
Master project report

DynaProg for Scala
A Scala DSL for Dynamic Programming on CPU and GPU

Laboratory Programming Methods Laboratory, LAMP, EPFL
Professor Martin Odersky
Supervisors Vojin Jovanovic, Manohar Jonnalagedda
Expert Mirco Dotta, Typesafe
Student Thierry Coppey
Semester Autumn 2012

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147998808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://lamp.epfl.ch
http://www.epfl.ch
mailto:martin.odersky@epfl.ch
mailto:vojin.jovanovic@epfl.ch
mailto:manohar.jonnalagedda@epfl.ch
mailto:mirco.dotta@typesafe.com
http://typesafe.com
mailto:thierry.coppey@epfl.ch

DynaProg for Scala, p. 1

Abstract
Dynamic programming is an algorithmic technique to solve problems that follow the Bellman’s
principle[3]: optimal solutions depends on optimal sub-problem solutions. The core idea be-
hind dynamic programming is to memoize intermediate results into matrices to avoid multiple
computations. Solving a dynamic programming problem consists of two phases: filling one or
more matrices with intermediate solutions for sub-problems and recomposing how the final re-
sult was constructed (backtracking). In textbooks, problems are usually described in terms of
recurrence relations between matrices elements. Expressing dynamic programming problems in
terms of recursive formulae involving matrix indices might be difficult, if often error prone, and
the notation does not capture the essence of the underlying problem (for example aligning two
sequences). Moreover, writing correct and efficient parallel implementation requires different
competencies and often a significant amount of time.
In this project, we present DynaProg, a language embedded in Scala (DSL) to address dynamic
programming problems on heterogeneous platforms. DynaProg allows the programmer to write
concise programs based on ADP [15], using a pair of parsing grammar and algebra; these pro-
gram can then be executed either on CPU or on GPU. We evaluate the performance of our
implementation against existing work and our own hand-optimized baseline implementations
for both the CPU and GPU versions. Experimental results show that plain Scala has a large
overhead and is recommended to be used with small sequences (≤ 1024) whereas the generated
GPU version is comparable with existing implementations: matrix chain multiplication has the
same performance as our hand-optimized version (142% of the execution time of [39]) for a
sequence of 4096 matrices, Smith-Waterman is twice slower than [13] on a pair of sequences of
6144 elements, and RNA folding is on par with [31] (95% running time) for sequences of 4096
elements.

Acknowledgement
This project has been achieved in collaboration with Manohar Jonnalagedda. I also would like to
thank the LAMP team, including Eugene Burmako, Sandro Stucki, Vojin Jovanovic and Tiark
Rompf who provided insightful advices and suggestions.

CONTENTS DynaProg for Scala, p. 2

Contents

1 Introduction 4

2 Background 6
2.1 Graphic cards . 6
2.2 ADP and parsing grammars . 7
2.3 Scala . 10
2.4 Lightweight Modular Staging . 10
2.5 Related work . 11

3 Dynamic programming problems 12
3.1 Problems classification . 12
3.2 Problems of interest . 14
3.3 Related problems . 24

4 Architecture design and technical decisions 26
4.1 User facing language requirements . 26
4.2 Recurrences analysis . 28
4.3 Backtracking . 30
4.4 CUDA storage: from list to optional value . 33
4.5 Memory constraints . 34
4.6 Memory layout . 38
4.7 LMS integration . 39
4.8 Compilation stack . 40

5 Implementation 42
5.1 CUDA baseline . 42
5.2 Scala parsers . 44
5.3 Code generation . 46
5.4 Runtime execution engine . 50
5.5 LibRNA . 51

6 Usage 52
6.1 Program examples . 52
6.2 Other usage options . 57

7 Benchmarks 57
7.1 Metrics . 57
7.2 Benchmarking platform . 58

CONTENTS DynaProg for Scala, p. 3

7.3 Matrix chain multiplication . 59
7.4 Smith-Waterman (affine gap cost) . 60
7.5 Zuker RNA folding . 62
7.6 Synthetic results . 63

8 Future work 63

9 Conclusion 66

1 INTRODUCTION DynaProg for Scala, p. 4

1 Introduction
Dynamic programming (DP) is an algorithmic technique to solve optimization problems. For
example, we might want to multiply a chain of matrices1 efficiently. The order in which matrices
are combined changes the number of required scalar multiplications, therefore we would want to
find an optimal order that minimizes this number. Notice that if we know how to split the chain
into two subparts, we can recursively find an optimal order in these two parts and recombine
them. Such combinatorial problems verify the Bellman’s principle[3]: «optimal solutions depends
on optimal solutions of sub-problems»2. In order to find the optimal way of splitting the chain, we
would need to explore an exponential number of possibilities. Using the Bellman’s principle, we
can memorize intermediate optimal solutions to save redundant computations, thereby reducing
the problem to a polynomial complexity.
Dynamic programming problems are usually expressed in terms of recurrences on intermediate
solutions that are stored in matrices, whereas optimality is defined in terms of an objective
function (minimal or maximal cost, ...). In the case of a chain of n matrices, the recurrence is:

M(i,i) = 0 ∧ M(i,j) = min
1≤i≤k<j≤n

{M(i,k) +M(k+1,j) + ri · ck · cj} ∀1 ≤ i, j ≤ n

where ri and ci denotes respectively the row and column of the ith matrix in the chain, M is an
n× n matrix and M(i,j) stores the number of multiplications to obtain the product of matrices
in the chain i, ..., j. The total number of required scalar multiplications is given by M(1,n) (refer
to §3.2.5 for details). Once the optimal result is found, a second backtrack phase retrieves the
construction trace associated with the optimal score for the problem. This trace (or backtrack
trace) describes how to obtain the optimal score, and heavily depends on the matrix design.
In several disciplines of applied Computer Science, for example, biosequence analysis, natural
language processing and operational research, dynamic programming problems such as sequence
alignment, RNA sequence folding or expression parenthesisation could arise. Unfortunately,
these often appear in multiple variations with a considerable degree of sophistication such that
there is a mismatch between the textbook solution and its concrete implementation. The user
is often interested in one optimal solution, but he might also request all co-optimal solutions, a
fixed number of near-optimal solutions, or some synthetic properties of the search space (size,
sum of scores, ...).
The backtracking is usually ad-hoc because it needs to be kept consistent with matrix filling
and presented in a format suitable for the user (readable by human or ready to drive further
computations). Additionally, debugging matrix indices is tedious and requires a lot of time, and
small changes in the formulae might imply large rewrites of the matrices and recurrences [17].
Finally, once the implementation is correct, it is possible to turn it into an efficient implementa-
tion for specific architectures such as multi-CPU, GPU and programmable hardware (FPGA).
However, domain specialists who write the recurrences might not be very familiar with these
platforms, and parallelization or hardware experts might not deeply understand the domain of
the dynamic programming recurrences.

1Such that matrices have appropriate dimensions to be multiplied with each other.
2http://en.wikipedia.org/wiki/Bellman_equation#Bellman.27s_Principle_of_Optimality

http://en.wikipedia.org/wiki/Bellman_equation#Bellman.27s_Principle_of_Optimality

1 INTRODUCTION DynaProg for Scala, p. 5

To simplify the expression of dynamic problems, Algebraic Dynamic Programming (ADP) [15]
proposes a language-independent declarative approach that separates the concerns of dynamic
programming on sequences into four distinct components that are tightly connected:

1. The search space is described by a context-free parsing grammar that produces inter-
mediate solution candidates whose score might be inserted in the matrix.

2. Constructed candidates are then evaluated by a scoring function (where all these func-
tions form an algebra), so that they can be compared appropriately.

3. The objective function (or aggregation function) operates on the scores previously ob-
tained to retain valid candidates.

4. Finally, results are tabulated (memoized in an array) in corresponding matrices. Tabula-
tion process regulates the trade-off between running time and space efficiency by memoizing
appropriate results that are reused multiple times.

A signature serves as interface between the grammar, the scoring algebra and the aggregation
function, which allows the user to combine one grammar with different algebras or vice versa.
Because recurrence relations are expressed by a parsing grammar, ADP makes the candidate
structure explicit and hides tabulation indices, thereby preventing potential errors. Finally,
since the expression of the dynamic program is formalized and abstracted into a grammar and
an algebra, it becomes possible to systematically convert dynamic programming descriptions
into efficient recurrences for many-core platforms such as GPUs [37].
DynaProg, the DSL we present in this report, implements the concepts of ADP in Scala as an
embedded DSL (domain-specific language) with a syntax similar to the combinators parsers of
Scala library3. It extends ADP by allowing grammars for pairing two sequences (multi-track
grammars) similarly as GAPC[35]. It also simplifies the process of writing programs by inferring
additional information (§4.2.2). Moreover, it can translate them into efficient CUDA4 program
that are competitive to their handwritten counterpart (§7). Since the program structure is
formalized in ADP framework, it can be analyzed to remove unused grammar rules (§4.2.1) and
avoid some non-termination issues; since it is generated, correct scheduling is guaranteed and
indices errors are avoided, thereby it produces an arguably more reliable program.
DynaProg provides a generic way of backtracking the results such that the same trace can be used
with different algebras sharing the same grammar. This allows constructing a two step pattern
to solve problems: first the DP problem is solved using the appropriate cost functions; then from
the backtrack of its optimum, the desired result is computed. As example, consider multiplying
a chain5 of matrices efficiently: first, optimal execution scheduling (or parenthesisation) trace is
found using dynamic programming and cost algebra (§3.2.5). The backtrack trace is then used
(with a multiplication algebra) to multiply the actual matrices.
Finally, offloading dynamic programming computations to CUDA devices has been made effort-
less for the programmer: it suffices to enable code generation to schedule dynamic compilation
and execution of the GPU-optimized program, as if it was executed in plain Scala.

3See http://www.scala-lang.org/api/current/index.html#scala.util.parsing.combinator.Parsers
4Compute Unified Device Architecture: a parallel computing platform and programming model created by

NVIDIA, supported by their graphics processing units (GPUs).
5Assuming matrices are of appropriated dimension to be multiplied with each other

http://www.scala-lang.org/api/current/index.html#scala.util.parsing.combinator.Parsers

2 BACKGROUND DynaProg for Scala, p. 6

This project is currently available online6; it implements dynamic programming parsers in Scala
(CPU) and CUDA (GPU). Its contribution is an novel approach to systematically encode and
process backtracking information such that the reconstruction complexity is reduced compared
to GAPC[35], and backtrack trace can be exchanged among different algebras sharing the same
grammar.
The rest of the document consists of:

• A brief background on dynamic programming, followed by an introduction to some of the
key features of the Scala programming language and LMS framework (§2).

• A classification of DP problems in terms of matrix shape and dependencies, followed by
a detailed analysis of some specific problems (§3). Related work addressing dynamic
programming challenges is presented in (§2.5).

• A description of the parser stack (§4), going from the user facing language (§4.1, §2.2) to
optimizations (§4.2, §4.3) and implementation constraints (§4.4, §4.5), describing all the
architectural decisions we made.

• The concrete implementation of these ideas (§5) in the form of a DSL in Scala (§5.2) and
in efficient CUDA code generation (§5.3).

• A brief usage explanation detailing the available features for the DSL user (§6).
• An evaluation of the performance of our work by providing appropriate benchmarks against

existing implementations (§7).

2 Background
2.1 Graphic cards
Modern graphic cards7 are powered by massively parallel processors: they can typically run
hundreds or thousands of cores, each able to schedule multiple threads. The threads are usually
grouped in warps that are scheduled synchronously. This means that if there is a divergence
in the execution path, both alternatives are executed sequentially, thereby stalling other warp’s
threads. Threads are logically grouped in blocks by the programmer whereas warps correspond
to a physical constraint. In a deliberate design decision to simplify the hardware, there exist no
global synchronization.
On graphic cards, there exist two levels of memory that are visible for the programmer: the
global memory, which can be accessed by any thread, and the shared memory, that corresponds
to an explicitly addressable cache memory, whose access is faster but restricted to threads in the
same block. A small amount of (global) memory can be marked as constant, so that its caching
and reading strategy can be adapted consequently [24]. Finally, access to the main memory of
the computer is possible on recent cards but suffers an additional penalty, which makes it not
desirable.
Since in such architecture the major bottleneck is often the access to the global memory, threads
should access contiguous memory at the same time. This is called coalesced memory access and
improving the memory layout in this direction can lead to significant speedup8.

6https://github.com/manojo/lamp-dp-mt
7We cover here interesting features of the CUDA devices and programming paradigm; however, the same

concept should be applicable to graphic cards from other vendors.
8http://mc.stanford.edu/cgi-bin/images/5/5f/Darve_cme343_cuda_2.pdf

https://github.com/manojo/lamp-dp-mt
http://mc.stanford.edu/cgi-bin/images/5/5f/Darve_cme343_cuda_2.pdf

2 BACKGROUND DynaProg for Scala, p. 7

2.2 ADP and parsing grammars
2.2.1 ADP formal specifications
This subsection is an excerpt of ”Algebraic Dynamic Programming” [15], section 3. Would the
reader be interested in more details, we encourage him to read the corresponding paper.

Terminology
An alphabet A is a finite set of symbols. Sequence of symbols are called strings. ϵ denotes the
empty string, A1 = A, An+1 = {ax|a ∈ A, x ∈ An}, A+ =

∪
n≥1An,A∗ = A+ ∪ {ϵ}.

A signature Σ over some alphabet A consists of a sort symbol S with a family of operators.
Each operator ◦ has fixed arity: ◦ : s1, ..., sk → S where each si is either S or A.
A Σ-algebra I over A, also called an interpretation, is a set SI of values together with a function
◦I for each operator ◦. Each ◦I has type ◦I : (s1)I ...(sk)I → SI where AI = A.
A term algebra TΣ arises by interpreting the operators in Σ as constructors, building bigger
terms from smaller ones. When variables from a set V can take the place of arguments to
constructors, we speak of a term algebra with variables TΣ(V) with V ⊂ TΣ(V).
Terms will be viewed as rooted, ordered, node-labeled trees in the obvious way. According to the
special role of A, only leaf nodes can carry symbols from A. A term/tree with variables is called
a tree pattern. A tree containing a designated occurrence of a subtree t is denoted C[...t...]. A
tree language over Σ is a subset of TΣ. Tree languages are described by tree grammars, which
can be defined in analogy to the Chomsky hierarchy of string grammars.
Definition 1: (Tree grammar G over Σ and A)
A (regular) tree grammar G over Σ and A is given by

• A set V of nonterminal symbols
• A designated nonterminal symbol Ax called the axiom
• A set P of productions of the form v → t where v ∈ V and t ∈ TΣ(V)

The derivation relation for tree grammars is →∗, with C[...v...] → C[...t...] if v → t ∈ P . The
language of v ∈ V is L(v) = {t ∈ TΣ|v →∗ t}. The language of G is L(G) = L(Ax).
Definition 2: (Evaluation algebra)
Let Σ be a signature over A with sort symbol Ans. A Σ-evaluation algebra is a Σ-algebra
augmented with an objective function h : [Ans]→ [Ans], where [Ans] denotes lists over Ans.
Definition 3: (Yield grammars and yield languages)
Let G be a tree grammar over Σ and A, and y the yield function. The pair (G, y) is called a
yield grammar. It defines the yield language L(G, y) = y(L(G)).
Definition 4: (Yield parsing)
Given a yield grammar (G, y) over A and w ∈ A∗, the yield parsing problem is to find PG(w) :=
{t ∈ L(G)|y(t) = w}..
Definition 5: (Algebraic dynamic programming)

• An ADP problem is specified by a signature Σ over A, a yield grammar (G, y) over Σ, and
a Σ-evaluation algebra I with objective function hI .

• An ADP problem instance is posed by a string w ∈ A∗. The search space it spawns is the
set of all its parses, PG(w).

• Solving an ADP problem is computing hI{tI |t ∈ PG(w)} in polynomial time and space.
Definition 6: (Algebraic version of Bellman’s principle)

2 BACKGROUND DynaProg for Scala, p. 8

For each k-ary operator f in Σ, and all answer lists z1, . . . , zk, the objective function h satisfies

h([f(x1, . . . , xk)|x1 ← z1, . . . , xk ← zk])

= h([f(x1, . . . , xk)|x1 ← h(z1), . . . , xk ← h(zk)])

Furthermore, the same property holds for the concatenation of answer lists:

h(z1 ::: z2) = h(h(z1) ::: h(z2))

2.2.2 ADP in practice
ADP is a formalization of parsers that introduces a distinction between the parsing grammar
(recognition phase) and an associated algebra (evaluation phase). Such separation makes it
possible to define multiple algebra for the same grammar. This has two main applications:

1. Experiment variants with the same grammar: for example, Needleman-Wunsch and Smith-
Waterman share the same grammar but have a different evaluation algebra

2. Use an evaluation and execution algebra: a dynamic programming problem is solved in
two steps: computing one optimal solution and applying it over actual data. For example
in matrix chain multiplication, the first step solves the underlying dynamic program by
evaluating the number of necessary multiplications, the second step effectively multiplies
matrices according to the order previously defined.

Practically, an ADP program is made of 3 components: a signature that define a set of func-
tion signatures, one or more algebras implementing these functions and a grammar containing
parsers that make use of the functions defined in the signature. The concrete program instance
combines the algebra with the grammar. The grammar parsers’ intermediate results are mem-
oized in a matrix (tabulation parser). A parser usually consist of a tree of:

• Terminal: operates on a subsequence of input elements and returns either its content or
position (or a failure if the sequence does not fit the terminal).

• Filter: accepts only subsequences matching a certain predicate. The condition is evaluated
ahead of its actual content evaluation.

• Or: expresses alternative between two different parsers and returns their result union.
• Concatenation: constructs all possible combinations from two subsequences. The sub-

sequences can be of fixed or varying size and concatenation operators might impose re-
strictions on the subsequences length to be considered.

• Map: this parser transform its input using a user-defined function. It is typically used to
transform a subword into a score that can later be aggregated.

• Aggregation: the aggregation applies a functions that reduces the list of results, typically
minimum or maximum, but the function can be arbitrarily defined.

• Tabulation: the tabulation’s primary function is to store intermediate results and possi-
bly serve as connection point between different parsers.

Additionally, the signature must define an input alphabet (Alphabet), and an output alphabet
(Answer) can be defined either in the signature or in the algebra. Finally, the grammar needs
to have a starting point, denoted as axiom. Finally, the default aggregation function h must
be defined9. To make it more clear, we propose an example of the matrix chain multiplication

9Although aggregation usage is not mandatory in the framework, we force the existence of an aggregation
function over the ouput type so that we can use it to aggregate windowed results.

2 BACKGROUND DynaProg for Scala, p. 9

problem10.
trait MatrixSig extends Signature {

type Alphabet = (Int,Int) // Matrix(rows, columns)
val single:Alphabet=>Answer
val mult:(Answer,Answer)=>Answer

}

trait MatrixAlgebra extends MatrixSig {
type Answer = (Int,(Int,Int)) // Answer(cost, Matrix(rows, columns))
override val h = minBy((a:Answer) => a._1)
val single = (a: Alphabet) => (0, a)
val mult = (a:Answer,b:Answer) =>

{ val ((m1,(r1,c1)),(m2,(r2,c2)))=(a,b); (m1+m2+r1*c1*c2, (r1,c2)) }
}

trait MatrixGrammar extends ADPParsers with MatrixSig {
val axiom:Tabulate = tabulate("M",

(el ^^ single | axiom ~ axiom ^^ mult) aggregate h)
}

object MatrixMult extends MatrixGrammar with MatrixAlgebra with App {
println(parse(Array((10,100) ,(100,5) ,(5,50)))) // List((7500,(10,50)))

}
Listing 1: Matrix chain mulitiplication DSL implementation

with or: | map: ∧∧ concatenation: ∼

This program grammar can also be expressed in BNF11:

axiom ::= matrix
| axiom axiom

and it encodes the following recurrence (cost only):

M(i,j) =

{
0 if i+ 1 = j
mini<k<j M(i,k) +M(k,j) + ri · ck · cj otherwise

Notice that the semantics of indices differ slightly from the problem presented in §3.2.5; this is
because empty chain are made expressible (denoted M(i,i), single matrices are denoted M(i,i+1)).

10The original ADP framework is an embedded DSL of Haskell, however, we assume that the reader is more
familiar with Scala notation and immediately present the syntax of our implementation.

11http://en.wikipedia.org/wiki/Backus-Naur_Form

http://en.wikipedia.org/wiki/Backus-Naur_Form

2 BACKGROUND DynaProg for Scala, p. 10

2.3 Scala
«Scala is a general purpose programming language designed to express common programming pat-
terns in a concise, elegant, and type-safe way. It smoothly integrates features of object-oriented
and functional languages, enabling programmers to be more productive. Many companies de-
pending on Java for business critical applications are turning to Scala to boost their development
productivity, applications scalability and overall reliability.»12

As the Scala [28] programming language is developed by our laboratory (LAMP, EPFL), it seems
natural host language for our project. Its large adoption13, would make the adoption of our DSL
easier while reducing the learning time of its potential users. Additionally, some features [1] of
Scala makes it an interesting development language for this project:

• The functional programming style and syntactic sugar offered by Scala allow concise writ-
ing of implementation, analysis and transformations of our DSL, allowing us to focus on
what we want to achieve instead of how.

• Since Scala programs execute in the Java Virtual Machine (JVM), they can benefit of
the native interface (JNI) that offers the possibility to dynamically load libraries (usually
written in C) and possibly interact with CUDA to leverage the GPU.

• Scala is equipped with a strong typing and type inference system that reduces the syntac-
tical constraints while putting strong guarantees on type correctness at compilation.

• Implicit functions and parameters allow to simplify the syntactic usage of the DSL by
implementing automatic conversions, while at the same time preserving type safety.

• Manifests (or TypeTags and ClassTags) allow type extraction at runtime (we use this to
convert a Scala type into a C/CUDA type)

• Macros[5] and LMS (§2.4) could be used to modify the semantics of specific parts, or
implement domain-specific optimizations of the user program. LMS also contains a multi-
language code generator that we leverage to produce C functions (see §5.3.6).

• One Scala concept that we heavily use is traits that can be viewed as abstract classes and
combined (mixin composition), thereby allowing multiple inheritance. We use this feature
in particular to smoothly combine algebra, grammar and possibly code generation (§5.3)
into a concrete program.

2.4 Lightweight Modular Staging
Lightweight Modular Staging (LMS) [33], [32] is a runtime code generation built on top of Scala
virtualized [25] that uses types to distinguish between binding time (compilation and runtime)
for code compilation. This makes possible to annotate parts of the code with special types, such
that their compilation is delayed until the program is executed. At run time, these parts are
represented as a sea of nodes that serve as the basis for another compilation phase where all
the code executed until this point provides additional information to produce a more efficient
compilation. The process of delaying the compilation is known as lifting whereas lowering
corresponds to transforming this intermediate representation into executable code. LMS code
generation is not limited to Scala, it can also target other languages like C. In short, LMS is
an optimizing compiler framework that allows integration of domain-specific abstractions and
optimizations into the generation process.
A discussion on the integration of LMS in our project can be found in §4.7.

12http://www.scala-lang.org/node/25
13http://www.scala-lang.org/node/1658

http://www.scala-lang.org/node/25
http://www.scala-lang.org/node/1658

2 BACKGROUND DynaProg for Scala, p. 11

2.5 Related work
Work related to dynamic programming can be separated in two categories: ad-hoc implementa-
tions and grammar-based implementations. The former focus on the performance for a specific
problem whereas the latter generalize and formalize the dynamic programming problem descrip-
tion into a parsing grammar paired with a costing algebra.
Grammar-based dynamic programming was inseminated by ADP [16] and first implemented as
a Haskell DSL [15]. To overcome performance issues, multiple solutions were devised:

• Converting Haskell parsers in their C or CUDA equivalent [37]
• Modifying Haskell execution environment to provide loop fusion to improve ADP parsers

performance [20], [19].
• Ultimately, the dynamic programming algebra and grammar were formalized into a specific

language [36] provided with an ad-hoc compiler [35], thereby allowing more advanced
analysis of the grammar [17].

The research on ad-hoc implementation has focused on three kind of problems:
• General problems, attempting to provide the most efficient implementation for a particular

problem [39], [40], [6].
• RNA sequence folding (variants of the Zuker folding): [9], [31].
• Biological sequence alignment (Smith-Waterman) for huge sequences: [34], [13] [12].

Since this project involves various domains, we also investigated in the memory management on
graphic cards and existing code generation frameworks.
In an attempt to support a varying number of results per matrix cell, we considered dynamic
memory allocation [27] (available on recent graphic cards), ad-hoc memory allocation [38] and
hash tables [2]. However the costs associated with dynamic memory allocation makes it unattrac-
tive for this particular kind of problem, and the use of cuckoo hash tables adds a constant factor
penalty to every memory access. Finally both solution introduce undesirable possibility of
failure (respectively out of memory or unrecoverable collision) in the middle of the algorithm
computation process.
Automated code generation and execution flow is addressed by Delite [4], [7], [8], that leverages
LMS[32] to generate from the same source code efficient implementation for heterogeneous plat-
forms (including CUDA) at runtime. Although this shares many patterns with our project, we
can not reuse this framework because the scheduling and computation is tightly interleaved in
dynamic programming (see 2.4) whereas Delite focuses on parallelizing operations on collections
(array, lists, maps, ...) of independent elements.

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 12

3 Dynamic programming problems
There exist various categories of dynamic programming:

• Series that operate usually sequentially on a single dimension (like Fibonacci14)
• Sequences alignment (matching two sequences at best), top-down grammar analysis (paren-

thesizing), sequence folding, ... (see §3 for more examples and detailed classification)
• Tree-related algorithms: phylogeny [14], trees raking [30], maximum tree independent set

[10], ... (can be viewed as a sparse version of the second category)
Since the first category operates on a single dimension, to benefit of the smaller solutions to
compute larger ones, elements must be computed sequentially (one at a time), hence computa-
tions cannot be made parallel (unless duplicated, thereby hindering benefits of memoization).
The third category suffers from limited parallelism [14] and its implementation does not share
much with the previous category, hence we focus on the second type of problems.
Taking real-world examples in biology, the average input size for sequence alignment (§3.2.2) is
around 300’000 whereas for problems like RNA folding (§3.2.7), input length is usually below
1000. Problems operating on multiple input sequences also require more memory: for instance
matching 3 sequences is O(n3)-space complex (as intermediate results needs to be stored in a
position representing the progress in each of the involved sequence). Since we target a single
computer with one or more attached devices (GPUs, FPGAs), and since we plan to maintain
data in memory (due to the multiple reuse of intermediate solutions) the storage complexity must
be relatively limited, compared to other problem that could leverage the disk storage. Hence
in general, we focus on problems that have O(n2)-space complexity whereas time complexity is
usually O(n3) or larger. We encourage you to refer to §3 for further classification and examples.

3.1 Problems classification
Since «dynamic programming» defines a very general technique, we already focused on grammar
and alignment problems. Before exploring some particular problem instances, we want to define
some characteristics that will be used through the rest of the document to describe dynamic
programming problems.

3.1.1 Definitions
• Cost or score: refers to the result of the dynamic programming recurrence formula.
• Backtrack: the backtrack is the information related to a score that describe how it

has been obtained by referring to immediately previous elements. By induction on the
backtrack, the trace (that describe all thee steps to obtain the result) can be obtained.

• Alphabets: an alphabet is an set of possible values. Its size helps determining how many
bits are required in the implementation to represent all its elements. Alphabets are defined
for input, cost, backtrack and wavefront.

• Dimensions: let n the size of the input and d the dimension of the underlying matrix.
• Matrices: we refer by matrix or matrices to all the memoized intermediate cost- and

backtrack-related information that is necessary to solve the dynamic programming problem
of interest. Matrix elements are usually denoted by M(i,j) (ith line , jth column).

• Computation block: this is a part of the DP matrix (cost and backtrack) that we
want to compute. A block might be either a sub-matrix (rectangular) or a parallelogram

14http://en.wikipedia.org/wiki/Fibonacci_number

http://en.wikipedia.org/wiki/Fibonacci_number

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 13

(possibly reduced by taking the intersection with its enclosing matrix).
• Wavefront: the wavefront consists of the minimum data necessary to construct a com-

putation block of the DP matrix. It might include some previous lines/columns/diagonals
as well as line-/column-/diagonal-wise aggregations (min, max, sum, ...).

• Delay: we call delay the maximum distance between an element and its dependencies
along column and lines (ex: recurrence M(i,j) = f

(
M(i+1,j),M(i+2,j−1)

)
has delay 3).

3.1.2 Literature classification
In [39], dynamic programming problems are classified according to two criteria:

• Monadic/polyadic: a problem is monadic when only one of the previously computed
term appears in the right hand-side of the recurrence formula (ex: Smith-Waterman
§3.2.1). When two or more terms appear, the problem is polyadic (ex: Fibonacci, Fn =
Fn−1+Fn−2). When a problem is polyadic with index p, it also means that its backtracking
forms a p-ary tree (where each node has at most p children).

• Serial/non-serial: a problem is serial (s = 0) when the solutions depends on a fixed
number of previous solutions (ex: Fibonacci), otherwise it is said to be non-serial (s ≥ 1),
as the number of dependencies grows with the size of the subproblem. That is computing an
element of the matrix would require O(ns). For example, Smith-Waterman with arbitrary
gap cost (§3.2.3) is s = 1; we can usually infer s from the number of bound variables in
the recurrence formula (see recurrence formulae in §3.2).

Note that the algorithmic complexity of a problem is exactly O
(
nd+s

)
.

3.1.3 Recurrence formulae simplifications
In some special cases, it is possible to transform a non-serial problem into a serial problem, if
we can embed the non-serial term into an additional aggregation matrix. For example:

M(i,j) = max

max
k<i

M(k,j)∑
k<i,l<j

M(k,l)
=⇒ M(i,j) = max

{
C(k,j)

A(i−1,j−1)

Where the matrix C stores the maximum along the column and matrix A stores the sum of the
array of the previous elements. Both can be easily computed with an additional recurrence:

C(i,j) = max(C(i−1,j),M(i,j))

A(i,j) = A(i−1,j) +A(i,j−1) −A(i−1,j−1) +M(i,j)

Although this simplification removes some non-serial dependencies at the cost of extra storage
in the wavefront, it is not sufficient to transform all non-serial monadic problems into serial
problems (ex: this does not apply to Smith-Waterman with arbitrary gap cost).

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 14

3.2 Problems of interest
We here focus on problems that have an underlying bi-dimensional matrix (d = 2) because they
can be parallelized (as opposed to be serial if d = 1) and can solve large problems (of size n).
Problems of higher matrix dimensionality (d ≥ 3) require substantial memory which severely
impacts their scalability. Also it seems that most problems of interest have an algorithmic
complexity of at most O(n4), probably because running time would otherwise becomes a severely
limiting factor for the size of the problem.
We describe problems structures: inputs, cost matrices and backtracking matrix. These all have
an alphabet (that must be bounded in terms of bit-size). Unless otherwise specified, we adopt
the following conventions:

• Vectors of size n are indexed from 0 to n− 1, matrices follow the same convention (M(m,n)

is indexed from (0, 0) to (m− 1, n− 1))
• Matrices dimensions are implicitly specified by number of indices and their number of

elements is usually the same as the input length (possibly with 1 extra row/column).
• Number are all unsigned integers
• Problem dimension is m,n (or n) indices i, j ranges are respectively 0 ≤ i < m, 0 ≤ j < n.
• Unless otherwise specified, the recurrence applies to all non-initialized matrix elements.

We describe the problem processing in terms of both initialization and recurrences.
Although not necessary to understand the project, the description of some of the most common
dynamic programming problems is relevant to capture the essence of the dynamic programming
processes and be able to compare and search for similarities among problems. Would the reader
be familiar with dynamic programming, he could immediately jump to the next section.
A tighter analysis on the alphabet and intermediate results size is done because FPGA was also
considered as a possible execution platform.

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 15

3.2.1 Smith-Waterman (simple)
Smith-Waterman is a biological sequence alignment algorithm. It tries to find the maximum
number of correspondences between two DNA sequences; variants of this algorithm include
Needleman-Wunsch, and minimum edit distance family that generalizes on strings (Hamming
distance, Levenshtein distance, ...). We explore three variants of this algorithm: simple (§3.2.1),
affine (§3.2.2) and arbitrary (§3.2.3) gap cost models. We study this problem because it has
the interesting properties of using multiple input sequences and being suitable for hardware
generation [42].

1. Problem: matching two strings S, T with |S| = m, |T | = n, with constant mismatch
penalty (d) and arbitrary matching function (cost(_,_)).

2. Matrices: M(m+1)×(n+1), B(m+1)×(n+1)

3. Alphabets:
• Input: Σ(S) = Σ(T) = {a, c, g, t}.
• Cost matrix: Σ(M) = [0..z], z = max(cost(_,_)) ·min(m,n)
• Backtrack matrix: Σ(B) = {stop,W,N,NW}

4. Initialization:
• Cost matrix: M(i,0) = M(0,j) = 0.
• Backtrack matrix: B(i,0) = B(0,j) = stop.

5. Recurrence:

M(i,j) = max

0 stop
M(i−1,j−1) + cost(S(i− 1), T (j − 1)) NW

M(i−1,j) − d N

M(i,j−1) − d W

 = B(i,j)

6. Backtracking: starts from the cell M(m,n) and stops at the first cell containing a 0.
7. Visualization: by convention, we put the longest string vertically (m ≥ n):

S
T

0
0
0
0
0
0
0
0 0 0 0 0 0 0 0

Figure 1: Smith-Waterman (affine gap cost) dependencies (serial)

8. Optimizations:
• In serial (monadic) problems we can avoid building the matrix M by maintaining

http://en.wikipedia.org/wiki/Needleman–Wunsch_algorithm
http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Levenshtein_distance

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 16

only the 3 last diagonals in memory (one for the diagonal element, one for hori-
zontal/vertical, and one being currently built). This construction extends easily to
polyadic problems where we need to maintain k + 2 diagonals in memory, where k is
the maximum backward lookup.

• We could eliminate the first line and column of the matrix as they are filled with
zeroes (representing a match with empty string), however this implies more involved
computations, which is cumbersome.

• Padding: since to fill the ith row we refer to the (i − 1)th character of string S, we
could prepend to both S and T an unused character, so that matrix and input lines
are aligned. Hence valid input indices would become S[1 · · ·m] and T [1 · · ·n].

3.2.2 Smith-Waterman with affine gap extension cost
1. Problem: matching two strings S, T with |S| = m, |T | = n, where creating a gap in either

sequence has an opening penalty (α) and an extension penalty (β).
2. Matrices: M(m+1)×(n+1), E(m+1)×(n+1), F(m+1)×(n+1), B(m+1)×(n+1)

3. Alphabets:
• Input: Σ(S) = Σ(T) = {a, c, g, t}.
• Cost matrices: Σ(M) = Σ(E) = Σ(F) = [0..z], z = max(cost(_,_)) ·min(m,n)
• Backtrack matrix: Σ(B) = {stop,W,N,NW}

4. Initialization:
• No gap cost matrix: M(i,0) = M(0,j) = 0.
• T-gap extension cost matrix: E(i,0) = 0 «eat S chars only»
• S-gap extension cost matrix: F(0,j) = 0
• Backtrack matrix: B(i,0) = B(0,j) = stop.

5. Recurrence for the cost matrices:

M(i,j) = max

0 stop
M(i−1,j−1) + cost(S(i− 1), T (j − 1)) NW

E(i,j) N

F(i,j) W

 = B(i,j)

E(i,j) = max
{

M(i,j−1) − α NW

E(i,j−1) − β N

}
= B(i,j)

F(i,j) = max
{

M(i−1,j) − α NW

F(i−1,j) − β W

}
= B(i,j)

That can be written alternatively as:

M(i,j) = max

0 stop
M(i−1,j−1) + cost(S(i− 1), T (j − 1)) NW

max1≤k≤j−1M(i,k) − α− (j − 1− k) · β N

max1≤k≤i−1M(k,j) − α− (i− 1− k) · β W

 = B(i,j)

Although the latter notation seems more explicit, it introduces non-serial dependencies
that the former set of recurrences is free of. So we need to implement the former rules as

[M ;E;F](i,j) = f
(
[M ;E](i,j−1), [M ;F](i−1,j),M(i−1,j−1)

)

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 17

6. Backtracking and visualization are similar to §3.2.1
7. Optimizations: Notice that this recurrence is very similar to §3.2.1 except that we prop-

agate 3 values (M,E,F) instead of a single one (M). Also notice that it is possible to
propagate E and F inside a respectively horizontal and vertical wavefront, hence removing
the need of the two additional matrices.

3.2.3 Smith-Waterman with arbitrary gap cost
1. Problem: matching two strings S, T with |S| = m, |T | = n with an arbitrary gap function

g(x) ≥ 0 where x is the size of the gap. For example15: g(x) = max(m,n)− x.
2. Matrices: M(m+1)×(n+1), B(m+1)×(n+1)

3. Alphabets:
• Input: Σ(S) = Σ(T) = {a, c, g, t}.
• Cost matrix: Σ(M) = [0..z], z = max(cost(_,_)) ·min(m,n)
• Backtrack matrix: Σ(B) = {stop,NW,N{0..m},W{0..n}}

4. Initialization:
• Match cost matrix: M(i,0) = M(0,j) = 0.
• Backtrack matrix: B(i,0) = B(0,j) = stop.

5. Recurrence:

M(i,j) = max

0 stop
M(i−1,j−1) + cost(S(i− 1), T (j − 1)) NW

max1≤k≤j−1M(i,j−k) − g(k) Nk

max1≤k≤i−1M(i−k,j) − g(k) Wk

 = B(i,j)

6. Backtracking: similar to §3.2.1 except that you can jump of k cells along the rows or along
the columns.

7. Visualization:

S
T

0
0
0
0
0
0
0
0 0 0 0 0 0 0 0

Figure 2: Smith-Waterman (arbitrary gap cost) dependencies

8. Optimizations: The dependencies here are non-serial, there is no optimization that we can
apply out of the box here. In general, this problem has an O(n3) complexity (whereas
simple and affine gap variants are O(n2)).

15Intuition: long gaps should penalize less; one large gap might be better than matching with smaller gaps.

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 18

3.2.4 Convex polygon triangulation
1. Problem: triangulating a convex polygon of n vertices at minimal cost. Adding an edge

[i, j] has a cost S(i,j), where S is a (n× n) matrix.
2. Matrices: M(n+1)×(n+1), B(n+1)×(n+1), upper triangular matrices including main diagonal.

Indices denote «first vertex, last vertex»; the vertex n is the same as the vertex 0 due to
the cyclic nature of the problem.

3. Alphabets:
• Input: Σ(S(i,j)) = {0..m} with m = maxi,j S(i,j) determined at runtime16.
• Cost matrix: Σ(M) = {0..z} with z = m · (n− 2) (a triangulation of a polygon of n

edges adds at most n− 2 edges).
• Backtrack matrix: Σ(B) = {stop, 0..n} (index of intermediate edge)

4. Initialization: M(i,i) = M(i,i+1) = 0, B(i,i) = B(i,i+1) = stop ∀i
5. Recurrence:

M(i,j) =

{
S(i, j) + max

i<k<j
M(i,k) +M(k,j) k

}
= B(i,j)

Intuition: triangulate the partial polygon (i, ..j) recursively. 3 cases for the last triangle:
• Given 2 triangulations (1..k) and (k..n), we close the polygon with △(1, k, n)
• Given a triangulation (1..n− 1), we close the polygon with △(1, n− 1, n)
• Given a triangulation (2..n), we close the polygon with △(1, 2, n)

Since the edge to close the last triangle is already part of the polygon, its cost is 0.
6. Backtracking: Add the edges in the set given by the set BT(B(0,n)) where

BT(B(i,j) = k) 7→
{
{} if k = stop
{(i, j)} ∪ BT(B(i,k)) ∪ BT(B(k,j)) otherwise

7. Visualization:

Fi
rs

t

Last
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Figure 3: Convex polygon triangulation dependencies

8. Optimizations:
• If the cost of edges between contiguous vertices is 0, we do not need to handle special

cases in the DP program (i.e. existing edges cannot be added).
16We need to have statistics about S, this is where dynamic compilation might play a role

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 19

• The matrix cost S is a symmetric matrix and can be stored as a triangular matrix
with 0 diagonal that can be omitted), hence |S| = n(n−1)

2 = N .

3.2.5 Matrix chain multiplication
1. Problem: find an optimal parenthesizing of the multiplication of n matrices Ai. Each

matrix Ai is of dimension ri × ci and ci = ri+1∀i. «r=rows, c=columns»
2. Matrices: Mn×n, Bn×n (first, last matrix)
3. Alphabets:

• Input: matrix Ai size is defined as pairs of integers (ri, ci).
• Cost matrix: Σ(M) = 1..z with z ≤ n ·

[
maxi(ri, ci)

]3.
• Backtrack matrix: Σ(B) = {stop} ∪ {0..n}.

4. Initialization:
• Cost matrix: M(i,i) = 0.
• Backtrack matrix: B(i,i) = stop.

5. Recurrence: ck = rk+1

M(i,j) = min
i≤k<j

{
M(i,k) +M(k+1,j) + ri · ck · cj k

}
= B(i,j)

6. Backtracking: Start at B(0,n−1). Use the following recursive function for parenthesizing

BT(B(i,j) = k) 7→

{
Ai if k = stop(

BT(B(i,k))
)
·
(

BT(B(k+1,j))
)

otherwise

7. Visualization:

Fi
rs

t

Last
0

0
0

0
0

0
0

0

Figure 4: Matrix chain multiplication dependencies

8. Optimizations:
• We could normalize the semantics of indices and use (n+1)× (n+1) matrices where

the meaning of cell (i, j) would be chain
i≤k<j

(Ak).
• Alternatively, we could encode the dimension of the resulting matrix within the cost

matrix by using a triplet (rows,columns,cost) and taking minimum appropriately.

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 20

3.2.6 Nussinov algorithm
1. Problem: folding a RNA string S over itself |S| = n, according to matching properties (ω)

of its elements (also called bases).
2. Matrices: Mn×n, Bn×n

3. Alphabets:
• Input: Σ(S) = {a, c, g, u}.
• Cost matrix: Σ(M) = {0..n}
• Backtrack matrix: Σ(B) = {stop,D, 1..n}

4. Initialization:
• Cost matrix: M(i,i) = M(i,i+1) = 0
• Backtrack matrix: B(i,i) = B(i,i+1) = stop

5. Recurrences:

M(i,j) = max
{

M(i+1,j−1) + ω(i, j) D

maxi≤k<j M(i,k) +M(k+1,j) k

}
= B(i,j)

With ω(i, j) = 1 if i, j are complementary. 0 otherwise.
6. Backtracking: Start the backtracking in B(0,n−1) and go backward. The backtracking is

very similar to that of the matrix multiplication, except that we also introduce the diagonal
matching.

7. Visualization:

Fi
rs

t

Last
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Figure 5: Nussinov dependencies

8. Optimizations: note that this is very similar to the matrix multiplication except that we
also need the diagonal one step backward, so the same optimization can apply.

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 21

3.2.7 Zuker RNA folding
1. Problem: folding a RNA string S over itself |S| = n by minimizing the free energy (which

is based on actual measurements, hence much more complicated than Nussinov §3.2.6).
2. Matrices: Vn×n,Wn×n, Fn (Free Energy), BVn×n, BWn×n, BFn

3. Alphabets:
• Input: Σ(S) = {a, c, g, u}.
• Cost matrices:

– Σ(W) = Σ(V) = {0..z} with z ≤ n · b+ c
– Σ(F) = {0..y} with y ≤ min(F0, z · n)

• Backtrack matrices:
– Σ(BW) = {stop, L,R, V, k}
– Σ(BV) = {stop, hairpin, stack, (i, j), k} with 0 ≤ i, j, k < n
– Σ(BF) = {stop, P, k} with 0 ≤ k < n

4. Initialization:
• Cost matrices: W(i,i) = V(i,i) = 0, F(0) = energy of the unfolded RNA.
• Backtrack matrices: BW(i,i) = BV(i,i) = BF(0) = stop.

5. Recurrence:

W(i,j) = min

W(i+1,j) + b L

W(i,j−1) + b R

V(i,j) + δ(Si, Sj) V

mini<k<j W(i,k) +W(k+1,j) k

 = BW(i,j)

V(i,j) = min

∞ if(Si, Sj) is not a base pair stop

eh(i, j) + b otherwise hairpin
V(i+1,j−1) + es(i, j) stack

V BI(i,j) (i′, j′)

mini<k<j−1{W(i+1,k) +W(k+1,j−1)}+ c k

= BV(i,j)

V BI(i,j) = min
{

mini<i′<j′<j V(i′,j′) + ebi(i, j, i′, j′)}+ c
∣∣∣ (i′, j′)} = BV(i,j)

F(j) = min
{

F(j−1) P

min1≤i<j(F(i−1) + V(i,j)) i

}
= BF(j)

With δ a lookup table. In practice, we don’t go backward for larger values than 30, so we
can replace mini<k<j by minmax(i,j−30)<k<j in the expressions of V BI.

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 22

6. Backtracking: starts at BF(n) and uses the recurrences

BF(j) =

{
P =⇒ BF(j−1)

i =⇒ BF(i−1) +BV(i,j)

BV(i,j) =

hairpin =⇒

⟨
hairpin(i, j)

⟩
stack =⇒

⟨
stack(i, j)

⟩
⊕BV(i+1,j−1)

(i′, j′) =⇒
⟨
bulge from (i, j) to (i′, j′)

⟩
⊕BV (i′, j′)

k =⇒ BW(i+1,k) ⊕BW(k+1,j−1)

BW(i,j) =

L =⇒

⟨
multi_loop(i)

⟩
⊕BW(i+1,j)

R =⇒
⟨
multi_loop(j)

⟩
⊕BW(i,j+1)

V =⇒ BV(i,j)

k =⇒ BW(i+1,k) ⊕BW(k+1,j−1)

7. Visualization17:

i
j

i, j

30

1 j - 1

W(i, k-1)

N

i+1

W(k , j)

V(i', j')

VBI

W
V

Figure 6: Zuker folding dependencies

The recurrence consists of two non-serial dependencies as in §3.2.3 plus a bounded 2-
dimensional dependency for bulges.

17Reproductions of the illustrations from [21] pp.148,149

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 23

Since this problem is non-trivial to understand from the recurrences, we propose an addi-
tional illustration of a RNA chain folded according to the Zuker folding algorithm.

1

11

23

47

68

78

127

G
G
C
C

G
G
C
C
C
A
G

GCGGGG
U C C C G U

U C C C G

G
G
C
G

C
C
C G C

G C G U U C C A G
CUGGAGUGU

GCG

UGGGA

C
U
G
G
G
C
C

G
G
C
C

A
A
A

A
A
A
A

C
G

C
G
A
C

A
C C C A

A
A
C
A C

A
G A

U
A

A

C A

C G
A
G

UA

A
A

CCUC

A
A

A

A
A
A

A

A
A
A

Types of structural features modeled by the Zuker folding algorithm include: dangling ends (1),
internal loop (11), stack (23), multi-loop (47), bulge (68) and hairpin loop (78).

Figure 7: An example of an RNA folded into a secondary structure

8. Optimizations: notice that there are 3 matrices: W ,V (V BI is part of V) that can be
expressed using regular matrix, and F that is of different dimension than W and V and
requires a special construction. Also notice that the k of BV and BW describe almost the
same backtrack, but there is an additional cost c in BV .

Alternative: Since the recurrence matrices described in [21] are of different dimensions (F
matrix is O(n)), we might want to use another description [31] where all matrices are of the
same dimension, such that we can have a more uniform description across DP problems:
Let Q′

(i,j) the minimum energy of folding of a subsequence i, j given that bases i and j form a
base pair. Q(i,j) and QM(i,j) are the minimum energy of folding of the subsequence i, j assuming
that this subsequence is inside a multi-loop and that it contains respectively at least one and
two base pairs.
A simplified model of the recursion relations can be written as:

Q′
(i,j) =

min

Eh(i, j)
Es(i, j) +Q′

i+1,j−1

min
i<k<l<j

Ei(i, j, k, l) +Q′
k,l

QMi+1,j−1

if (i, j) is a basepair

∞ otherwise
QMi,j = min

i<k<j
(Qi,k +Qk+1,j)

Qi,j = min{QMi,j , Qi+1,j , Qi,j−1, Q
′
i,j}

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 24

The corresponding energy functions are:
• Eh(i, j) energy of hairpin loop closed by the pair i · j.
• Ei(i, j, k, l) energy of interior loop formed by two base pairs i · j, k · l.
• Es(i, j) energy of two stacked base pairs i · j and (i+ 1) · (j − 1).

This latter recurrence is more amenable to be converted into a grammar as the matrix are all of
the same dimension. See the example in §6.1.2 for a detailed implementation of this problem.

3.3 Related problems
The aim of this section is to demonstrate that the problems previously described are very similar
or encompass a significant part of the common dynamic programming problems18.

Serial problems Shape Matrices Wavefront
Smith-Waterman simple (§3.2.1) rectangle 1 –
Smith-Waterman affine gap extension (§3.2.2) rectangle 3 (can replace 2 matrices)
Needleman-Wunsch rectangle 1 –
Checkerboard rectangle 1 –
Longest common subsequence rectangle 1 –
Longest common substring triangle 1 –
Levenshtein distance rectangle 1 –
De Boor evaluating B-spline curves rectangle 1 –

Non-serial problems Shape Matrices Wavefront
Smith-Waterman arbitrary gap cost (§3.2.3) rectangle 1 –
Convex polygon triangulation (§3.2.4) triangle 1 –
Matrix chain multiplication (§3.2.5) triangle 1 –
Nussinov (§3.2.6) triangle 1 –
Zuker folding (§3.2.7) triangle 3 –
CYK Cocke-Younger-Kasami triangle #rules –
Knapsack (pseudo-polynomial) rectangle 1 –

Table 1: Classification of related problems

3.3.1 Other problems
• Dijkstra shortest path: can be expressed in DP and requires a E × V matrix. Informally:

along E, forall V , reduce the distance. The problem is serial along the E dimension and
non-serial along V , hence its complexity is O(|E| · |V 2|) which is worse than both O(|V |2)
(using a minimum priority queue) and O(|E|+ |V | log |V |) (with Fibonacci heap).

• Fibonacci numbers: this problem is serial 1D (in 1 dimension). F (n) could be implemented
with ADP using a sequence of n placeholder elements, but this is inefficient.

• Tower of Hanoi: 1D non-serial
• Knuth’s word wrapping: 1D non-serial
• Longest increasing subsequence: serial (binary search is more efficient).

18There are hyperlinks on the problems name to their detailed description.

http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm
http://en.wikipedia.org/wiki/Dynamic_programming#Checkerboard
http://en.wikipedia.org/wiki/Longest_common_subsequence_problem#Code_for_the_dynamic_programming_solution
http://en.wikipedia.org/wiki/Longest_common_substring_problem#Pseudocode
http://en.wikipedia.org/wiki/Levenshtein_distance#Computing_Levenshtein_distance
http://en.wikipedia.org/wiki/De_Boor's_algorithm
http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
http://en.wikipedia.org/wiki/CYK_algorithm
http://en.wikipedia.org/wiki/Knapsack_problem#Dynamic_programming
http://archive.ite.journal.informs.org/Vol3No1/Sniedovich/#dpmodel
http://www.cs.ust.hk/mjg_lib/bibs/DPSu/DPSu.Files/KnPl81.PDF
http://en.wikipedia.org/wiki/Longest_increasing_subsequence#Efficient_algorithms

3 DYNAMIC PROGRAMMING PROBLEMS DynaProg for Scala, p. 25

• Coin Change: 1D non-serial
These algorithms also involve dynamic programming. However, we do not thoroughly evaluate
their shape and number of matrices as a detailed description is not the focus of this project.

• Floyd-Warshall
• Viterbi (hidden Markov models): T non-serial iterations over a vector
• Bellman-Ford (finding the shortest distance in a graph)
• Earley parser (a type of chart parser)
• Kadane maximum subarray 1D serial, look at Takaoka for 2D
• Recursive least squares
• Bitonic tour
• Shortest path, Shortest path in DAGs, All pair shortest paths, Independent sets in trees
• Subset Sum, Family Graph
• Optimal Binary Search Trees
• Independent set on a tree
• More dynamic programming problems from Wikipedia

3.3.2 Conclusion
In the rest of the report, we use a different description of the problems that is based on ADP
[15], which is more convenient but does not share much with the above description (even though
ultimately the executed computations are very similar). Although not of immediate use, the
description of the above problem and ad-hoc CUDA implementation of three of them (Smith-
Waterman with arbitrary gap cost, Matrix chain multiplication and Convex polygon triangula-
tion) helped us to understand:

1. There is a difference between dynamic programming as seen in algorithmic schoolbooks
and their concrete implementation, mainly because special care must be taken for correct
indices and preventing off-by-one errors.

2. Problems can be classified in two categories: single track (input) and two-tracks (2 in-
put sequences). Most of the interesting dynamic programming problems that could be
parallelized fall in these two categories.

3. Sometimes matrices are initially padded with zeroes (or initial value), although this might
be ignored at algorithm design, care must be taken for these special values and their
inclusion in the matrix should be decided according to the complexity of the recurrence
formula.

4. Incidentally, we proposed a cyclic variant of the convex polygon triangulation, which uses
a parallelogram matrix (see §4.6). Unfortunately, this proved to be based on an erroneous
recurrence relation analysis, and can only use a triangular matrix as described in §3.2.4.
Although we have not found a real problem requiring a parallelogram matrix, we still
present this version in §4.6 and §5.1. Such matrix layout could be adapted for cyclic prob-
lems that could be broken into a linear sequence anywhere (that is for all position in the
circular structure, break the cycle at this position, and solve the dynamic programming
problem on the resulting flattened sequence). For example, one could be interested in find-
ing the longest subsequence verifying some property in a cycle, such that the subsequence
score changes if it is rotated.

http://www.ccs.neu.edu/home/jaa/CSG713.04F/Information/Handouts/dyn_prog.pdf
http://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
http://en.wikipedia.org/wiki/Viterbi_algorithm
http://en.wikipedia.org/wiki/Bellman-Ford_algorithm
http://en.wikipedia.org/wiki/Earley_parser#Pseudocode
http://en.wikipedia.org/wiki/Maximum_subarray_problem
http://www.cosc.canterbury.ac.nz/tad.takaoka/cats02.pdf
http://en.wikipedia.org/wiki/Recursive_least_squares_filter
http://www.math.utep.edu/Faculty/pmdelgado2/courses/adv_algorithms/homework-08_anser.pdf
http://www.cs.berkeley.edu/~vazirani/algorithms/chap6.pdf
http://www.algorithmist.com/index.php/Dynamic_Programming
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/05-dynprog.pdf
http://www.cs.ucsb.edu/~suri/cs130b/NewDynProg.pdf
http://en.wikipedia.org/wiki/Dynamic_programming#A_type_of_balanced_0.E2.80.931_matrix

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 26

4 Architecture design and technical decisions
4.1 User facing language requirements
The field of dynamic programming has been influenced in the recent years by a methodology
known as Algebraic Dynamic Programming which uses a grammar and an algebra to separate
between the parsing and the score computation:

The Algebraic Dynamic Programming approach (ADP) introduces a conceptual splitting
of a DP algorithm into a recognition and an evaluation phase. The evaluation phase is
specified by an evaluation algebra, the recognition phase by a yield grammar. Each grammar
can be combined with a variety of algebras to solve different but related problems, for which
heretofore DP recurrences had to be developed independently. Grammar and algebra together
describe a DP algorithm on a high level of abstraction, supporting the development of ideas
and the comparison of algorithms.

Given such formalization [15] of dynamic programming on sequences, it seems natural to borrow
from it and extend it to other types of DP problems. In short, this framework allow the
user to define a grammar using parsers, which are then run over an input string and produce
intermediate results that are memoized into a table, when multiple solutions are possible, the user
can define an aggregation function (h) to retain only some candidates for further combination.
The benefits of the ADP framework is that it does not constrains the result of the evaluation to
be a single value, but can extend parsers to backtracking parsers or pretty-printers. Additionally,
we want to support the following features:

1. Input pair algebra: the original ADP framework [15] only support single input, we want
to support pairs of inputs sequences similarly as [36] such that we can treat problem such
as Smith Waterman or Needleman-Wunsch. As discussed in §??, handling more than two
sequences introduces an Ω(n3) storage complexity that might limit more severely the size
of problems that could be addressed. Since the problems seen in §3 use either one or two
input sequences, we only need to support these two cases.

2. Windowing: this can be easily encoded by passing the windowing parameter that limits
the computation, then it could be possible to collect either the best or k-best results.

3. Input restrictions: since CUDA (and FPGA) cannot process arbitrary Scala objects,
we need to restrict the language to primary types (int, float, ... and structures of them).
However, we want to preserve the expressivity available in Scala and impose restrictions
on the data types processed by CUDA. A typical restriction we want to make is that data
elements are of fixed size, to avoid memory management issues and thread divergence19.

4. Single-result on devices: The general ADP framework supports multiple solutions for
intermediate results. Such functionality is easily supported in Scala; however, memory
management hampers the performance of the GPU implementation (see §2.5). To over-
come this issue, the user could manually manage the memory, but this would defeat most
of the benefits of automatic code generation. Hence the trade-off solution we propose is to
restrict ADP to only one optimal result on CUDA, while offering the possibility to obtain
co-optimal (or even all possible solutions) with Scala.

5. Automatic backtracking: To produce efficient code, we imposed a fixed size on the
output generated by the parsers on devices. However, on the other hand, the backtracking
information (of varying size) is of primary interest for the DSL user, hence we would like

19Occurs when a single thread needs more processing than its peers, thereby delaying the whole computation.

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 27

to to automate the backtracking to fulfill goals of usefulness, efficiency and ease-of-use in
device-specific implementation:

• Leaving the backtrack implementation to the user would force him to memoize the
backtracking information together with the results (backtrack would grow towards
final result and duplicate unnecessarily information), hence requiring both O(n3)
space and memory management features on devices.

• Enforcing automatic backtracking presents the advantage to ensure constant size for
intermediate results, hence ensuring an O(n2) storage requirement. Collecting the
backtracking list can be easily done in O(n) and then reversed depending on whether
we prefer bottom-up or top-down construction (the backtrack is usually a lattice of
nodes that constitute a tree whose leaves are input elements).

6. Yield analysis: in vanilla ADP, the user has to define for each concatenation the minimal
and maximal length of the subsequence on each side. Although non-emptiness information
is necessary to avoid infinite recursions in the parsers, forcing an explicit definition can
become cumbersome for the DSL user. Similarly as in [17], we want to provide an automatic
computation of concatenation boundaries, while at the same time leaving the possibility
to manually specify it for maximum flexibility.

The support of these features has the following implications:
• Dependency analysis: Since we target GPUs (and FPGAs) which are massively parallel

architecture, a top-down execution using hash tables is impractical (fallback computation
if element is not present is hard to parallelize), hence we need to construct the result tree
bottom-up, therefore ensure that the (partial) evaluation order between rules is respected.

• Normalization: in order to automate the backtracking, we need the grammar rules
to present a certain shape so that we can define uniquely the backtracking information
(in particular we want to distinguish between alternatives). Also we need to maintain
coherence between the Scala and the CUDA version so that they can inter-operate: we
would like to reuse the backtracking information (from CUDA) to do actual processing in
Scala (pretty-printing or actual computation as described in §1).

• Optimizations: Since ADP exposes a grammar, we might have the opportunity to do
optimizations at the grammar level (see §4.1.1). Also since the grammar might define
useless rules, we might want to eliminate them: dead rule elimination is very similar to
traditional dead code elimination (it reduces the size of generated code) but also reduces
the memory consumption (as storage matrix does not need to be reserved) and even speeds
up the computation, (since all grammar rules for a particular element are computed at the
same time in CUDA implementation, see 4.2.1).

4.1.1 Grammar optimization
Since ADP exposes a grammar, we might be able to break complex grammar rules into simpler
ones (optimally binary production). For example, consider the following rule (in BNF):

A := B C D =⇒
{

A′ := B X
X := C D

If B, C and D are of varying length, evaluating the rule A for a single subproblem is O(n2)
(assuming B,C,D are stored in matrices hence O(1)). Adding a tabulation X reduces the eval-
uation complexity because for each subproblem we will consider either rule A′ or X, each of
evaluation complexity O(n); hence we would have reduced the grammar evaluation complexity.

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 28

Since grammar candidates are then evaluated with an algebra, we need to devise an equivalent
transformation of the algebra. Unfortunately this analysis is very involved: we need to solve the
following problem (to respect Bellman’s optimality principle[3]):
Given f , find a pair of functions (f1, f2) or (f3, f4) such that20

f(i, k1, k2, j) = f1(i, f2(i, k1, k2), k2, j) ∧
min

i<k1<k2<j

[
f(i, k1, k2, j)

]
= min

i<k2<j

[
f1(i, min

i<k1<k2

[
(f2(i, k1, k2)

]
, k2, j)

]
∨

f(i, k1, k2, j) = f3(i, k1, f4(k1, k2, j), j) ∧
min

i<k1<k2<j

[
f(i, k1, k2, j)

]
= min

i<k2<j

[
f3(i, k1, min

k1<k2<j

[
(f4(k1, k2, j)

]
, j)

]
Since this requires complex mathematical analysis that is out of the scope of the project, and
since we have not found relevant literature on that particular subject, we leave this optimization
to the responsibility of the user by assuming that the provided grammar is already optimal.
Note that this optimization needs to use informations from both the grammar (the rule to split)
and the algebra (f), which restricting its application to either single algebra or algebra that
could share the same optimization, because modifying the grammar will change the associated
backtrack information (thereby breaking its compatibility for usage with other algebras).

4.2 Recurrences analysis
In this section we use the following notation: let A be a tabulation parser, we refer by A(i,j) to
the element i, j of the underlying matrix (in order to keep a lightweight notation).

4.2.1 Dead rules elimination
Dead rules21 elimination analysis is straightforward: starting from the grammar’s axiom, recur-
sively collect all tabulations involved in the computation in R (set of rules that are reachable
from the axiom). The dead rules D = S \ R (where S is the set of all tabulations) can safely
be removed from the grammar rules. Although seemingly useless for the Scala implementation,
this step is necessary to maintain coherency between Scala and CUDA rules numbering (that
happen in a later stage on the valid rules). In CUDA, this analysis not only provides dead code
elimination, but it also prevents useless computation execution, since all rules are computed
sequentially for a particular subsequence before the next subsequence is processed.

4.2.2 Yield analysis
Since the original ADP introduces many concatenation combinators22 to differentiate empty/non-
empty, and floating/fixed-length concatenations, it is quite involved for the programmer to make
sure that the concatenation operators exactly match the size of each pair of subsequence involved.
Additionally the priority of operators varies in Scala, depending the operator’s first character
whereas it is possible to specify arbitrary priorities in Haskell. To overcome these issues, we pro-
pose to automate the computation of the minimum/maximum length of (subsequences) parsers.

20The first and third equations denote breaking in two distinct functions, the second and fourth represent
Bellman’s optimality principle preservation.

21Rule denotes a tabulation belonging to the grammar; both terms refer to the same concept, with the subtle
difference that rule emphasizes its grammar membership.

22ADP’s original combinators are: ∼∼,∼∼ ∗, ∗ ∼∼, ∗ ∼ ∗,− ∼∼,∼∼ −,+ ∼∼,∼∼ +,+ ∼ +.

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 29

Parsers are made of terminals, concatenations, operations (aggregate, map, filter) and tabula-
tions; minimum/maximum yield of terminals is set, hence it only remains to assign appropriate
yield sizes to tabulations; other operations simply propagate that information. It is possible to
obtain the yield size of tabulations using the following algorithm (assuming recursive parsers
contain at least one tabulation that is part of the loop), similar to [18]:

1. Set the yield minimum size of all tabulations to a large number M0 (such that all tabulation
would reasonably have a minimum yield size smaller than M0)

2. Repeat k times (k is the number of rules of the grammar): for each rule, compute its
minimum yield size and update its value (without recursion at tabulations). This would
lead to a correct minimum yield size because the terminals provide a minimum size and
this might need at most k iteration to propagate across all rules.

3. Set the maximal yield of all the rules to the minimal value. For each rule, compute
recursively up to depth k (where the depth is computed as the number of tabulation
traversed) the maximum yield size. If the depth reaches the maximum k, there is a loop
between tabulations, hence return infinity.

The last part of this algorithm has worst case exponential complexity, but if we consider depth-
first search and return as soon as we reach infinity, we might reduce its complexity to O(k2).
Obtaining the yield size of tabulations provides the following benefits:

• Minimum size: prevents self-reference parsers (on the same subsequence) and avoids con-
sidering subsequences which yield empty results (hence slightly reducing time complexity).

• Maximum size: allows to reduce the size of the result and backtrack matrix to O(m · n)
instead of O(n2) (where m is the maximum yield size), possibly providing substantial space
savings. As the rules with bounded maximum yield are very rare, we did not implement
this optimization, although we might consider it for future work.

4.2.3 Dependency analysis
Let us introduce the concept of dependency (similar to →chain in [18]): a dependency between
tabulations A,B denoted A → B exists if B(i,j) = f(A(i,j)), that is if the result of B depends
of the result on the same subproblem computed in A. A grammar is unsolvable if there exists
a dependency loop between parsers (A → ... → A). Such case only happen when there is no
concatenation or a concatenation with an empty word. Being able to track the dependencies of
tabulations and infer a computation order between them has two benefits:

• Although seemingly unnecessary in a top-down approach (Scala), this analysis detects
dependency loops which would result in infinite call loops (stack overflow) at execution.

• Ordering tabulations is critical in a bottom-up approach (CUDA) to make sure that all
dependencies are valid before an element computation is triggered.

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 30

4.3 Backtracking
In order to produce an efficient transformation from an ADP-like problem description to plain
C recurrences, we need to construct bottom-up recurrences from top-down parser rules. To do
that, we slightly need to modify the ADP parsers in order to separate the backtracking and the
scoring, because we want to obtain an efficient algorithm: backtrack writes are in O(n2) whereas
score reads are proportional to the algorithmic complexity (O(n3) or more for non-serial). To
deal with this problem, we are facing two options:

• Explicit backtracking: requires clear syntactical separation between the score and the
backtrack which is not implemented in ADP, unless we consider the whole backtrack being
part of the scoring (which has a big performance impact and non-constant memory require-
ment issues that make such GPU implementation hard and not desirable). Additionally,
since the backtracking data is user-defined, there is no way to generate the backtracking
algorithm automatically, hence the user also needs to provide it.

• Implicit backtracking: implies that every rule needs to be normalized, and transformed
such that given a rule identifier and a set of indices (subproblems breaking), it is possible
to retrieve the sub-solutions combination that contribute to the problem solution. To do
that we need to apply the following transformations

1. Normalize rules and identify them uniquely by exploding alternatives: each rule is
decomposed into the union of multiple sub-rules uniquely identified by an index,
where sub-rules do not contain alternatives (Or parsers). Let s a subrule and rs its
identifier, we also establish a mapping T from identifier to subrule: (rs → s) ∈ T .

2. Let cc(rs) be the number of concatenation contained in the sub-rule rs. The data
element corresponding to a rule is a pair (score, backtrack) and is named after the
tabulation.

– The score part consists of a user-defined type (a composite of primitive types,
case classes and tuples)

– The backtrack part is a tuple (rs, (k1, k2, . . . , km)) where m is the maximal
number of concatenations occurring in the enclosing rule of rs; more formally
m = maxz

[
cc(rz)|rz ∈ rule(rs)

]
, and let ms = cc(rs) ≤ m.

3. During the matrix computation of cell (i, j), if the sub-rule rs applies, the backtrack
will be set as (rs, (k1, k2, . . . , kms)); with i ≤ k1 ≤ k2 ≤ . . . kms ≤ j. Note that if
the backtrack occupies a fixed-length memory, the backtrack will contain exactly m
indices, hence ki |ms < i ≤ m will be unspecified.

4. During backtracking, when reading the cell (i, j) with backtrack (rs, (k1, k2, . . . , km)),
given rs, we recover s = T (rs), the sub-rule that applies. Hence we can determine ms,
which allows us to enqueue the subsequences (i, k1), (k1, k2), ..., (kms , j) for recursive
backtracking. If s refers to a terminal, we stop the backtracking.

5. The backtracking can be returned to the user as a mapping table T and a list of
triplets ((i, j), rs, (k1, k2, . . . , kms)) where (i, j) denotes the subsequence on which the
sub-rule T (rs) has to be applied with concatenation indices (k1, k2, . . . , kms).

In short, we break parsers into normalized rules, the backtracking information is the sub-
word, the sub-rule id (which rule to unfold) and a list of indices (how to unfold it).

In order to reduce the storage required by the backtracking indices, we can avoid storing fixed
indices (where at least one of the two subsequences involved in a concatenation has a fixed size)
and leverage the knowledge contained in s to reconstruct the appropriate backtrack.

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 31

Assuming that the backtracking information is meant to guide further processing, we provide
this information into a list constructed bottom-up: it can be simply processed in-order, apply-
ing for each rule the underlying transformation, while intermediate results are stored (in a hash
map) until they are processed by another rule. Since there is only one consumer for each inter-
mediate result, every read value can be immediately discarded, thereby reducing the memory
consumption. Ultimately, only the problem solution will be stored (in the hash map).

4.3.1 Backtracking with multiple backtrack elements
The backtracking technique described above work fine when there is a single element stored per
matrix cell (which is usually the case with min/max problems). However, in the generalization
introduced by ADP, it is possible that a matrix cell stores multiple results. In such case, we
need to select a correct intermediate result to avoid backtracking inconsistencies.
Additionally, we need to keep track of the multiplicities of the solutions, that is if we want to
obtain the k best solutions, we need to make sure that we return k different traces. To do that,
we maintain a multiplicity counter in each backtrack path:

• While there is an unique solution for all possible incoming paths, we continue in this
direction with the same multiplicity (we have no choice).

• When there is r different solutions available, and the path multiplicity at this point is k
we have the following cases:

1. If k ≥ r: we explore all paths with multiplicity k− r+1. This is because each branch
may produce only one solution and we don’t know ahead of time which path will
provide multiple solutions. Finally, we retain only the k best solutions.

2. If k < r (there is more paths than needed): we explore the k first paths with multi-
plicity 1 and safely ignore the other (as we only need k distinct results).

Now remains the problem of generating all possible results and check whether they are valid
candidates. To do that we simply re-apply the parsers while maintaining the source elements of
all production and then retain only those with desired score and backtrack. Since we know the
backtrack for one element, we can do the following optimization at backtrack parser computation:

1. Defuse alternatives: since we know exactly (by the subrule id rs, maintained in the back-
track) which alternative has been taken to obtain the result, we can skip undesired branches
of or parsers.

2. Feed concatenation indices: since the backtrack stores the concatenation indices, we can
reuse in the concatenation parsers. This removes the O(f(n)) factor in the backtrack
complexity (as concatenation backtrack parsers «know» where to split).

3. Skip filters: since filters are applied before their inner solution is computed, they are only
position-dependent. Hence if a backtrack involves a filter, since its position is set by the
backtrack, the filter must have been passed at matrix construction time.

4.3.2 Backtracking complexity
Since the ADP parsers can store multiple results, we are interested in measuring the overhead
of k-best backtracking (compared to single-element backtracking).
For single-element backtrack, we only need to «revert» the parser to find involved subsequences,
which is linear in the parser size (because the backtracking identifies uniquely the alternative
and concatenations indices).

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 32

At every backtrack step, either:
• The sequence is removed at one element, which leads to maximal backtrack length of n.
• The sequence is split in k subsequences, with recurrence f(n) = k · f(n/k) + 1 by solving

this recurrence we see that there can be at most n final nodes and n intermediate nodes
(when k = 2). Hence the backtrack length is at most 2n.

Let one parser reversal complexity be O(p), single backtrack has O(2n · p) complexity. For the
k-elements backtrack, since we regenerate all possible solutions, that is O(kc+1) candidates (with
c the maximal number of concatenation in the parser), the overall complexity is O(2n · kc+1 · p).
Hence there is a kc+1 factor to pay if we want to backtrack the k best solutions23.
Another special case we might be interested in is to obtain all co-optimal solutions (all the
solutions that have an optimal score). We can notice that in the parser reversal, no sub-solution
is discarded, because either it is not co-optimal (and would have been discarded at an earlier
stage) or it is co-optimal, hence contributes to create a co-optimal result. It follows that the
complexity of co-optimal solutions backtrack is proportional to the number of solutions.

4.3.3 Backtrack utilization
Since the dynamic programming may help solving a larger problem24, we need to be able to apply
the result of the dynamic programming computation in a different domain. The easiest way to
do that, is to reuse the same input and grammar, but use a different algebra with a different
output domain, and only compute the result of the trace obtained from the DP backtrack.
This step is pretty straightforward: since ADP parsers emphasize on the split between signature
and grammar and decouples them, we only need to modify the algebra to operate on another
domain, and reuse the same grammar. The key point here is to notice that a backtrack trace of a
parser can be reused by another, providing that they share the same grammar. For instance, to
compute optimally a matrix chain multiplication, we solve the DP problem in a domain where
matrices are represented by their dimensions, we obtain an optimal trace and feed it to another
parser operating on «concrete matrices» domain that will do the actual matrix multiplication
(instead of the cost estimation).

23Note that the same kc+1 factor lies in the forward matrix computation complexity.
24For instance in matrix chain multiplication, we only care about matrix dimensions for dynamic programming,

however, we ultimately want to multiply the real matrices and obtain a result.

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 33

4.4 CUDA storage: from list to optional value
Since lists are natively supported, it is natural to gather parsers results into lists in Scala imple-
mentation. However, when it comes to efficient CUDA implementation, lists must be avoided
because memory allocation (and management) is not very efficient [38]. A workaround might
be to use fixed-length lists but we assume here that the programmer is most often interested
in a single optimal solution (this also alleviates the complexity of constructing multiple distinct
backtrack traces). Even if this restriction simplifies the design, issues might arise for how to
represent and deal with empty lists and how to minimize the amount of used memory:

• Minimizing memory consumption: Under the restriction that we only store the best
result, we first need to transform aggregation such that they return at most one element.
Useful aggregator belonging to this class are quite limited: minimum/maximum (optionally
with respect to an object’s property), count and sum25, hence it is possible to provide the
user with a tailored implementation. To benefit from this fixed memory aggregation, we
need to do some structural transformation of inner parsers. In general, a tabulation T is
the root of its evaluation tree, with leaves being either other tabulations or terminals, note
that any of the 5 intermediate element can appear multiple times (or not being present)
and in any order:

T < Aggregate < Or < Filter < Map < Concat < (Tabulation | Terminal)

For obvious performance reasons, we want to maintain aggregations wherever they are
present. However, we can partially normalize the rest of the evaluation tree:

– We must ensure that all parsers potentially generating multiple possibilities are ag-
gregated. To do that, we simply wrap the original parser in an h-aggregation (where
h is the default aggregation function that must be specified by the user)

– Since the aggregation now operates on a single element, we want to push it as close
to the leaves as possible, as long as we do not change operational domain26.

– Filters can be hoisted within the same concatenation / alternative
– Alternatives must be hoisted outside of maps and concatenations, the reason being

that we need to avoid maintaining lists of candidates (that will be later aggregated).
We summarize the required transformations in the following table:

Outer ⧹ inner Aggregate Or Map Filter Concat
Aggregate merge? swapR — swapP —
Or — simplify? — swapP ? —
Map — swapR fuse swapP —
Filter — — — merge? —
Concat — swapR — — —

R = required, P = performance optimization, ? = if possible

Table 2: Parsers normalization towards CUDA code generation

Note that there can be no swap with Map and Concat internal parsers due to domain
change. Fusing is done by the C compiler (declaring mapping functions inline).

25Notice that all these operations can be implemented with a folding operation on a single variable.
26We cannot push an aggregation through a mapping or a concatenation operation.

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 34

• Handling nested aggregations: since a tabulation might contain nested aggregations,
they must be preserved in order not to increase its time complexity. To do that, each
internal aggregation has to define its own intermediate score and backtrack variables,
whereas outermost aggregation can directly write in the cell of the cost/backtrack matrix.

• Failure handling: a parser can either be successful and return results or fail and return
no result (encoded as an empty list); failure can happen in terminals, (input) tabulations
and filters. These 3 cases can be reduced to one by wrapping terminals and tabulations into
a filter that checks validity conditions. It remains to discuss failure encoding strategies:

– Special «empty» value: The benefit of such encoding is a reduced number of mem-
ory accesses; indeed since we anyway need to access the value to make computations,
we do not generate additional memory accesses to check the validity of the value. The
drawback of such approach is that it becomes necessary to specify a special empty
value that cannot be used, except to denote the absence of result. Since types can be
arbitrary at every step of the parser, it becomes cumbersome to ask the DSL user to
provide a special value for every intermediate result.

– Backtrack encoding: Reusing the backtrack to encode the validity of a result is
a more general approach, and allow greater flexibility for the user. Indeed, since we
maintain sub-rules identifiers in the backtrack, it suffice to use a special identifier to
denote that related value is invalid. This approach also work with nested aggregations
by storing intermediate sub-rule identifiers that would only grant the validity of the
related value.

Since backtrack encoding comes at the price of an additional memory access to test the
validity (memory accesses usually accounts for most of the time on CUDA devices), it is
also relevant to allow the user to completely disable this test to speed-up computations.

4.5 Memory constraints
We denote by device the computational device on which the processing of the DP matrix (or
of a computational block) is done and MD its memory. This can be the GPU or the FPGA
internal memory. Usually the main memory is larger than device memory and can ultimately
be extended by either disk or network storage. Without loss of generality, let the underlying
dynamic programming matrices be of dimension m× n.
We propose to evaluate the device memory requirements to solve the above problem classes. We
need first to define additional problem properties related to implementation:

• Number of matrices: multiple matrices can be encoded as 1 matrix with multiple values
per cell. Hence the implementation differentiates only between cost and backtrack matrices
with respective element sizes SC and SB.

• Delay of dependencies: In case the problem does not fit into memory, partial matrix
content needs to be transferred across sub-problems. Such data amount is usually propor-
tional to the delay of dependencies. If this delay is small, it might be worth to duplicate
matrix data in the wavefront, otherwise it might be more efficient to allow access to the
previous computational blocks of the matrix.

• Wavefront size: Finally aggregations that are made along the dimensions of the matrix
do not need to be written at every cell but can be propagated and aggregated along with
computation (ex: maximum along one row or column). Hence such information can be
maintained in a single place (in the wavefront) and progress together with the computation.

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 35

We denote by SW the size of wavefront elements.
• Input size: the size of an input symbol (from input alphabet) is denoted by SI .

4.5.1 Small problems (in-memory)
Problem that can fit in memory can be solved in a single pass on the device. Such problem must
satisfy the equation:

(SI + SW) · (m+ n) + (SC + SB) · (m · n) ≤MD

For instance, assuming that m = n, MD = 1024Mb, that backtrack is 2b (<16384, 3 directions)
and that the cost can be represented on 4 b (int or float), that input is 1b (char) and that there
is no wavefront, we can treat problems of size n such that 2n+ 5n2 ≤ 230 =⇒ n ≤ 14650. We
might also possibly need to take into account extra padding memory used for coalesced accesses.
But it is reasonable to estimate that problems up to 14K fit in memory.

4.5.2 Large problems
To handle large problems, we need to split the (m×n) matrix into blocks of size BH ×BW . For
simplification in our estimations, we assume a square matrix (m = n) made of square blocks
with b blocks per row/column (BH = BW = n/b).

4.5.3 Non-serial problems
Non-serial problems need to potentially access all elements that have been previously computed.
We restrict ourselves to the following dependencies27:

• Non-serial dependencies along row and column
• Serial dependencies along diagonal, with delay smaller or equal to one block size

Such restriction implies that all the block of the line and the row, and one additional block
to cover diagonal dependencies must be held in memory (independently of the matrix shape).
Hence we have the following memory restriction:

2
n

b
(SI + SW) + 2 · n

2

b
SC +

n2

b2
SB ≤MD

We also need to take into account the transfer between main memory (or disk) and device
memory. Dependency blocks only need to be read, computed blocks need to be written back.
Ignoring the backtrack and focusing only on the cost blocks, the transfers (in blocks) are:

b2 + (b− 1)2 +
b−1∑
i=0

i · b = 1
2b

3 + 3
2b

2 − 2b+ 1 (Rectangle)
b∑

i=1

(
1 + 2 · (i− 1)

)
· (b+ 1− i) = 1

3b
3 + 1

2b
2 + 1

6b (Triangle)
b∑

i=1

(
1 + 2 · (i− 1)

)
· b = b3 (Parallelogram)

Putting these two formula together, and using most of the device memory available, we obtain
the following results with SC = 4, SB

28 = 4, SI = 1, SW = 0 and MD = 230:
27As we have not encountered a problem with non-serial dependencies along the diagonal.
28To deal with larger matrices, backtrack data need to be extended.

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 36

0 2 4 6 8 10 12 14

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Input size

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Rectangle

Triangle

Parallelogram

Figure 8: Transfer overhead for non-serial problems larger than device memory

Given an experimental bandwidth of 5.3743 Gb/s between CPU and GPU, processing matrices
one order of magnitude larger (128K) would result in respectively 13(R), 8.5(T) and 25.4(P) min-
utes of transfer delay. Extrapolating the preliminary results of small problems, a computation
on input of size 128K would require respectively 7 days 13h(R), 2 days 22h and 6 days 10h(P), as-
suming there is no other scalability issues, hence transfer would account respectively for 0.1%(R),
0.2%(T) and 0.3%(P) of the running time. Although this overhead seems appealing compared to
the computation time, the total running time blows up (because of the O(n3) complexity) and
make the processing of such large problem less relevant. Given that real problems (like RNA
folding) operate on sequences length in the hundreds [31], it would not be of much relevance to
implement a version for larger cases, although perfectly feasible.

4.5.4 Serial problems
The serial problems have the interesting property to access a fixed number of previous elements.
These elements can be stored either explicitly in a scoring matrix, or implicitly into the wavefront
(as moving aggregations). Since the dependencies are fixed, the computation direction gains an
additional degree of freedom: the matrix can be solved in diagonal (as non-serial problems),
line-wise or column-wise. This allows to store the whole necessary state to make progress into a
limited number of lines (or columns), and sweep vertically (resp. horizontally) along the matrix.
Since serial problems are of complexity O(n2) (due to the matrix dimension and the finite number
of dependencies), it is possible to tackle much larger problem than non-serial given the same
running time. Hence, it seems natural to let serial problems grow larger than the memory.
Mixing the dependency property and size requirements, we can split the matrix into sub-
matrices, store special lines (and/or columns) into memory (or hard disk), and repeat com-
putations to solve the backtrack (similarly as in [34],[12], but this implementation use problem-
specific knowledge that might not generalize).

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 37

To store intermediate lines and columns, we are facing two different strategies to explore:
• Fixed subproblem size: we decompose the algorithm as follows

1. Define a grid of «major column and rows», where each cell’s data (input, output, cost
and backtrack matrices) fits into the device memory.

2. Compute the values of the grid’s major columns and rows in one pass.
3. Second (on-demand) computation to process backtracking inside relevant cells.

Let b the number of cells that we have on each row/column, the total computation running
time would be (b2+2b) · tb where tb is the time to compute one cell’s matrix. This division
has the advantage of providing the minimal computation time at the expense of external
storage proportional to O(n) (if we store only lines or columns) or O(n2) (if we store both).

• Myers and Miller’s algorithm: [26] (divide and conquer) This algorithm break the DP
problem into 2 (or 4) subproblems such that once the middle line/column is computed,
the problem can be solved for one submatrix while backtracking occurs in up to 3 other
submatrices. This breaking is applied recursively until the submatrix data fits into memory.
The storage requirements are 4 · O(n) (we store along both dimension 1 + 1

2 + 1
4 + ...

lines/columns).
The algorithm proceeds as follows: first it solves the problem of obtaining the first back-
tracking element, then it breaks the matrix in 4 submatrices, and refine it until backtrack
is tractable. Since there is at most logn/b refinements and since every part of the matrix
may be involved in backtrack, running time is O(n2 log2 n).

• Hybrid approach: [13] a hybrid approach might be created to take advantage of addi-
tional available memory, however, the running time decreases logarithmically to the space
used, this means that using 4× more storage space would only result in a 2× speedup
(measuring only the computation time). Hence a hybrid approach would be to decide a k
such that at each step, we partition the desired sub-matrix into a intermediate grid of k
rows/columns. The space usage would be in 2k logk(n/b) and the running time complexity
would be O(n2 · logk n). Then the user would be able to fix a storage space S ≥ 4 log2(n/b)
and obtain the corresponding k for a given n.

Finally, although such problem is interesting because targeted platforms could include FPGA,
where efficient implementations exist [42], several reasons made us considering this class of
problem as a future work:

• The most prominent problem in this category is Smith-Waterman, for which efficient
implementation already exists[34],[12]. Additionally, the authors are planning to write
extensions to support some variants of this problem like Needleman-Wunsch.

• The implementation sensibly differs from the class of small problems, as the solving strat-
egy is completely different from non-serial small problems, thereby requiring larger devel-
opment time that would be out of the scope of this project.

• Finally, such an implementation would be only valuable for problems that are larger than
the memory device, whereas smaller problems could perfectly use the existing implemen-
tation.

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 38

4.6 Memory layout
A major bottleneck on massively parallel architecture with shared memory (like CUDA) is the
global memory access. To address it, according to the manufacturer documentation [27], it would
be best if all threads access contiguous memory at the same time (coalesced memory access).
This is justified by the memory hardware architecture, where additional latency (precharge rows
and columns of the memory chip) is mandatory to access data at very different positions. Since
all thread share the same global memory (and most of the time the same scheduler), accessing
non-contiguous memory cumulates latencies before progress can be made.

Triangle Rectangle Parallelogram

Figure 9: Matrix shapes, the arrow indicates the computation progress direction

Because dependencies are along line, column or intermediate elements (§3.2), parallel progress
can be made along the diagonal of the matrices, a naive row/column addressing strategy would
result in no coalesced accesses. Hence we address them by diagonal. Let MW the width of the
matrix and MH its height. Coalesced addressing is most easy in the parallelogram matrix, as we
could pretend that the parallelogram is simply a tilted rectangle (with diagonal elements being
contiguous in memory) as follows:

(i, j)→ i+ (j − i) ∗MH

Noticing that the triangle matrix shape is just half the parallelogram, we could use the same
addressing scheme, but we would use twice more memory than necessary. Hence we need a
tailored formula: the size of the triangle embedded in a square of side k (incl. diagonal) is
k·(k+1)

2 ; knowing that fact, the index of the element (i, j) of the triangle (starting with the main
diagonal when i = j), we obtain the following formula (with MH = MW = n):

(i, j)→M − T + i with

M =

(n · (n+ 1)

2
total △

d = n+ 1 + i− j diagonal of (i, j)

T =
(d · (d+ 1)

2
△ of current diagonal

Finally, for the rectangular matrix, since the parallelogram indexing looks efficient, we want to
reuse the same idea. However, embedding the rectangle within a parallelogram would have a
very large overhead ((MH)2, by adding a triangle on each side of the rectangle). The solution
consists of breaking the rectangle into multiple horizontal stripes of fixed height BH , thereby
dramatically reducing the size of the additional triangles. Finally, the stripes can be stitched
together to form a single parallelogram continuing along the next stripe. Noticing that beyond
a certain number of lines, coalescing access does not improve latency as memory is anyway not
stored contiguously, we can make BH constant .

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 39

Figure 10: Parallelogram memory representation of a rectangular matrix

It follows that the total memory required to store the matrix is:

MW ·
⌈
MH

BH

⌉
·BH + (BH)2

and the mapping of indices is given by:

(i, j)→ (BH · (j +m)
diagonal

+m+

⌊
i

BH

⌋
stripe

·MW ·BH
stripe size

) with m = i mod BH

4.7 LMS integration
At first glance, LMS seems the ideal candidate to transform Scala code into its C-like equivalent.
However, the concern in this project is that the GPU code sensibly differs from the original
CPU code because the two implementations serve different purposes: CPU version (Scala) is
more general whereas the GPU version trades some functionalities for performance and suffer
additional restrictions, in particular for memory management and alignment. We want to discuss
how LMS could best be used in our project:
LMS only supports a subset of Scala. Embedding both algebras and grammars into the LMS
framework would reduce the expressivity of algebras. Taking the example of matrix multiplica-
tion, the user would like to not only solve the dynamic problem on GPU, but also leverage the
graphic card, the disk or the network to compute the matrices products. Since these resources are
outside for the LMS world, the user needs to write an ad-hoc DSL for every particular function.
In order to avoid this constraint, we need to decouple the grammar and algebra generation.
For the generation of algebra functions, since CUDA types are restricted, they are representable
in LMS. Hence we can leverage LMS for CUDA-compatible algebras whereas regular Scala can
be used for complex algebras being executed on CPU exclusively.
It remains to generate the C code corresponding to the grammar; we argue in favor of a special-
ized conversion rather than generation through LMS for the following reasons:

• We have only 6 parser classes to convert (tabulations, terminals, aggregations, filters,
alternatives, concatenations), the rest of the user program is part of the algebra. These
parsers are combined with very little modifications to create the grammar.

• The behavior of the CUDA parsers sensibly differs from that available in Scala (§4.4).
This would imply writing optimization phases in LMS to convert them appropriately.

• LMS operations on collections (lists, hash maps, arrays, ...) do not require special schedul-
ing as all elements are treated independently; nevertheless dynamic programming intro-
duces dependencies between elements, thus requiring particular scheduling interleaved with
the computation. Enriching LMS with primitives to solve these constraints might be very

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 40

complex if we want to generalize. However, we could leverage the knowledge that the
pattern belongs to dynamic programming, hereby reducing the complexity of the work
and possibly being more efficient. Additionally, a specific memory pattern is required to
increase efficiency (§4.6), we also need to reuse this knowledge to LMS, so that it can
generate optimal code, so we might end up writing a specialized code generator.

• Finally, LMS is a rather complicated framework, with sparse documentation. Although
many features are available (support for tuples, objects, matrices, ...), it is not easy to
figure out where to find them (because they may reside on different branches or are not
tested), hence the time taken to improve the framework to suit our needs far outweighs
the time to build a tailored solution, which is the choice we are somehow forced to take,
given the time constraints of this project.

Since we need to operate a lot of transformation, inside LMS or in specialized generation, the
choice of specialized code generation was guided by the engineering principle of steering away
from unnecessary complexity29, hence reducing the number of potential sources of errors. During
our experiments with LMS, we also investigated in the Scala 2.10 macros30 [5], which represent
a possible alternative to LMS for generating very simple functions for a costing algebra.

4.8 Compilation stack
Since the generated code sensibly differs from the Scala version, due to the reasons previously
discussed, we cannot reuse LMS, although we borrow some of its ideas. Having the full control
on the compilation stack also provides us the following benefits:

• Since CUDA target and runtime compilation/execution is not supported in LMS, but in
Delite [8]: an additional framework that runs on top of LMS. Although conceptually very
similar, implementing our own stack reduces the number of dependencies, hence possible
sources of misconfiguration errors for the final user of our framework. Additionally, since
we do not share much of the functionality of Delite, an ad-hoc stack helps keeping the
project featherweight.

• LMS can generate code for monadic functions that operate on arrays. However dynamic
programming problems might require multiple inputs (for multi-track grammars) and spe-
cial scheduling (to respect dependencies in the matrix), hence we need to issue specific
C/CUDA code to handle problems correctly.

• LMS works on array of primitive types, possibly array of structures broken into array of
simple types. Since in DP problems, composite types represent a single logical element,
and since we want to benefit from coalesced accesses (and possibly storing structures into
efficient on-chip shared memory), we do not want to break structures. Also we want to
offer support for tuples, which are a convenient way to write data containers (also we want
to support case classes and composites types).

• Some information is only known at run-time (for instance input and matrix dimensions),
hence we want to benefit from this knowledge as it helps computing the matrix indices
more efficiently. Since such information could possibly be reused, we want to make the
process as transparent as possible for the DSL user.

29KISS engineering principle: http://en.wikipedia.org/wiki/KISS_principle
30(Macros operate directly on the internal representation of the Scala compiler, after the type analysis and and

before the code generation phase.

http://en.wikipedia.org/wiki/KISS_principle

4 ARCHITECTURE DESIGN AND TECHNICAL DECISIONS DynaProg for Scala, p. 41

Finally, we reap most of the LMS benefits in the generation of user-defined functions, as they are
completely independent of the rest of the generated program thus could be generated without
additional processing.
Although our compilation stack might look quite similar to that of Delite, we do not share any
component but LMS for the user functions generation. The compilation and execution process
works as follows:

• Compilation: LMS generates the C code corresponding to the user-defined function and
embeds them into the program bytecode (note that we present them separately for clarity).

• Runtime, for each parser (grammar+algebra): recurrences analysis is done in order to
generate code (with placeholders for constants)

• Runtime, at every parse function call: the input size is known, hence replaced into the
generic problem code, which is then processed by CUDA, C++ and Scala compilers. Then
the JNI library resulting of the compilation is loaded and its corresponding Scala wrapper
is invoked on the data to be processed.

DSL libraries User program

Scala compiler LMS

JVM bytecode C functions
compilation
run-time

recurrences analysis
code generation

C/CUDA/JNI
code

constants evaluation
compilation

input
sizeScala parsers

CUDA kernels

JNI / host C

Scala wrapper

Input data
Output data

Figure 11: Compilation and execution scheme of a parser

5 IMPLEMENTATION DynaProg for Scala, p. 42

5 Implementation
5.1 CUDA baseline
In the project planning, an baseline implementation phase immediately followed the problem
analysis (we also present the parallelogram matrix case). The goal of this phase is threefold:

1. Better understand the challenges in CUDA implementation of dynamic programming prob-
lems and get on par with state-of-art implementations.

2. Have a baseline implementation that is independent of the hardware and that could be
benchmarked. We also tried to contact the authors of [12] and [39] to obtain their im-
plementation. The former provided us with their implementation, which turned out to
address large serial problems whereas our focus was on smaller non-serial problems, the
latter did not respond to our solicitations.

3. Have an optimal implementation that can serve as a to be imitated and generalized by the
code generation.

Leveraging the insights provided by [39] and [41], we started with a basic implementation (where
each CUDA thread processes one matrix line) with three additional optimizations:

• Memory accesses must be coalesced (memory accesses account for a significant part of the
total running time, according to both manufacturer documentation and experiments [?])

• Synchronization between threads can be done according to [41], additionally, we can
slightly loosen the synchronization restrictions, as the paper describes a thread barrier
whereas we only require a condition on previous thread progress (except for the parallel-
ogram case, where we still require a barrier).

• Computation progresses element-wise along the diagonal (maximizes the parallelism level)
• Thread block size = warp size (32) to benefit from implicit synchronization within warps

5.1.1 Related work
Since [12] focuses on a different class of problem, we compare our implementation against [39],
which provides an efficient matrix multiplication implementation. However, since we have neither
the source code (or binary) nor the same evaluation hardware, we need to normalize the results.
To do that, we present hardware differences and their result:

Graphic card Our ATLP[39]
Model GeForce GT 650M Tesla C1060
Architecture, capability Kepler (3.0) GT200 (1.3)
Memory Mb 1024 4096
CUDA cores 384 240
Clock (core, memory) MHz 756, 1953 1300, 1600
Memory bus bit 128 512
Memory bandwidth GB/s 28.8 102.4
Processing power GFLOPS 564.5 622.08
Processing speedup 1 1.07
Memory speedup 1 3.55

Table 3: Graphic cards technical specifications (source: Wikipedia)

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units

5 IMPLEMENTATION DynaProg for Scala, p. 43

Matrix size 128 256 512 1024 1536 2048 2560 3072 3584 4096
No split 0.07 0.09 0.19 0.59 1.27 2.25 3.51 5.07 6.92 9.06
Split at 1 0.06 0.07 0.08 0.14 0.26 0.47 0.77 1.21 1.80 2.57

Table 4: ATLP[39] results: matrix chain multiplication, execution time (in seconds)

5.1.2 Results
We present here the timings of our baseline implementation. For correctness, we first imple-
mented a CPU single thread version (in C) that we used to compare CUDA results against.
Input data is made of random numbers. The implemented dynamic programming problems are:

• Rectangle: Smith-Waterman with arbitrary cost (§3.2.3)
• Triangle: matrix chain multiplication (§3.2.5)
• Parallelogram: polygon triangulation (§3.2.4) using a matrix larger than necessary (§3.3.2).

Note that this implementation uses at most 32 blocks to prevent dead locks on our hardware
(restriction due to the number of concurrent threads on the device).

Matrix size Comment R T P
1024 CPU 1.965 1.191 6.069
2048 CPU 27.229 15.296 57.323
4096 CPU 177.608
1024 GPU baseline 0.838 0.500 0.516
1024 GPU sync improved 0.642 0.316 0.343
2048 GPU P ≤ 32 blocks 2.864 1.427 2.096
4096 GPU 8 splits 21.902 8.841 16.767
8192 GPU 64 splits 159.058 62.064 135.793

12288 GPU 256 splits 419.030 196.971 460.912

Table 5: Execution time (in seconds) for R=rectangle, T=triangle, P=parallelogram

5.1.3 Results discussion
• User interface: It has been put in evidence in [?] that using the GPU exclusively for

CUDA or in combination with UI display (Mac OS) affects the performance (GeForce
330M). With the newer architecture, this difference has been reduced to less than 3.5%,
decoupled UI and CUDA performing best. So we can safely ignore this issue.

• Blocks synchronization:
– Removing __threadfence() before the synchronization is not syntactically correct

but results still remains valid, this confirms the observation made by [41]. Speedup
for matrix size of 1024 are 67ms (parallelogram) 100ms (triangle) 180ms (rectangle).

– In the parallelogram case, using all threads to monitor other blocks status instead of
the first one only results in a 6.4x speedup (22.72→3.52ms) for the parallelogram.

• Multiple threads per matrix cell: in the case of a triangular matrix, at each step, the
number of cells to be computed (on the diagonal) decrease while the computation com-

5 IMPLEMENTATION DynaProg for Scala, p. 44

plexity increases (there is one more dependency). According to [39], the solution lies in
adaptive thread mapping, using more than one thread to compute one matrix cell, depend-
ing on the complexity. However, in our setup (memory layout+algorithm+hardware), we
did not find any improvement by doing so. We want to explore the reason for that: we
pose as hypothesis that the bandwidth is the bottleneck of our setup and test it.

– First we need to prove that we use almost all the available memory bandwidth: for
matrix multiplication, in a triangular matrix, we have

Total transfer = n(n+ 1)

2
writes +

n−1∑
i=0

2i · (n− i) reads

where each write is 10 bytes (long+short), and each read is 8 bytes (long). For
n = 4096 we transfer 183’352’614’912 bytes which corresponds to 183.35GB. In 8.841
seconds, we can transfer theoretically at most 8.841 · 28.8 = 254.6GB. Hence 72% of
the algorithm running time is spent into memory accesses.

– On a 4096 matrix, if we assume that the [39] card would have the same bandwidth
as our card, their running time would be

2.57 · (1− .72) + 2.57 · 0.72 · 102.4GB/s

28.8GB/s
= 7.30s ATLP < 8.84s our

This shows that our algorithm is comparable to theirs. However, we must avoid a
close comparison because the fundamental hardware differences would make a tight
computation almost intractable (additionally, we do not have [39] source code).

As a conclusion, (1) it seems that the technique used in [39] brings more performance
improvement with legacy hardware, however this remains a supposition (as we can not
compare) and (2) we are slightly worse than one of the best current implementations.

• Number of threads: reducing the number of threads launched at different splits of the
algorithm (especially in latest splits in rectangular and triangular shapes) does not bring
any speedup. Even worse, it slows down slightly the computation. We might attribute
this to a better constant transformation by the compiler. Hence, having many idle threads
does not impede performance.

• Unrolling: unrolling the inner loops (non-serial dependencies) a small number of times
provide some speedup, for a 2048-matrix respectively 10.9% (rectangle, 2.765s→ 2.464s),
14.1% (triangle, 1.427s → 1.225s) and 9.7% (parallelogram 1.539s → 1.389s). The best
experimental number of unrolling is 5.

5.2 Scala parsers
The Scala parsers consist in 4 traits that are used to construct a DSL program:

• Signature: abstraction to define input (Alphabet) and output (Answer) types, and the
aggregation function. The signature is implemented by all other traits (in particular
algebras and grammars).

• BaseParsers: serves as basis for the two other traits and defines common features. It
implements the Parser abstraction and all its inheriting classes: Tabulate, (abstract)
Terminal, Aggregate, Filter, Map, Or, Concat. Terminals are further specialized in the
two other traits (ADPParsers and TTParsers). The parser abstraction specifies 3 methods:

– apply(subword) computes the parser result; it is used to obtain the corresponding
results.

5 IMPLEMENTATION DynaProg for Scala, p. 45

– unapply(subword,backtrack) computes the previous step of the backtrack by re-
turning subsequences at the origin of the result; it is invoked recursively to obtain
the full backtrack trace.

– reapply(subword,backtrack) is very similar to apply, except that it computes only
the results matching the backtrack. It is used to construct the result corresponding
to a backtrack trace (possibly in a different domain, pretty printing, ...).

To support analysis, the parsers carry additional values:
– Minimum and maximum yield size: functions evaluated recursively except for tabu-

lations where value is attributed in the yield analysis phase.
– Number of inner alternatives: helps counting alternatives, thereby guaranteeing an

unique number for each (provided that parsers obtain non-overlapping ranges).
– Number of inner moving concatenations: helps determining required storage for the

backtrack as well as retrieving the appropriate index in the backtrack phase
Additionally, the BaseParser implements the analysis that is shared by both the Scala
and the CUDA version: dead rules elimination, yield analysis and dependencies ordering.
Finally, it provides some implicit functions to flatten nested tuples (that are constructed
by multiple concatenations).

• ADPParsers: used as basis for a single track DP grammar (using one input sequence).
It defines the concatenation operator ∼ (Concat wrapper), and the terminals (empty,
element and sequence). Additionally, it defines the interface functions parse(input),
backtrack(input) and build(in,backtrack) that respectively compute the result, the
backtrack and the result corresponding to a trace.

• TTParsers: used to define two-track DP grammar (using a pair of sequences as input).
Similarly, this class defines concatenations −∼ and ∼−, terminals (for each track) and the
parse(in1,in2), backtrack(in1,in2) and build(in1,in2,backtrack) functions.

Signature
Types: Alphabet, Answer
h (aggregation function)

BaseParsers
Tabulate, Terminal, Aggregate, Filter, Map, Or, Concat

Analysis: dead rules, yield analysis, dependencies

ADPParsers
∼, ∼ (a, b, c, d) ∼

Single track terminals

TTParsers
−∼, ∼−

Two-tracks terminals

Figure 12: Scala parsers class diagram (simplified)

5 IMPLEMENTATION DynaProg for Scala, p. 46

5.3 Code generation
The code generation step produces multiple outputs that are tightly bound to each other. Besides
the Scala wrapper (a simple JNI interface), in the C/CUDA code generated we distinguish:

1. JNI input and output conversion functions
2. Host helpers for memory management and scheduling of CUDA kernels
3. CUDA matrix computation, which can be further decomposed into matrix scheduling

(loops) and (matrix cell) computation.
4. CUDA backtrack collection kernel

BaseParsers

A
D

P
P

ar
se

rs

T
T

P
ar

se
rs

CodeGen
code generation:

parsers, backtrack,
helpers, JNI

CodeCompiler

CodeHeader
Types conversion,

headers management

ScalaCompiler

CCompilerautomatic call
if CodeGen mixed-in

Figure 13: Code generation and runtime engine class diagram (simplified)

5.3.1 Scala structures conversion (JNI)
Since general Scala types can be extremely complex and might depend of the JVM context (file
stream, closures, ...), we want to restrict the supported types; additionally types should be of
fixed size for more efficient processing and easier memory allocation. We support the following
types:

• Primitive types: natively supported in both Java and C. Since there is some little seman-
tics difference between these two languages types, we used C (signed) types as reference.
Supported types are: boolean, byte (unsigned char), char, short, int (32bit), long (64bit),
float and double.

• Empty case classes: user-defined types might be more complex, so we allow users to
define case classes that serve as data container and would be translated into C structs.

• Tuples: if the user-defined type is fairly simple, a named case class might be cumbersome.
Tuples are a syntactical lightweight alternative to case classes, although they translate very
similarly. Since Tuple classes are generic and can carry different member types; need to
name tuple types uniquely, according to their arity and inner types.

Currently we use Manifests and reflection to extract types, and convert their string representa-
tion into our restricted subset. Manifests expands tuple inner types and reflection can be used
to find class member’s types. This imposes the additional restriction that we can not nest tu-
ples into case classes, because generic types are then erased. However, the same effect could be
achieved with Scala 2.10 TypeTags, converting immediately to concrete type tree representation
using macros expansion31.

31Hint provided by Eugene Burmako, https://gist.github.com/4407488

https://gist.github.com/4407488

5 IMPLEMENTATION DynaProg for Scala, p. 47

The JNI functions are involved at input to decode sequences arrays and at output, to encode
the result and possibly its corresponding trace. Input method is constructed in two steps:

• Recursively obtain the classes and accessor methods of the composite input type. A subtle
variation is that case classes primitive types are immediately converted into native types
whereas tuple members are boxed in their respective class (i.e. java.lang.Integer, ...).

• For each element of the input array, retrieve the objects recursively and write their prim-
itive values in the corresponding struct array.

The output method consist of two different steps:
• Converting the result into its JVM counterpart by using the opposite rule as for decoding

input (but with JNI types specified in the constructor lookup instead of accessors).
• Optionally encoding the backtrack: this is pretty straightforward as the structure is more

regular (and make uses of Lists); additional care should be taken to avoid bloating con-
catenation indices lists with unnecessary elements (as C uses fixed memory whereas Scala
lists length might vary).

5.3.2 Host wrappers
Host wrappers are functions bridging between JNI and CUDA; their duties are:

• Exposing JNI parsing and backtracking functions
• Calling appropriate conversion methods
• Allocating host and CUDA memory (and managing transfers between them)
• Launching CUDA kernels: matrix computation, backtrack, and possibly aggregation within

window (additional aggregation among window results, would this option be set)
One peculiarity of our execution environment, is that the kernel execution duration is bound to
approximately 10 seconds32. To solve this issue, we estimate the overall complexity of matrix
computation, which allows us to estimate running time, then break computation into multiple
kernels sufficiently small to fit in the time limit.
Since computations are made diagonal-by-diagonal (see 5.3.3), we can easily decompose the
matrix computation by adapting the number of diagonals computed per kernel. The global
complexity being the product of the number of elements and the complexity per element, the
latter being equal to the number of unbounded concatenations (where maximal size is infinite).
Problems larger than device memory
Problems larger than the device memory can actually be processed on recent CUDA devices
(with CUDA architecture ≥ 2.0) as these are able to address the main memory from the device.
However, since the distance between CUDA processors and memory is increased, there is an
approximate 5× slowdown penalty to be paid in this configuration (experimentally, on a 1024×
1024 triangular matrix). Nevertheless, this workaround implementation has 2 benefits:

• It allows larger problem to be solved, with very little implementation effort, would the
user be patient enough for the computation to terminate

• It provides a good estimation of the main memory usage penalty, and thereby a strong
argument in favor of the implementation described in 4.5.3 (with lest than 1% overhead

32Hard limit imposed by the operating system. Although workarounds exist for Linux and Windows (requiring
a second graphic card to display the UI), none of them is compatible with Mac OS. Eventually, a hack has been
devised to force the UI on CPU while keeping the dedicated CUDA card powered; unfortunately this does not
alleviate the kernel execution timeout.

5 IMPLEMENTATION DynaProg for Scala, p. 48

due to transfers). However, since we have not found concrete applications with such
matrix size, the benefit of supporting large matrices is unclear, hence we leave the optimal
implementation for future work.

5.3.3 Matrix computation scheduling
Similarly as in the baseline implementation, progress is made along the diagonal (see 4.6) and
each thread is responsible of one line. That is, the matrix is swept horizontally by a «diagonal
of threads», that are enabled only if they are within a valid matrix cell.

thread 0

thread 5

Figure 14: «Diagonal of threads» and maximal dependencies

Special care must be taken to handle computation dependencies: within a warp, all threads are
executed at the same time, hence no synchronization is necessary. To benefit from this implicit
synchronization, we set block size being equal to wrap size. It remains to provide inter-block
synchronization: dependencies are along line, column and possibly intermediate elements. By
induction on rows and columns, it suffice to have the last column and row element valid. Since
line is computed by the current thread (thereby valid), it only remains to guarantee that the
column element of the previous line is valid (in figure 14, previous refers to the line immediately
below). To do that, each block writes last valid diagonal in a «lock» array, and next block need
only to wait (polling) until desired element is marked valid. Notice that __threadfence is not
mandatory (thereby slightly improving performance), verifying the observation of [41].

__global__ void gpu_solve(/*...*/ volatile unsigned* lock, // = {0}
unsigned d_start, unsigned d_stop) {

const unsigned tB = blockIdx.x;
unsigned tP=d_start; // block progress

for (unsigned diag=d_start; diag<d_stop; ++diag) {
/* ... compute diagonal values ... */

// __threadfence();
if (threadIdx.x == 0) {

lock[tB] = ++tP;
if (tB > 0) while(lock[tB-1]<tP) {}

}
__syncthreads();

}
}

Listing 2: Synchronization with previous thread block (active waiting)

5 IMPLEMENTATION DynaProg for Scala, p. 49

5.3.4 Parsers code generation
Parsers generation is independent of user-defined function generation (see 5.3.6). Tabulation
inner parsers are first wrapped in additional aggregation (by h, thereby ensuring they produce
at most one result) and normalized (according to 4.4); code generation then occurs recursively,
producing a list of loops and conditions, and body (possibly with a hoisted part). Additionally,
position variables are maintained and subrule index and concatenation indices are propagated.
We give an overview of each parser transformation:

• Terminal: provides its own C code, which correspond usually to the input element value,
its position or the position of the matching range.

• Tabulate: is a simple value load, possibly wrapped into a validity check. Useless validity
verification can be removed by marking the tabulation as «always valid».

• Aggregate: corresponds to an intermediate (value,backtrack) pair where inner parsers
write their result; outermost aggregation is written back to corresponding (cost, back-
track) matrices. Validity information, and concatenation indices are propagated within
backtrack. To preserve a correct semantic, inner aggregations body is hoisted outside
loops and condition checks of the enclosing parser.

• Or: since parsers are normalized and operate on a single aggregation result, it suffice to
emit sequentially code of alternatives.

• Map: wraps its argument into a the user-defined function call
• Filter: wraps its body into user-defined condition check
• Concat: fixed size concatenation are wrapped in simple conditions; moving concatenations

are wrapped in a for loop. The loops and conditions are further simplified to reduce range
and remove useless conditions before actual code is emitted.

Intermediate types must be correctly declared. To do that each user-defined function provides
its input and output types. Aggregation temporary values declaration is ensured by a exists-or-
declare header policy that is called for every type declaration.

5.3.5 Backtracking on the GPU
The backtracking is processed similarly to the Scala parser, the major difference being that since
we are generating C code, we can provide an immediate mapping from the subrule index to the
backtrack elements to add to the trace. The backtrack is done in 3 steps:

• If a window is set, the windowing aggregation kernel is run to determine the position of
the best result within the matrix. Otherwise the best position can be found at the last
computed element of the matrix.

• For a m× n matrix, allocate a m+ n vector with two heads (reading, writing, initialized
at the same position). Write the best element in the vector.

• While there is a vector element that has been written but not read
– From the parser id and its position retrieve the corresponding (subrule, concatenation

indices) pair by reading in the corresponding matrix cell
– Using this, write new backtrack items that are at the origin of the current element.

Since code is generated, it is possible to write the last step using a switch case, thereby flattening
the writes in the vector (compared to recursive calls in Scala). Finally, since the trace has to be
reversed, we can obtain this transformation for free by constructing the trace list from the end
in the JNI conversion. Reversing the list presents the advantage that the trace is immediately
usable to construct the desired element. It might be possible that Scala and CUDA parsers

5 IMPLEMENTATION DynaProg for Scala, p. 50

provide different traces to construct the same result, because the trace verifies the dependency
order, which is only a partial order.

5.3.6 User functions generation
The user generation function needs to be tightly integrated with the rest of the code generation.
To do that, we need to establish a relation between the Scala function and its C counterpart.
This is done by modifying the Scala function such that it embeds its C code and related types
(input, output and possibly internal structures). To do that, LMS is used to generate both Scala
and C code (as the user would want to write only once his function, using the corresponding
LMS Rep types). The two implementations are then mixed to provide the augmented Scala
function that can then be used at appropriate places by either the Scala parsers or the code
generator.
Actually, the idea of mixing the two implementations into a single function emerged from exper-
iments with the Scala macros [5], where it is possible to modify the AST of the Scala program
before actually compiling it. Macros could also be an alternative to LMS in the sense that they
have the same power in this particular case (because the code is just converted from Scala to C
and does not benefit of additional run-time information); however, relying only on macros would
imply rewriting significant portions of code conversion, which might end up being a duplicated
effort with LMS. The most interesting use of the macros would actually be to stage plain Scala
to its LMS representation in the «context» of user functions, thereby unleashing the power of
LMS without forcing the DSL user to explicitly specify Rep types33.
Another advantage of using LMS only for user-specific function, is that it does not impose any
restriction on the types manipulated by Scala, thereby providing the opportunity to solve the
DP problem (possibly on CUDA using restricted types) and apply the solution (in Scala) on
complex types that would have no representation in LMS.

5.4 Runtime execution engine
The runtime execution engine is made of two instrumented compilers:

• A wrapper for g++ and nvcc that can combine different file types (.h, .c, .cu) into a JNI
library which is then loaded into the current JVM instance. If necessary, paths can be
customized to fit the user environment.

• A wrapper for the Scala compiler, which allow the creation of Scala interface to the freshly
compiled JNI libraries. It should be noted there that using VirtualDirectory as compi-
lation target prevents the interaction with JNI, hence physical path has to be used.

These two compilers interfaces are then mixed in another class that transform the previously
(see 5.3) generated code, fixing input sizes and splits (number of kernels to launch to respect
the time limit) constants, and execute it.

33Since this is an ongoing project at LAMP with different schedule as this project, we do not want to duplicate
effort currently but might integrate it at a later stage.

5 IMPLEMENTATION DynaProg for Scala, p. 51

5.5 LibRNA
Since the energy computation for RNA secondary structure prediction (folding the sequence
in two dimensions) involve complex coefficients and computations (seemingly standardized in
coefficient files), we might want to provide the user with a simple interface to benefit from it. To
do that, we based our library on the work of GAPC[35] which itself is based on ViennaRNA[23].
Since the library is provided in C, we rely on JNI to reuse the code without modifying it; this
allows Scala to immediately benefit from it, but also makes possible to write a GPU version,
provided that the related functions are simple enough to be expressible in CUDA. Our work in
this direction is mainly focused on integration, we do not want to discuss the implementation
details here but simply give a overview of what we transformed and adapted to suit our needs.
First, we adapted the library embedded in GAPC to obtain coefficients. Since GAPC is written
in C, we had to write a JNI interface to let the Scala code communicate with the libraries. Once
this step has been achieved, we focused on obtaining correct results for RNA folding. This has
been achieved by a thorough analysis of the GAPC related code, and took quite a long time due
to bugs that were hard to find.
In parallel with this work, we focused on making the code compatible with CUDA. We managed
to significantly reduce its size by removing unused functions (actually, all the programs of the
Vienna package reuse the library, each introducing its own functions). This also enabled us
to have a better understanding of the involved computations, thereby helping us to clearly
separate the coefficient file processing and the energies computations. We also provided small
optimizations towards parallelization and simplified the sequence management (because it needs
to be converted in a particular format for the library to efficiently process it).
Once the library was ready to fit on CUDA devices, we integrated it into DynaProg. Un-
fortunately, since the library adds a significant volume of code (because some coefficients are
embedded in C files), the compilation process length was increased (from approx. 2 to 7 seconds).
To reduce this penalty (towards benchmarking), we introduced memoization of the compilation
results in our code generator, thereby avoiding duplicated compilations of the program for same
length of sequences (generated programs are tailored for particular sequences lengths).
Finally, we made two small nevertheless important enhancements to the CUDA version: because
the energy functions heavily rely on the sequence and the coefficients, we would like to have fast
access to them. Since we address small sequences (≤ 16KB), these can easily fit in the shared
memory. We also would like to benefit from the constant memory to store the coefficients.
Unfortunately, since this memory is too small to contain all of them, we need to distinguish
two cases: the most frequently used coefficients are stored in the constant memory whereas the
other have to be put in the global memory. These two modifications provided substantial speed
improvement by moving the data frequently used closer to the processing units.

http://www.tbi.univie.ac.at/~ivo/RNA/

6 USAGE DynaProg for Scala, p. 52

6 Usage
6.1 Program examples
In this section, we explain how to use the DynaProg DSL using an example based approach.
We focus on three additional examples: Smith-Waterman (§3.2.2) and Needleman-Wunsch to
present two-tracks grammars and multiple algebras, RNAfold[31] (§3.2.7, alternative) to describe
RNA library usage and reconstruction from backtrack trace, and finally we extend matrix chain
multiplication (§2.2.2) with CUDA code generation.

6.1.1 Smith-Waterman and Needleman-Wunsch
First define a signature that can fit both algebras, then specify for each algebra the related
functions. In this example, both algebra operate on the same output domain and share the
same optimization function (although this is not true in general).

trait SeqAlignSignature extends Signature {
type Alphabet = Char
def start(x:Unit):Answer
def gap1(g:(Int,Int),a:Answer):Answer
def gap2(a:Answer,g:(Int,Int)):Answer
def pair(c1:Alphabet ,a:Answer,c2:Alphabet):Answer

}

trait SmithWatermanAlgebra extends SeqAlignSignature {
type Answer = Int
override val h = max[Int] _
private val open = -3
private val extend = -1
def start(x:Unit) = 0
def gap1(g:(Int,Int),a:Int) = gap2(a,g) // by symmetry
def gap2(a:Int,g:(Int,Int)) =

{ val size=g._2-g._1; Math.max(0, a + (open + (size-1)*extend)) }
def pair(c1:Char,a:Int,c2:Char) = a + (if (c1==c2) 10 else -3)

}

trait NeedlemanWunschAlgebra extends SeqAlignSignature {
type Answer = Int
override val h = max[Int] _
private val open = -15
private val extend = -1
def start(x:Unit) = 0
def gap1(g:(Int,Int),a:Int) = gap2(a,g) // by symmetry
def gap2(a:Int,g:(Int,Int)) =

{ val size=g._2-g._1; a + (open + (size-1)*extend) }
def pair(c1:Char,a:Int,c2:Char) = a + (if (c1==c2) 4 else -3)

}

To obtain a visual representation of the alignment, a naive idea would be to construct the two
aligned strings immediately in the forward phase (in the Answer). However, this approach must
be avoided as it is extremely inefficient, both in terms of running time and space complexity
because intermediate strings are created (and stored in memory) for every intermediate result.
The correct way to solve this issue is to use backtracking and forward construct these strings

6 USAGE DynaProg for Scala, p. 53

with a pretty printing algebra:
trait SeqPrettyPrint extends SeqAlignSignature {

type Answer = (String,String)
def in1(k:Int):Alphabet; def in2(k:Int):Alphabet // make it visible
private def gap(sw:(Int,Int),in:Function1[Int,Char]) = {

val g=(sw._1 until sw._2).toList
(g.map{x=>in(x)}.mkString,g.map{x=>"-"}.mkString)

}
def start(x:Unit) = (".",".")
def gap1(g:(Int,Int),a:Answer) =

{ val (g1,g2)=gap(g,in1); (a._1+g1,a._2+g2) }
def gap2(a:Answer,g:(Int,Int)) =

{ val (g2,g1)=gap(g,in2); (a._1+g1,a._2+g2) }
def pair(c1:Char,a:Answer,c2:Char) = (a._1+c1,a._2+c2)

}

Finally, we describe the associated grammar and the programs that mixes the algebras and the
grammar. Note that we need one instance of each pair of grammar and algebra. Once we have
done that, we can request scores and backtracks associated with an evaluation algebra (Smith-
Waterman or Needleman-Wunsch) and reuse the obtained backtrack to construct the matching
aligned sequences:

trait SeqAlignGrammar extends TTParsers with SeqAlignSignature {
val axiom:Tabulate = tabulate("M",(

empty ^^ start
| seq1() -~ axiom ^^ gap1
| axiom ~- seq2() ^^ gap2
| el1 -~ axiom ~- el2 ^^ pair
) aggregate h)

}

object SeqAlign extends App {
object SWat extends SeqAlignGrammar with SmithWatermanAlgebra
object NWun extends SeqAlignGrammar with NeedlemanWunschAlgebra
object pretty extends SeqAlignGrammar with SeqPrettyPrint
val seq1 = "CGATTACA"
val seq2 = "CCCATTAGAG"

def align(name:String,s1:String,s2:String,g:SeqAlignGrammar) = {
val (score,bt) = g.backtrack(s1.toArray,s2.toArray).head
val (a1,a2) = pretty.build(s1.toArray,s2.toArray,bt)
println(name+"␣alignment\n-␣Score:␣"+score)
println("-␣Seq1:␣"+a1+"\n-␣Seq2:␣"+a2+"\n")

}
align("Smith-Waterman",seq1,seq2,SWat)
align("Needleman -Wunsch",seq1,seq2,SWat)

}

6 USAGE DynaProg for Scala, p. 54

6.1.2 RNA folding
We define a signature with two evaluation algebras: RNAFoldAlgebra actually computes the
folding whereas RNAFoldPrettyPrint describes the folding in a string. The energy functions
are provided by an external library (LibRNA). This library encodes substring as (first char-
acter, last character) whereas our framework encodes them as (first character, first charac-
ter + length), which explains the off-by-one corrections. energies variable is set to false in
RNAFoldPrettyPrint because this algebra does not involve the LibRNA energies functions (that
require encoding the input RNA sequence in a special format; this option is enabled by default
in the RNASignature trait).

trait RNAFoldSig extends RNASignature {
def hairpin(ij:(Int,Int)):Answer
def stack(i:Int,s:Answer,j:Int):Answer
def iloop(ik:(Int,Int),s:Answer,lj:(Int,Int)):Answer
def mloop(i:Int,s:Answer,j:Int):Answer
def left(l:Answer,r:Int):Answer
def right(l:Int,r:Answer):Answer
def join(l:Answer,r:Answer):Answer

}

trait RNAFoldAlgebra extends RNAFoldSig {
type Answer = Int
import librna.LibRNA._ // indexing convention: first base,last base
def hairpin(ij:(Int,Int)) = hl_energy(ij._1,ij._2-1) // Eh
def stack(i:Int,s:Int,j:Int) = sr_energy(i,j) + s // Es
def iloop(ik:(Int,Int),s:Int,lj:(Int,Int)) =

il_energy(ik._1,ik._2,lj._1-1,lj._2-1) + s // Ei
def mloop(i:Int,s:Int,j:Int) = s
def left(l:Int,r:Int) = l
def right(l:Int,r:Int) = r
def join(l:Int,r:Int) = l+r
override val h = min[Answer] _

}

trait RNAFoldPrettyPrint extends RNAFoldSig {
type Answer = String
override val energies=false
private def dots(n:Int,c:Char='.') = (0 until n).map{_=>c}.mkString
def hairpin(ij:(Int,Int)) = "("+dots(ij._2-ij._1-2)+")"
def stack(i:Int,s:String,j:Int) = "("+s+")"
def iloop(ik:(Int,Int),s:String,lj:(Int,Int)) =

"("+dots(ik._2-1-ik._1)+s+dots(lj._2-1-lj._1)+")"
def mloop(i:Int,s:String,j:Int) = "("+s+")"
def left(l:String,r:Int) = l+"."
def right(l:Int,r:String) = "."+r
def join(l:String,r:String) = l+r

}

6 USAGE DynaProg for Scala, p. 55

We can then define the associated grammar
trait RNAFoldGrammar extends ADPParsers with RNAFoldSig {

lazy val Qp:Tabulate = tabulate("Qp",(
seq(3,maxN) ^^ hairpin

| eli ~ Qp ~ eli ^^ stack
| seq() ~ Qp ~ seq() ^^ iloop
| eli ~ QM ~ eli ^^ mloop
) filter basepairing aggregate h)

lazy val QM:Tabulate = tabulate("QM",(Q ~ Q ^^ join)
filter((i:Int,j:Int)=>i<=j+4) aggregate h)

lazy val Q:Tabulate = tabulate("Q",(
QM

| Q ~ eli ^^ left
| eli ~ Q ^^ right
| Qp
) filter((i:Int,j:Int)=>i<=j+2) aggregate h)

override val axiom = Q
}

In the application, we create two objects, each combining the grammar with a particular algebra.
We can optionally specify a coefficient parameter file with setParams(file:String), otherwise
the Turner2004 coefficients are used. The library is automatically loaded and fed with the
sequence to produce correct energy coefficients. We request both the score and the backtrack
trace (in bt) so that we can reconstruct the folding using the pretty printing grammar.

object RNAFold extends App {
object fold extends RNAFoldGrammar with RNAFoldAlgebra
object pretty extends RNAFoldGrammar with RNAFoldPrettyPrint

val seq="aaaaaagggaaaagaacaaaggagacucuucuccuuuuucaaaggaagagg"

val (score,bt) = fold.backtrack(seq.toArray).head
val res = pretty.build(seq.toArray,bt)
println("Folding␣:␣"+res+"␣(%5.2f)".format(score/100.0));

}

6 USAGE DynaProg for Scala, p. 56

6.1.3 Matrix multiplication with CUDA code generation
Leveraging the existing definitions of the signature and grammar (repeated here for convenience)

trait MatrixSig extends Signature {
type Alphabet = (Int,Int) // Matrix(rows, columns)
val single:Alphabet=>Answer
val mult:(Answer,Answer)=>Answer

}

trait MatrixGrammar extends ADPParsers with MatrixSig {
val axiom:Tabulate = tabulate("M",

(el ^^ single | axiom ~ axiom ^^ mult) aggregate h)
}

We need describe the algebra functions in the LMS syntax (RepWorld) that we can later compile
to use as regular functions, augmented with C code description (necessary for code generation).
Finally, we need to mix the CodeGen trait to enable code generation and provide the manifest
for input and ouput types (Alphabet and Answer).

trait RepWorld extends NumericOps with TupleOps {
type Alphabet = (Int, Int)
type Answer = (Int, Int, Int)

def hf(a: Rep[Answer]) :Rep[Int] = a._2
def repSingle(a: Rep[Alphabet]): Rep[Answer] = (a._1, unit(0), a._2)
def repMult(l: Rep[Answer], r: Rep[Answer]): Rep[Answer] =

(l._1, l._2 + r._2 + l._1 * l._3 * r._3, r._3)
}

object MatrixMultLMS extends MatrixSig with MatrixGrammar
with CodeGen with App {

val tps=(manifest[Alphabet],manifest[Answer])
override val benchmark = true // display timing measurements

// Algebra is defined immediately in the concrete program
type Answer = (Int, Int, Int)
val concreteProg = new RepWorld with RepPackage
override val h = minBy(concreteProg.gen(concreteProg.hf))
val single = concreteProg.gen(concreteProg.repSingle)
val mult = concreteProg.gen2(concreteProg.repMult)

val input =
List((1,2) ,(2,20) ,(20,2),(2,4),(4,2),(2,1),(1,7),(7,3)).toArray

println(parse(input).head) // -> 1x3 matrix, 122 multiplications
}

The complete source file of the presented problems can be found in the report/ folder. For
further examples and variants, we encourage you to have a look in the examples/ folder.

7 BENCHMARKS DynaProg for Scala, p. 57

6.2 Other usage options
We here provide a list of relevant variables and traits that the programmer might be interested to
use. This list only serves the purpose of documenting features that might otherwise be difficult
to find within the code.
Although the whole program can be defined in a single trait, it is preferable to cleanly separate
the signature from the grammar and the algebra, this good practice would help adding new
algebras easily. The signature needs to inherit either from Signature or RNASignature, would
the RNA folding energies be needed. The grammar can be either single track or two-tracks by
inheriting respectively from ADPParsers and TTParsers. Note that RNA folding only works for
single track grammars and library setup is enabled by the usage of the trait RNASignature (this
could be changed by disabling the flag energies).
The code generator is used by simply mixing in the CodeGen trait, using the following idiom

val tps=(manifest[Alphabet],manifest[Answer])

anywhere at the intersection of the CodeGen inheritance and definition of these types (usually in
the final program). Further configuration of the execution environment can be tuned by overrid-
ing the following variables: compiler (for system paths and flags), cudaSplit and cudaDevice.
The benchmark flag can be set to enable timing measurements. Also it is possible to use bottom-
up parsers with Scala to reduce the stack size by enabling the bottomUp flag. If special concate-
nations are needed, it is possible to replace the ∼ concatenation by ∼ (lmin, lmax, rmin, rmax) ∼
where l, r design respectively the yield size of left and right operands.
Finally, the user can look in the files ADPParsers.scala and TTParsers.scala for a list of the
available terminals, and possibly create new ones.

7 Benchmarks
In an attempt to provide realistic benchmarks, we tried to gather state-of-art implementations.
The authors of [39] did not respond to our multiple solicitations. The authors of [12] were
very friendly and provided us their source code. Unfortunately, since they address a different
category of problem (Smith-Waterman on huge sequences whereas we focus on smaller non-
serial problems) their implementation might be biased towards large sequences, and leverage
problem-specific information (wavefront) that our implementation cannot address. Finally, we
asked lately the authors of [31] who did not respond either to our solicitations. The authors of
[35] kindly share their implementation on a dedicated website34.
We organize the benchmarks as follow: if we have at our disposal a working implementation
that could be run on our evaluation platform, we use it, otherwise, we refer to the related paper
and rescale the part of the result corresponding to memory accesses according to the memory
bandwidth of the related device so that we can have a good approximation of how they could
compare.

7.1 Metrics
The main metrics of interest is the running time. In an attempt to reduce the variance, we
would like to run multiple consecutive test and take the median running time, since the median
is less sensitive to outlier than the average[11]. Unfortunately, several factors hampers these

34http://www.gapc.eu

http://www.gapc.eu

7 BENCHMARKS DynaProg for Scala, p. 58

ideal conditions. First the variance in the running time of CUDA kernels might be significant,
in particular for short running time. This is due to the fact that the GPU needs to be ’warmed-
up’ before actual computation can happen. Similarly, the JVM is also subject to running time
variance that is mainly due to the garbage collection35 and JIT optimizations [22].
Also the input and problem might introduce variance. As example, we can consider two extreme
cases: matrix chain multiplication and Zuker RNA folding, with a test environment of 100
random inputs (of length respectively 512 and 80) and a GPU warmup of 10 computations.
In this settings, matrix chain multiplication computations are executed in a perfectly constant
time36 (0.127 seconds), which mean that we sufficiently reduced the noise. Oppositely, the Zuker
RNA folding running times appear much more scattered as presented below:

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

1
Median with 95% CI (boxplot) and mean with 95% CI

Z
u
k
e
r

fo
ld

in
g
 r

u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Running time boxplot

Mean

CI for the mean

−3 −2 −1 0 1 2 3
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Normal distribution quantiles

R
u
n
n
in

g
 t
im

e
 q

u
a
n
ti
le

s

QQPlot of Zuker running time versus normal distribution

0.1 0.15 0.2 0.25 0.3 0.35
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Uniform distribution quantiles

R
u
n
n
in

g
 t
im

e
 q

u
a
n
ti
le

s

QQPlot of Zuker running time versus uniform distribution

Figure 15: Zuker folding running time (seconds). Quartiles: 0.152, 0.183 (median), 0.214

Using the QQplot37, the distribution is heavily tailed (has more results towards the ends of
the range) than a Gaussian distribution (fig. 15 center) but fits better an uniform distribution
(fig. 15 right). If we run multiple time the program over the same input, we obtain the same
behavior as with the matrix multiplication (strictly identical time); hence we can conclude that
Zuker is an input sensitive problem whereas matrix chain multiplication is not. It follows that
we need to be careful to test with exactly identical input set different implementations.
As the device memory is quite limited, it seems interesting to also take into account the space
usage. The space requirement limits the maximal size of addressable problems on a particular
hardware. This might be a concern for large problems, because they would require special
adaptation to handle such cases both correctly and efficiently. However, this metric heavily
depends on the problem and simple solutions like using a device with larger memory or using
main memory (if a 5× slowdown is still acceptable) could solve this issue, hence we do not
consider this metric hereafter (except as an upper bound on the dimension of the input).

7.2 Benchmarking platform
Our benchmarking platform is an Apple notebook with a Core i7-3720QM with 16Gb of main
memory and an NVIDIA GeForce GT 650M running under MacOS X 10.8 and Oracle JDK 1.7.0-
10. A workaround (see listing 3) allows us to use the CPU to render the user interface while

35http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html#cms.overhead
36With respect to truncation and measurment accurcy, has less than 1% of variation (not observable).
37Quantile-to-quantile plot, used to compare two distributions against each other.

http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html#cms.overhead

7 BENCHMARKS DynaProg for Scala, p. 59

leaving the graphic card available to execute CUDA kernels. Unfortunately, due to impossibility
to disable the watchdog timer in MacOS, CUDA kernels are limited to few seconds of running
time before they are automatically aborted.

7.3 Matrix chain multiplication
We have seen previously that this problem is not input sensitive in (§7.1), hence we can safely
use different random number generators among different implementations without compromising
the validity of the results. Also note that the hand-optimized results are slightly worse than
those presented in (§5.1), this is caused by enabling the 64-bit mode. Since external libraries
linked with the Java virtual machine must be in 64 bit, we also enabled this mode in hand-
optimized version to maintain a fair comparison, thereby slightly reducing the performance of
CUDA operations.

Matrix dimension 64 128 192 256 384 512 768

C
P

U

DynaProg
Scala parsers 0.05 0.20 0.80 2.03 6.65 15.10 47.40
Optimized
C, single thread <0.01 <0.01 <0.01 0.01 0.03 0.08 0.28
GAPC
[35], C, single thread 0.01 0.01 0.03 0.05 0.15 0.35 1.16

G
P

U

DynaProg
CUDA parsers 0.03 0.04 0.05 0.07 0.13 0.13 0.21
Optimized
CUDA, 64-bit <0.01 0.01 0.01 0.02 0.04 0.08 0.17
ATLP
[39], rescaled(1) 0.17 — — 0.20 — 0.23 —

Matrix dimension 1024 1536 2048 3072 4096 6144 8192

C
P

U

DynaProg
Scala parsers 109.77 368.21 877.30 3059.42
Optimized
C, single thread 1.18 7.06 19.81 78.90 206.56 799.53 2010.49
GAPC
[35], C, single thread 2.82 10.02 25.16 91.69 224.70

G
P

U

DynaProg
CUDA parsers 0.35 0.85 1.69 4.79 10.32 31.60 71.22
Optimized
CUDA, 64-bit 0.32 0.82 1.65 4.74 10.35 31.94 72.38
ATLP
[39], rescaled(1) 0.40 0.74 1.33 3.43 7.29 — —

Table 6: Running time of matrix chain multiplication (in seconds)

(1) Assuming that 72% of the running time is due to memory accesses, and considering a 3.55×
memory throughput slowdown of the original results (see §5.1.3).
The running time of DynaProg/CUDA includes the overhead of back and forth JNI conversion
(scales linearly between 0.018 and 0.057 seconds) but does not include the overhead due to the

7 BENCHMARKS DynaProg for Scala, p. 60

code generation which decomposes in 0.068 seconds for analysis and code synthesis (once per
algebra/grammar pair) and 0.086 + 1.753 seconds for respectively Scala and CUDA compila-
tion (constant time, once per problem dimension). These execution time results are presented
similarly for the following problems.
For DynaProg/Scala we use a variant of the problem description: the original version only stores
the matrix multiplication score whereas the modified version also stores the matrix dimension.
This allows a speedup of 2.9× probably due to the additional lookups overhead. Also with the
default JVM parameters, the program cannot address sequences longer than ∼ 420 elements
due to a stack overflow, for these benchmarks, we increased this limit.
From the results we see that this problem is well suited for GPUs where the computation pattern
is very regular across threads. In this case, the generated CUDA code produces performance
that is comparable to hand-optimized CUDA code, and comparable to one of the state of the art
implementation with less than 1.5× performance degradation. ATLP leverages the regularity
of the access pattern optimize the resource utilization and adaptively map subproblems[39]. As
we cannot benefit of such problem-specific knowledge, our approach is to compute elements
independently and synchronize efficiently.

7.4 Smith-Waterman (affine gap cost)
Smith-Waterman with affine gap cost is a serial problem, which is not directly the focus of our
project but nevertheless can be addressed efficiently. The problem formal description (§3.2.2)
uses 3 matrices. However, since two of these matrices only propagate information along line or
column, it is possible to encode this information in a wavefront (see §3.1.3) instead of maintaining
it in a memory-expensive matrix. This knowledge is leveraged by [39], however, in our case,
we cannot describe the wavefront in the grammar and need to maintain explicitly 3 matrices,
thereby multiplying by 3 the memory usage38.

38Actually slightly less than 3 because we replace 2 matrices in O(n2) by two vectors in O(n)

7 BENCHMARKS DynaProg for Scala, p. 61

Matrix dimension 64 128 192 256 384 512 768
C

P
U

DynaProg
Scala parsers 0.04 0.13 0.27 0.48 1.07 1.92 4.33
Optimized
C, single thread <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01
GAPC
[35], C, single thread 0.01 0.01 0.01 0.01 0.02 0.03 0.06

G
P

U

DynaProg
CUDA parsers 0.03 0.03 0.03 0.04 0.05 0.05 0.06
Optimized
CUDA, 64-bit 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CUDAlign
[13], version 2.0 0.11 0.12 0.07 0.07 0.07 0.07 0.13

Matrix dimension 1024 1536 2048 3072 4096 6144 8192

C
P

U

DynaProg
Scala parsers 7.84 18.95 33.63 70.86 (2)∞
Optimized
C, single thread 0.01 0.02 0.04 0.10 0.17 0.40 0.71
GAPC
[35], C, single thread 0.10 0.22 0.39 0.91 1.62 4.41 11.20

G
P

U

DynaProg
CUDA parsers 0.07 0.11 0.15 0.13 0.20 0.32 (1)3.21
Optimized
CUDA, 64-bit 0.01 0.02 0.02 0.04 0.07 0.14 0.27
CUDAlign
[13], version 2.0 0.13 0.15 0.14 0.14 0.15 0.17 0.20

Table 7: Running time of Smith-Waterman (in seconds)

(1) Since the memory requirements are larger than the device capacity, the backtrack matrix
overflows in the main memory, thereby significantly degrading the performance. This extra
memory requirement is due to the use of 3 matrices to avoid the non-serial dependencies (hence
requiring at least 3 · 2 bytes of memory per matrix element for backtrack).
(2) Extremely little progress due to intensive JVM garbage collection after some delay, even
by tuning the JVM parameters (-Xss512m -Xmx12G -Xms12G), and independently of whether
top-down or bottom-up parsing approaches are taken. After a minute, most of the time is spent
in (full) garbage collections. In this algorithm, the aggregation function application contributes
to approximately 30% of the total running time.
From these result, it is possible to say that although not being the primary focus, the serial
problem can be solved efficiently as well in our framework, assuming that the device memory is
sufficiently large to store all the matrices. We might attribute the proportional overhead of our
implementation (compared to the optimized version) to the additional verifications for result
cell emptiness (these are hidden in matrix multiplication by the memory accesses). Removing
them requires problem-specific knowledge (for example setting an infinite value), as described
in §4.4.

7 BENCHMARKS DynaProg for Scala, p. 62

7.5 Zuker RNA folding
The Zuker RNA folding algorithm significantly differs from the two previous problems because
it relies on energy functions involving experimental parameters (constants). These parameters
are encoded in lookup tables that need to be accessed usually at multiple places in each energy
function. Additionally, energy functions involve conditions and possibly loops hence are more
complex than the simple regular patterns of matrix multiplication and Smith-Waterman, thereby
introducing possible thread divergence that reduces the performance.
For this problem, we present two grammar variants. The Scala version and CUDA-Zuker share
the same grammar as GAPC[35], which is more complex than the RNAfold grammar, that is
shared by the two implementation with the same name. Although not stated explicitly in the
paper [31], this implementation limits the size of internal loops to 30 (following current practice
in the domain [29]). Limiting the size of the internal loops allows to reduce the running time
complexity from O(n4) to O(n3), because large loops rarely occur in practice [29].

Matrix dimension 64 128 192 256 384 512 768

C
P

U

DynaProg
Scala parsers 0.07 0.67 2.26 4.98 17.61 39.44 130.71
ViennaRNA
[23] 0.01 0.01 0.02 0.03 0.07 0.12 0.29
GAPC
[35], C, single thread 0.01 0.03 0.07 0.13 0.41 0.93 2.89

G
P

U

DynaProg
CUDA-Zuker 0.13 0.48 0.88 1.41 2.84 4.55 8.51
DynaProg
CUDA-RNAfold 0.17 0.54 0.92 1.33 2.25 3.22 5.34
RNAfold
[31], leveraging [37] 0.06 0.11 0.14 0.20 0.44 0.80 1.89

Matrix dimension 1024 1536 2048 3072 4096 6144 8192

C
P

U

DynaProg
Scala parsers 306.12 1036.78
ViennaRNA
[23] 0.57 1.53 3.19 9.37 20.18 59.65 133.65
GAPC
[35], C, single thread 6.66 22.91 56.97 208.33 529.40

G
P

U

DynaProg
CUDA-Zuker 13.61 30.45 56.22 152.88 365.24
DynaProg
CUDA-RNAfold 7.68 15.89 26.43 66.30 153.90
RNAfold
[31], leveraging [37] 3.52 9.08 19.59 67.32 163.14

Table 8: Running time of Zuker RNA folding (in seconds)

These results are interesting because they demonstrate that complex problems are hard to paral-
lelize efficiently, and the GPU implementation might not exhibit significant speedups (compar-
ing ViennaRNA and RNAfold). Beside that, we can notice that for large sequences, our Zuker

8 FUTURE WORK DynaProg for Scala, p. 63

grammar GPU implementation is on par with GAPC, and the RNAfold grammar is on par with
the RNAfold implementation, although we might argue that the purpose of RNAfold is slightly
different (using synergistically CPU and GPU to fold multiple small sequences of RNA).

7.6 Synthetic results
From the previous results, we can make the following observations:

• Plain Scala parsers are not well suited for dynamic programming (even for simple problems
like Smith-Waterman). A better approach would be to use LMS to rewrite the Scala parsers
into more efficient code, possibly reducing the running time to be comparable with GAPC
(modulo the penalty introduced by the JVM compared to native execution).

• Offloading the computations to the GPU might bring significant speedup (∼ 20× for
matrix multiplication) but some problem do not perform as well as what is possible on the
CPU (Zuker), hence the programmer decision should be driven by performance evaluation
rather than assumptions.

• The CUDA code generated by DynaProg is comparable with hand-optimized code.

8 Future work
We consider several directions and possible extensions for our work. We briefly describe each of
them and give an idea of how they could be implemented:

1. Fusion and C with LMS: Although we gained some speedup by optimizing manually
the Scala parsers, we cannot benefit from grammar-specific optimizations. Passing the
whole grammar to LMS could possibly lead to more efficient code, by folding multiple
parser functions into a single one and providing loop fusion39. The added cost of function
lookup, even if minimal, might still account for a non-negligible part of the total running
time as parser processing is very simple but run repeatedly a large number of time. Also
constructing large lists of candidates that are later reduced to single results increases the
work of the garbage collector. Generating the grammar through LMS has two major
benefits:
(a) Improve the performance of the parsers within the JVM. Since we previously argued

in favor of a decoupling of the algebra and the grammar, and since we want to
reach optimal performance, we would need to provide both a plain version for result
processing (independent of LMS restrictions so that we can use arbitrary functions
within the algebra) and an optimized version for dynamic programming computations
(possibly with restricted types). The latter could be achieved similarly as the current
CUDA code generation: the Scala parsers could be converted in an abstract syntax
tree (AST) that could then be merged with the algebra nodes and passed to LMS for
code generation.

(b) Since experimental results have shown that in some situations, the CPU outperforms
the GPU, it might be interesting to target single thread C implementation to benefit
from these situations (thereby removing the overhead of the JVM). Using LMS would
provide such code generation mechanism. Since the program can be single threaded,
no complex synchronization mechanism needs to be involved, hence this is a good
candidate for LMS multi-architecture code generation.

39For example if the aggregation function is simple enough as maximum or minimum, aggregation could be
merged with element processing, simliarly as described in §4.4.

8 FUTURE WORK DynaProg for Scala, p. 64

2. Macros: macros provide an interesting meta-programming opportunity as they are run
after the typing phase of the Scala compiler and can leverage all the compile-time typing
information. We could use them to either simplify the user-functions description (by
converting their types into LMS) or even provide ad-hoc conversion from the Scala AST
to C code.

3. Non-serial scheduling for problems larger than the device memory: as described
in §4.5.3, it could be possible to handle problems that are larger than the device memory in
an efficient way, thereby dramatically reducing the memory transfer penalties introduced
by the main memory usage. However, this comes at the price of a more involved kernel
scheduling and a complex element indexing strategy (because the enclosing matrix block
needs to be looked-up before addressing one of its element).

4. Serial problems larger than memory: As discussed in §4.5.4, this class of problems
require a completely different implementation. Since the authors of [12] are planning to
publish an extension for their implementation, duplicating the effort might not be worth
the price. Would their future implementation be sufficiently modular, we could integrate
it in our framework and redirect compatible grammars to this state of art implementation.

5. CUDA k-best parsers: since a k-best algorithm has constant memory requirements,
an efficient algorithm for CUDA could be devised: instead of comparing with only one
value to find the best value, it suffice to compare with k values instead. Hence cost and
backtrack matrix would contain k elements per cell. Validity flag for one value can easily
be extended to multiple values; cells with fewer results would simply have fewer elements
marked valid.

6. Multi-dimensional matrices and independent computations: In the current im-
plementation, all the matrices are encoded such that they are of the same size. Leveraging
the yield analysis, we could reduce the dimension of smaller matrices (for tabulations with
bounded maximal size). Matrix of different dimensions must be stored in their own array
(versus being in a single array of matrices of similar dimensions). Also matrices might
possibly be of different storage complexity: looking back at the Zuker problem descrip-
tion (§3.2.7), there are two O(n2) matrices and one O(n) matrix. This discrepancy in the
sizes also leads to multiple indexing strategies (depending on the complexity) and a more
complex scheduling where matrix must be computed sequentially whereas in the current
computation, one position is computed in all matrices at once.

7. Data granularity: Since the major bottleneck of CUDA architecture is the memory, we
might focus on data representation: in the current project, data is stored in primary types
but we could store them more efficiently. For example, RNA is represented with only 4
letters (g,a,t,c), thus 4 symbols could be encoded in a single byte. Unfortunately, this op-
timizations seems to only apply for the input data. Another solution in this direction is to
operate on multiple cells with one thread, the argument being that they could share a row
or a column, thereby dividing the number of memory accesses for non-serial dependencies
on that axis.

8. Adding FPGA as target platform: Initially envisioned a second target platform, the
underlying complexity of transforming DP recurrences into VHDL code made us leave
this platform aside for the scope of this project. The reconfigurability possibilities of
FPGA make them attractive whenever it comes to very simple and massively parallel
computations where the data can be pipelined; this makes serial dynamic programming
problems good candidates for such implementation.

8 FUTURE WORK DynaProg for Scala, p. 65

9. Algorithmic analysis: so far, we considered that the DSL user would write an optimal
program. Another direction in which we could improve the parsers is the recurrence
analysis, either by removing serial dependencies when possible (§3.1.3) or reducing the
algorithmic complexity by creating intermediate tabulations (§4.1). These analysis would
certainly involve a strong mathematical analysis and the ratio benefit over implementation
complexity would be quite small under the initial assumption that the DSL users are
experts in their field (thereby knowing how to optimize manually the grammar).

10. Non-emptiness analysis: At code generation level, when a tabulation is known to be
non-empty (every cell contain a valid result), it is possible to remove the corresponding
verifications, thereby reducing the parser complexity40. Such analysis needs to guarantee
that all paths would produce at least on candidate. Such analysis might be quite complex
as it requires induction (for example in matrix multiplication, we need to prove inductively
that every cell element is non-empty). Currently, this information needs to be explicitly
provided by the programmer (by setting a flag on the non-empty tabulation).

11. Pruning: described in [12], this optimization could lead to a reduction of the computation,
provided that the algorithm final score can be bounded. Such optimization would only
be relevant with a non-uniform computation strategy where the matrix is tiled, thereby
making it possible to prune entire computation tiles.

40The validity of a result is determined if its corresponding backtrack has a valid rule number. Skipping this
test saves a memory load, and a condition testing.

9 CONCLUSION DynaProg for Scala, p. 66

9 Conclusion
This Master project report focuses on how to solve efficiently dynamic programming. By re-
stricting to the class of problem involving sequences, we were able to extract generic patterns
and expose them to parallel architectures like CUDA. To do that, we first depicted the dynamic
programming landscape and defined a set of problems we would like to solve (§3). Then we dis-
cussed the required functionalities to provide the user with a convenient embedded DSL based
on the ADP formalization (§4). These architectural decisions lead us to consider two different
implementations: one in Scala that allows the same expressivity as ADP (in term of multiple
solutions search), and one in CUDA that focuses on efficiently obtaining a single optimal result
on GPU. We then provide some technical details explaining how these ideas are put in practice
in DynaProg (§5). Finally, we see in the benchmarks (§7) that generated code performances are
comparable with existing implementations.
From a larger perspective, we can describe our approach as a generic pattern to address domain-
specific problems:

1. Understand the gist of the problem and generalize its specific characteristics to similar
problems (this can be called domain-specific knowledge)

2. Based on this information, it is possible to devise an efficient implementation, possibly
parallel41 that encompasses as many problems as possible, balancing between generality
and specific information required to maintain high performance.

3. Once an efficient solver is implemented, it should be offered to other people who are
trying to solve similar problems. To do that, a «standard» should be agreed on: instead
of creating a new dialect, it would be better that everybody speaks the same language.
This is the very purpose of embedded DSL: people who know the host language easily
understand how to encode their problem.

With the recent compiler technology, expressing such solution with code generation has become
easier. The code generation approach is efficient because it allows to optimally address one
specific problem for a particular hardware architecture, while preserving the generality in the
code generator. In this perspective, Scala and LMS are an interesting host language. Our work
provide one additional construction brick to address the space of the problems42.
We have demonstrated that our implementation, DynaProg, is able to deal with simple (Smith-
Waterman) and complex (Zuker and RNAfold) dynamic programming problems on sequences
that are expressed by a grammar and an algebra. With this formalism, their expression is sim-
plified and exploiting the dynamic programming results becomes possible thanks to systematic
backtrack encoding that allows traces to be exchanged between algebras. This implementation
is publicly available43 and can immediately be used in Scala projects.

41Because the single core (processor) model has reached its limit and the industry is moving towards multi-core
and many-core.

42For example http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
43https://github.com/manojo/lamp-dp-mt/

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
https://github.com/manojo/lamp-dp-mt/

REFERENCES DynaProg for Scala, p. 67

References
[1] Scala api documentation. http://www.

scala-lang.org/api/, 2012.
[2] Dan A. Alcantara, Andrei Sharf, Fatemeh

Abbasinejad, Shubhabrata Sengupta, Michael
Mitzenmacher, John D. Owens, and Nina
Amenta. Real-time parallel hashing on the
gpu. In ACM SIGGRAPH Asia 2009 papers,
SIGGRAPH Asia ’09, pages 154:1–154:9, New
York, NY, USA, 2009. ACM.

[3] Richard Bellman. On the theory of dynamic
programming. Proceedings of the National
Academy of Sciences of the United States of
America, 38(8):716–719, 1952.

[4] Kevin J. Brown, Arvind K. Sujeeth, Hy-
ouk Joong Lee, Tiark Rompf, Hassan Chafi,
Martin Odersky, and Kunle Olukotun. A
heterogeneous parallel framework for domain-
specific languages. In Proceedings of the 2011
International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’11,
pages 89–100, Washington, DC, USA, 2011.
IEEE Computer Society.

[5] Eugene Burmako. Scala macros. http://
scalamacros.org, 2012.

[6] Luke Cartey, Rune Lyngsø, and Oege de Moor.
Synthesising graphics card programs from dsls.
In Proceedings of the 33rd ACM SIGPLAN
conference on Programming Language Design
and Implementation, PLDI ’12, pages 121–132,
New York, NY, USA, 2012. ACM.

[7] Hassan Chafi, Zach DeVito, Adriaan Moors,
Tiark Rompf, Arvind K. Sujeeth, Pat Han-
rahan, Martin Odersky, and Kunle Olukotun.
Language virtualization for heterogeneous par-
allel computing. In Proceedings of the ACM in-
ternational conference on Object oriented pro-
gramming systems languages and applications,
OOPSLA ’10, pages 835–847, New York, NY,
USA, 2010. ACM.

[8] Hassan Chafi, Arvind K. Sujeeth, Kevin J.
Brown, HyoukJoong Lee, Anand R. Atreya,
and Kunle Olukotun. A domain-specific ap-
proach to heterogeneous parallelism. In Pro-
ceedings of the 16th ACM symposium on Prin-
ciples and practice of parallel programming,
PPoPP ’11, pages 35–46, New York, NY, USA,
2011. ACM.

[9] Dar-Jen Chang, Christopher Kimmer, and
Ming Ouyang. Accelerating the nussinov rna
folding algorithm with cuda/gpu. In Proceed-
ings of the The 10th IEEE International Sym-
posium on Signal Processing and Information
Technology, ISSPIT ’10, pages 120–125, Wash-
ington, DC, USA, 2010. IEEE Computer Soci-
ety.

[10] G.H. Chen, M.T. Kuo, and J.P. Sheu. An op-
timal time algorithm for finding a maximum
weight independent set in a tree. BIT Numer-
ical Mathematics, 28:353–356, 1988.

[11] Thierry Coppey and Mohammad Kahn. Per-
formance evaluation of mersenne arithmetic on
gpu (miniproject). Performance Evaluation
course, EPFL, 2012.

[12] Edans Flavius de O. Sandes and Alba Cristina
M. A. de Melo. Retrieving smith-waterman
alignments with optimizations for megabase
biological sequences using gpu. IEEE Trans-
actions on Parallel and Distributed Systems,
99(PrePrints), 2012.

[13] E.F. de O Sandes and A.C.M.A. de Melo.
Smith-waterman alignment of huge sequences
with gpu in linear space. In Parallel Distributed
Processing Symposium (IPDPS), 2011 IEEE
International, pages 1199 –1211, may 2011.

[14] Z. Du, A. Stamatakis, F. Lin, U. Roshan,
and L. Nakhleh. Parallel divide-and-conquer
phylogeny reconstruction by maximum likeli-
hood. In LaurenceT. Yang, OmerF. Rana, Be-
niamino Martino, and Jack Dongarra, editors,
High Performance Computing and Communi-
cations, volume 3726 of Lecture Notes in Com-
puter Science, pages 776–785. Springer Berlin
Heidelberg, 2005.

[15] Robert Giegerich and Carsten Meyer. Alge-
braic dynamic programming. In Proceedings
of the 9th International Conference on Alge-
braic Methodology and Software Technology,
AMAST ’02, pages 349–364, London, UK, UK,
2002. Springer-Verlag.

[16] Robert Giegerich, Carsten Meyer, and Peter
Steffen. A discipline of dynamic programming
over sequence data. Sci. Comput. Program.,
51(3):215–263, June 2004.

http://www.scala-lang.org/api/
http://www.scala-lang.org/api/
http://scalamacros.org
http://scalamacros.org

REFERENCES DynaProg for Scala, p. 68

[17] Robert Giegerich and Georg Sauthoff. Yield
grammar analysis in the bellman’s gap com-
piler. In Proceedings of the Eleventh Workshop
on Language Descriptions, Tools and Appli-
cations, LDTA ’11, pages 7:1–7:8, New York,
NY, USA, 2011. ACM.

[18] Robert Giegerich and Peter Steffen. Imple-
menting algebraic dynamic programming in
the functional and the imperative program-
ming paradigm. In Proceedings of the 6th
International Conference on Mathematics of
Program Construction, MPC ’02, pages 1–20,
London, UK, UK, 2002. Springer-Verlag.

[19] Christian Höner zu Siederdissen. Adpfu-
sion package for haskell. http://hackage.
haskell.org/package/ADPfusion, 2012.

[20] Christian Höner zu Siederdissen. Sneaking
around concatmap: efficient combinators for
dynamic programming. In Proceedings of the
17th ACM SIGPLAN international conference
on Functional programming, ICFP ’12, pages
215–226, New York, NY, USA, 2012. ACM.

[21] Arpith Chacko Jacob. Parallelization of Dy-
namic Programming Recurrences in Computa-
tional Biology. PhD thesis, Washington Uni-
versity, St. Louis, Missouri, USA, 2011.

[22] Andreas Krall. Efficient javavm just-in-time
compilation. In International Conference on
Parallel Architectures and Compilation Tech-
niques, pages 205–212, 1998.

[23] Ronny Lorenz, Stephan H Bernhart, Chris-
tian Hoener Zu Siederdissen, Hakim Tafer,
Christoph Flamm, Peter F Stadler, and Ivo L
Hofacker. Viennarna package 2.0. Algorithms
for Molecular Biology, 6(1):26, 2011.

[24] Miguel Cardenas Montes. Cuda constant mem-
ory. http://wwwae.ciemat.es/~cardenas/
CUDA/T6-ConstantMemory.pdf, 2011.

[25] Adriaan Moors, Tiark Rompf, Philipp Haller,
and Martin Odersky. Scala-virtualized. In
PEPM’12, pages 117–120, 2012.

[26] Eugene W. Myers and Webb Miller. Optimal
alignments in linear space. CABIOS, 4:11–17,
1988.

[27] NVIDIA Corporation. NVIDIA CUDA C Pro-
gramming Guide, version 4.2, April 2012.

[28] Martin Odersky and Matthias Zenger. Scal-
able component abstractions. In Proceedings
of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, lan-
guages, and applications, OOPSLA ’05, pages
41–57, New York, NY, USA, 2005. ACM.

[29] Christian N. S. Pedersen, Rune B. Lyngsø,
Michael Zuker, and N. S. Pedersen. An im-
proved algorithm for rna secondary structure
prediction. Technical report, 1999.

[30] S. Rao Kosaraju and ArthurL. Delcher. Opti-
mal parallel evaluation of tree-structured com-
putations by raking (extended abstract). In
JohnH. Reif, editor, VLSI Algorithms and Ar-
chitectures, volume 319 of Lecture Notes in
Computer Science, pages 101–110. Springer
New York, 1988.

[31] Guillaume Rizk and Dominique Lavenier. Gpu
accelerated rna folding algorithm. In Pro-
ceedings of the 9th International Conference
on Computational Science: Part I, ICCS ’09,
pages 1004–1013, Berlin, Heidelberg, 2009.
Springer-Verlag.

[32] Tiark Rompf. Lightweight Modular Staging
and Embedded Compilers: Abstraction With-
out Regret for High-Level High-Performance
Programming. PhD thesis, EPFL, 2012.

[33] Tiark Rompf and Martin Odersky.
Lightweight modular staging: a pragmatic
approach to runtime code generation and
compiled dsls. In Proceedings of the ninth
international conference on Generative pro-
gramming and component engineering, GPCE
’10, pages 127–136, New York, NY, USA,
2010. ACM.

[34] Edans Flavius O. Sandes and Alba
Cristina M.A. de Melo. Cudalign: us-
ing gpu to accelerate the comparison of
megabase genomic sequences. SIGPLAN Not.,
45(5):137–146, January 2010.

[35] Georg Sauthoff. Bellman’s GAP: A 2nd Gen-
eration Language and System for Algebraic Dy-
namic Programming. PhD thesis, Bielefeld
University, 2011.

[36] Georg Sauthoff, Stefan Janssen, and Robert
Giegerich. Bellman’s gap: a declarative lan-
guage for dynamic programming. In Pro-
ceedings of the 13th international ACM SIG-
PLAN symposium on Principles and practices

http://hackage.haskell.org/package/ADPfusion
http://hackage.haskell.org/package/ADPfusion
http://wwwae.ciemat.es/~cardenas/CUDA/T6-ConstantMemory.pdf
http://wwwae.ciemat.es/~cardenas/CUDA/T6-ConstantMemory.pdf

REFERENCES DynaProg for Scala, p. 69

of declarative programming, PPDP ’11, pages
29–40, New York, NY, USA, 2011. ACM.

[37] Peter Steffen, Robert Giegerich, and Mathieu
Giraud. Gpu parallelization of algebraic dy-
namic programming. In Proceedings of the
8th international conference on Parallel pro-
cessing and applied mathematics: Part II,
PPAM’09, pages 290–299, Berlin, Heidelberg,
2010. Springer-Verlag.

[38] M. Steinberger, M. Kenzel, B. Kainz, and
D. Schmalstieg. Scatteralloc: Massively paral-
lel dynamic memory allocation for the gpu. In
Innovative Parallel Computing (InPar), 2012,
pages 1–10, may 2012.

[39] Chao-Chin Wu, Jenn-Yang Ke, Heshan Lin,
and Wu chun Feng. Optimizing dynamic pro-
gramming on graphics processing units via
adaptive thread-level parallelism. In Paral-
lel and Distributed Systems (ICPADS), 2011
IEEE 17th International Conference on, pages
96–103, dec. 2011.

[40] Shucai Xiao, Ashwin M. Aji, and Wu-chun
Feng. On the robust mapping of dynamic
programming onto a graphics processing unit.
In Proceedings of the 2009 15th International
Conference on Parallel and Distributed Sys-
tems, ICPADS ’09, pages 26–33, Washington,
DC, USA, 2009. IEEE Computer Society.

[41] Shucai Xiao and Wu chun Feng. Inter-block
gpu communication via fast barrier synchro-
nization. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Sympo-
sium on, pages 1–12, april 2010.

[42] Peiheng Zhang, Guangming Tan, and
Guang R. Gao. Implementation of the
smith-waterman algorithm on a reconfigurable
supercomputing platform. In Proceed-
ings of the 1st international workshop on
High-performance reconfigurable computing
technology and applications: held in conjunc-
tion with SC07, HPRCTA ’07, pages 39–48,
New York, NY, USA, 2007. ACM.

REFERENCES DynaProg for Scala, p. I

Appendix
1 #import <Foundation/Foundation.h>
2 #import <IOKit/IOKitLib.h>
3

4 bool gpuOpen(); // Initialize driver
5 void gpuClose(); // Close driver
6

7 // User client method dispatch selectors.
8 enum { kOpen, kClose, kmuxSet, kmuxGet };
9

10 typedef enum {
11 muxFeatureInfo = 0, // get: uint64_t with bits set as

(1<<muxFeature)
12 muxForceSwitch = 2, // set: force graphics switching
13 muxPowerGPU = 3, // set: power down a gpu
14 // get: graphics cards?, 0x8=Intel, 0x88=Nvidia
15 muxGpuSelect = 4, // set/get: dynamic switching on=2/off=0
16 muxSwitchPolicy = 5, // set: 0=immediate , 2=requires logout to

switch
17 muxGraphicsCard = 7, // get: returns active graphics card
18 } muxState;
19

20 typedef enum { Policy, Auto_PowerDown_GPU , Dynamic_Switching ,
21 GPU_Powerpolling , // Inverted: 1=off, 0=on
22 Defer_Policy ,
23 Synchronous_Launch ,
24 Backlight_Control=8,
25 Recovery_Timeouts ,
26 Power_Switch_Debounce ,
27 Logging=16,
28 } muxFeature;
29

30 static io_connect_t conn = IO_OBJECT_NULL;
31

32 #define muxCall(STATE,IN,IN_N,OUT,OUT_N) if
(IOConnectCallScalarMethod(conn,STATE,IN,IN_N,OUT,OUT_N)!=KERN_SUCCESS)
{ perror("Mux␣error"); gpuClose(); exit(EXIT_FAILURE); }

33 static uint64_t muxGet(muxState state) { uint32_t count=1; uint64_t
out,in[2]={1, (uint64_t)state}; muxCall(kmuxGet, in, 2, &out,
&count); return out; }

34 static void muxSet(muxState state, uint64_t arg) { uint64_t in[3] = {1,
(uint64_t) state, arg }; muxCall(kmuxSet, in, 3, NULL, NULL); }

35

36 #define setFeature(feature,enabled) muxSet(enabled ,1<<(feature))
37 #define setDynamic(enabled) muxSet(muxGpuSelect ,enabled)
38 #define setSwitchPolicy(immediate) muxSet(muxSwitchPolicy ,immediate?0:2)
39

40 bool gpuOpen() {
41 kern_return_t res;
42 io_iterator_t iterator = IO_OBJECT_NULL;
43 io_service_t gpuService = IO_OBJECT_NULL;

REFERENCES DynaProg for Scala, p. II

44

45 res = IOServiceGetMatchingServices(kIOMasterPortDefault ,
IOServiceMatching("AppleGraphicsControl"), &iterator);

46 if (res != KERN_SUCCESS) return NO;
47 gpuService = IOIteratorNext(iterator); // Only 1 such service
48 IOObjectRelease(iterator);
49 if (gpuService == IO_OBJECT_NULL) return NO; // No drivers found
50

51 res = IOServiceOpen(gpuService , mach_task_self(), 0, &conn);
52 IOObjectRelease(gpuService);
53 if (res != KERN_SUCCESS) return NO;
54

55 muxCall(kOpen,NULL,0,NULL,NULL);
56 return YES;
57 }
58

59 void gpuClose() { if (conn) { muxCall(kClose,NULL,0,NULL,NULL);
IOServiceClose(conn); } }

60

61 // ---
62 // GCC FLAGS:= -Wall -O2 -F/System/Library/PrivateFrameworks -framework

Foundation -framework IOKit
63

64 int main(int argc, char** argv) {
65 int mode=0;
66 if (argc >=2) {
67 if (!strcmp(argv[1],"cuda")) mode=1; // GPU powered, UI on CPU
68 if (!strcmp(argv[1],"auto")) mode=2; // Back to auto switching
69 if (strstr(argv[1],"help")) { fprintf(stderr,"Usage:␣%s␣cuda␣|␣

auto\n",argv[0]); return 0; }
70 }
71 // Open driver
72 if (!gpuOpen()) { perror("Cannot␣connect"); return EXIT_FAILURE; }
73 // Setup requested mode
74 #define switchCards { muxSet(muxForceSwitch , 0); usleep(500*1000); }
75 if (mode==1) { setFeature(Policy, NO); setDynamic(NO); }
76 if (mode) {
77 if (muxGet(muxGraphicsCard)) switchCards // switch to GPU
78 setFeature(Auto_PowerDown_GPU , mode!=1); switchCards // back to CPU
79 }
80 if (mode==2) { setFeature(Policy, YES); setDynamic(YES); }
81 // Display infos
82 printf("AutoPowerDown:␣%s\n", muxGet(muxFeatureInfo) &

(1<<Auto_PowerDown_GPU) ? "ON" : "OFF");
83 printf("UI␣rendering␣:␣%s\n", muxGet(muxGraphicsCard) ? "CPU␣

(integrated)" : "GPU␣(dedicated)");
84 // Close driver
85 gpuClose();
86 return 0;
87 }

Listing 3: Workaround to enable GPU for CUDA and render UI with CPU

	Introduction
	Background
	Graphic cards
	ADP and parsing grammars
	Scala
	Lightweight Modular Staging
	Related work

	Dynamic programming problems
	Problems classification
	Problems of interest
	Related problems

	Architecture design and technical decisions
	User facing language requirements
	Recurrences analysis
	Backtracking
	CUDA storage: from list to optional value
	Memory constraints
	Memory layout
	LMS integration
	Compilation stack

	Implementation
	CUDA baseline
	Scala parsers
	Code generation
	Runtime execution engine
	LibRNA

	Usage
	Program examples
	Other usage options

	Benchmarks
	Metrics
	Benchmarking platform
	Matrix chain multiplication
	Smith-Waterman (affine gap cost)
	Zuker RNA folding
	Synthetic results

	Future work
	Conclusion

