) already presented in the
previous paragraph. The overall behaviour is qualitatively
similar for all cases. The nucleation, growth and coarsening
regimes discussed in the previous paragraph can also be
observed for the simplified diffusion matrices. However,
the results are substantially different from a quantitative
point of view. The quickest growth kinetics is observed
for the Trinf case. The c0 fraction increases faster for this
case, and thus the nucleation driving force also decreases
earlier. Consequently, the total precipitate density, ntot

(Fig. 2b), is the lowest. The slowest precipitation kinetics
among the four cases is observed for Dcross. The nucle-
ation rate remains high during a long period of time, which
leads to the highest maximum for ntot. Intermediate behav-
iours are observed for the Diag and Trsup cases.

To better isolate the role of each diffusion coefficient, an
independent analysis has been conducted. The model was
applied to the case of a single precipitate growing in a
spherical volume of matrix. The initial precipitate radius
was 10�9 m, and the radius of computation domain was
10.6078 nm, corresponding to a number density of
2 � 1023 m�3. No Gibbs–Thomson effect was considered.
As for the first type of simulations, the temperature was
kept constant, at 600 �C. The calculations were carried
out for the four diffusion matrices, Dcross, Trsup, Trinf
and Diag. In addition the Diag calculation was repeated
using a frozen concentration profile in the precipitate,
rather than full mixing, which is similar to the Gulliver–
Scheil approximation. This case will be referred hereafter
as “Diag-Scheil”.

Fig. 6 shows the evolution of the radius for the five
cases. As for the multiclass simulations, the highest growth
rate is observed for the lower triangular matrix (Trinf) and
the slowest for the full diffusion matrix (Dcross). Between
these two extrema, the Diag case exhibits slightly higher
growth rates than Trsup. These variations are similar to
those for the overall kinetics displayed in Fig. 2.

As shown in Fig. 5, c0 is richer in Al and poorer in Cr
than c. As growth proceeds, the matrix is progressively
depleted in Al and enriched in Cr, and the two profiles have
opposite variations. Therefore, the non-diagonal coeffi-
cients of the matrix, which are both positive, tend to
decrease the magnitude of the Al and Cr fluxes computed
with Eq. (7). This effect explains qualitatively why the
Dcross case has the slowest kinetics, and why Trsup has
a slightly slower kinetics than Diag. However, the fact that
Trinf exhibits faster growth kinetics than Diag shows that
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this argument can be misleading. The variations of the
diffusion fluxes and the modification of the tie-line during
the transformation have to be analysed more carefully to
understand the influence of the diffusion matrix.

Fig. 7 shows the composition paths in the c phase for the
four cases. The deviation of the trajectory from the equilib-
rium tie-line indicates that the Al depletion of the matrix
occurs faster than the Cr enrichment. This effect is more
pronounced for Trinf and Dcross but also visible for the
other cases. It is obviously associated with the high value
of the Dc

Al;Al diffusion coefficient reported in Table 1.
Figs. 8–10 show the evolution of the average concentra-

tions, interface concentrations and solute fluxes in c at the
c/c0 interface. It can be seen in Fig. 10 that for Trinf and
Dcross the Cr flux is negative at the beginning of the
growth (t < 6 s). This is at first sight unexpected, knowing
that X c�

Cr > X 0;Cr, but it can be easily understood by consid-
ering the high value of Dc

Cr;Al, which induces a negative
cross-contribution of larger magnitude than the diagonal
one. Because X c0�

Cr < X c�
Cr, a negative flux tends to dissolve

the precipitate and/or modify the operating tie-line towards
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higher values of X c�
Cr and X c0�

Cr . In this case, only the second
mechanism occurs because dissolution is not compatible
with the negative flux of Al. A fast increase of X c�

Cr and
X c0�

Cr is thus observed (see Fig. 9). At t > 6 s, X c�
Cr has suffi-

ciently risen to obtain a positive Cr flux. The Cr gradient
is then larger than for the Ddiag and Trsup cases.



-8

-6

-4

-2

0

(b)

Jγ* A
l
[1

0-1
3 m

s-1
]

J
γ*

Al
, Dcross

J
γ*

Al
, Trinf

J
γ*

Al
, Trsup

J
γ*

Al
, Ddiag

(a)

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

-2

0

2

Jγ* C
r
[1

0-1
3 m

s-1
]

t [s]

J
γ*

Cr
, Dcross

J
γ*

Cr
, Trinf

J
γ*

Cr
, Trsup

J
γ*

Cr
, Ddiag

Fig. 10. Variations of the solute flux with time, for (a) Al and (b) Cr.

6404 L. Rougier et al. / Acta Materialia 61 (2013) 6396–6405
In other words, the high value of Dc
Cr;Al brings Cr to the

interface and helps to establish a steep Cr gradient in the
matrix. This phenomenon tends to enhance the growth in
a later stage of the precipitation, when Al is already well
mixed in the matrix. This sequence of phenomena explains
the rapid kinetics of Trinf. If both Dc

Cr;Al and Dc
Al;Cr are con-

sidered (Dcross), the steep gradient of Cr will have a nega-
tive contribution on the Al flux. More time will be needed
to homogenize Al in the matrix than for the other cases,
which translates as a long plateau of �X c

Al ffi 0.055 (see
Fig. 8). The total precipitation time is finally larger for
Dcross than for the other cases.

Fig. 6 shows that the time evolution of the radius is very
similar for the complete mixing in the precipitates (Diag)
and no diffusion (Diag-Scheil). Due to the relatively small
size of the c0 precipitates, the concentration gradients in
c0 do not significantly influence the overall solute balance,
and finally the growth kinetics remains almost unchanged.

4. Conclusions

A comprehensive model has been developed for the sim-
ulation of c0 precipitation in a multicomponent Ni alloy. It
is shown that the model can describe the different regimes
of precipitation: nucleation, growth and coarsening. After
a transient regime between growth and coarsening, during
which the particle size distributions rearrange, the present
model recovers stationary size distributions and the time
dependencies of the average quantities predicted by the
LSW theory. The results of the simulation for ageing of
Ni–7.56 at.% Al–8.56 at.% Cr at 600 �C reaches global
agreement with the experimental observations by Booth-
Morrison et al. [19]. The computed evolutions of the phase
fraction and average radius are quantitatively close to the
measurements. Discrepancies were, however, observed for
the nucleation kinetics and the equilibrium concentrations
at the c/c0 interface. A possible reason is the assumption of
homogeneous nucleation, which is rather restrictive and
does not contain any adjustable parameters to represent
the influence of defects such as vacancies or dislocations.
Also, the mean-field approach used in this work does not
allow for the description of geometrical aspects, such as
the precipitate shape and direct contacts between particles.
However, the results obtained in this study indicate that the
quality of the thermodynamic and kinetic data could be the
most limiting factor for more quantitative simulations of
precipitation in Ni–Al–Cr, especially at low temperatures.

Cross-diffusion (non-diagonal diffusion matrices) turned
out to affect significantly the calculated evolution of aver-
age concentrations and, to a lower extent, the average
radius, number and volume fraction of precipitates. In
industrial nickel-base superalloys, this aspect is expected
to have an even larger influence on the overall precipitation
kinetics, due to the higher solute contents. More generally,
the present model offers excellent perspectives to simulate
and optimize heat treatment in industrial multicomponent
alloys, for which the exploitation of the latest kinetic and
thermodynamic databases is crucial for quantitative
predictions.
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[15] Gandin CA, Bréchet Y, Rappaz M, Canova G, Ashby M, Shercliff H.

Acta Mater 2002;50:901.
[16] Du Q, Perez M, Poole WJ, Wells M. Scripta Mater 2012;66:419.
[17] Du Q, Poole WJ, Wells MA. Acta Mater 2012;60:3830.
[18] Campbell CE, Boettinger WJ, Kattner UR. Acta Mater 2002;

50:775.
[19] Booth-Morrison C, Weninger J, Sudbrack CK, Mao Z, Noebe RD,
Seidman DN. Acta Mater 2008;56:3422.

[20] Perez M, Dumont M, Acevedo-Reyes D. Acta Mater 2008;56:2119.
[21] Myhr OR, Grong Ø. Acta Mater 2000;48:1605.
[22] Russel KC. Adv Colloid Interface Sci 1980;13:215.
[23] Aaronson HI, Lee JK.In: Aaronson H.I., editors. Lectures on the

Theory of Phase Transformations, TMS-AIME. New York, 1975.
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