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ABSTRACT

The major low-level perceptual components that influence
the beauty ratings of video are color, contrast, and mo-
tion. To estimate the beauty ratings of the NHK dataset,
we propose to extract these features based on supervoxels,
which are a group of pixels that share similar color and
spatial information through the temporal domain. Recent
beauty methods use frame-level processing for visual fea-
tures and disregard the spatio-temporal aspect of beauty. In
this paper, we explicitly model this property by introducing
supervoxel-based visual and motion features.

In order to create a beauty estimator, we first identify
60 videos (either beautiful or not beautiful) in the NHK
dataset. We then train a neural network regressor using the
supervoxel-based features and binary beauty ratings. We
rate the 1000 videos in the NHK dataset and rank them
according to their ratings. When comparing our rankings
with the actual rankings of the NHK dataset, we obtain a
Spearman correlation coefficient of 0.42.

Categories and Subject Descriptors

I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Video analysis; I.4.6 [Image Processing and
Computer Vision]: Segmentation—Region growing, par-

titioning
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1. INTRODUCTION
Rating any visual stimulus as “beautiful” is highly sub-

jective and very personal. What some person might find
beautiful another might be indifferent to or even find ugly.
Yet, there are many images and videos that most of us find
beautiful, which follow some perceptual arrangement that is
pleasing to the majority of us. Thus, estimating beauty rat-
ings does not always require high-level perceptual cues, such
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as objects, people, and action recognition, but can often be
modeled by low-level features, such as color, contrast, and
motion.

In this paper, we attempt to estimate the beauty ratings
of the videos in the Japan Broadcasting Corporation (NHK)
dataset1. In the dataset, there are 1000 videos with an av-
erage duration of one minute and a resolution of 640 × 360
pixels. Most of them are very simple videos, are composed of
only a few shots and contain little action. A video shot is a
stack of frames where the video recording is not interrupted.
As each shot can have its own content, the less shots there
are, the simpler it is to understand a video. The videos in
the NHK dataset have three shots on average, are short and
thus much simpler compared to a regular movie or even a
YouTube video. We thus believe that a low-level approach
will be sufficient to achieve a good rating estimation.

We select our features based on recent research in image
and video beauty, which has shown that low-level visual fea-
tures, such as composition, colorfulness, lightness, and con-
trast [3, 8, 9, 10], are successful in estimating image aesthet-
ics. Video beauty is also related to camera motion stability
[8, 9, 10]. While the low-level features are calculated for
each video frame, motion stability is measured by matching
image patches or keypoint descriptors from one frame to the
next, which might fail on uniform areas.

The main drawback of the above methods are that they
calculate the low-level visual features and the motion fea-
tures with frame-level processing. We claim that there is a
combined, spatio-temporal dimension to beauty. Thus, in
our method, we jointly extract low-level visual and motion
features from supervoxels. A supervoxel, which is a 3D
extension of a superpixel, is a group of pixels sharing sim-
ilar color and spatial information along the temporal axis.
Supervoxels allow us to summarize and simplify the con-
tent of a video through its color/texture and motion compo-
nents. They have been used in biological applications, such
as motion estimation on microscopy data [2] and mitochon-
dria segmentation [7], as well as in video retrieval [6]. We
use Achanta et al.’s method [1] to compute the supervoxels
of every video shot. In comparison to the state-of-the-art
methods, our visual features are able to represent the video
on a shot level. In addition, our motion features are based
on the velocity of the supervoxels throughout a video shot
and the initial and final positions of the supervoxels. They
successfully measure the motion profile and the spatial com-
position of both uniform and textured image regions.

1http://acmmm13.org/submissions/call-for-multimedia-
grand-challenge-solutions/task-where-is-beauty/
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In our rating algorithm, supervoxel features are used to
train a neural network-based regressor, which estimates the
“beauty” of a given video. In order to establish a ground
truth, we select 60 videos from the NHK dataset, which
are either beautiful or not in a collective sense. Our neural
network is regressed over these binary ratings so that it can
learn the distinctive properties of video beauty. We test our
algorithm on 1000 videos in the NHK dataset and obtain a
Spearman correlation coefficient of 0.42 with respect to the
actual NHK challenge ground truth.

2. SUPERVOXELS AND TRAJECTORIES
We summarize the visual and motion features of a video

with supervoxels. As different parts of a video can have dif-
ferent contents or viewpoints, we need to detect the individ-
ual shots that are visually consistent for proper supervoxel
extraction.

2.1 Shot Detection
A video, V, contains several shots. We can extract indi-

vidual shots by detecting the discontinuities in optical flow
in a video. In our paper, we use Horn-Shunck’s optical flow
method [5]. For shot detection, we only need to identify the
sudden changes in the magnitude of the optical flow.
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1
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∑
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µ = α×median(d)

(1)

Here, Ou(t) and Ov(t) are the optical flow vector compo-
nents in the horizontal and the vertical directions at frame
t, respectively. d(t) is the average optical flow for frame t, Z
is the total number of pixels in one video frame, x and y are
the spatial coordinates, µ is the threshold for shot detection,
and α is a constant to modify the threshold. A shot is de-
tected if the optical flow is greater than this threshold. The
median provides an average motion value that is resistant to
extreme values. We found α equal to 10 provides the best
shot detection for the NHK dataset.

An example of shot detection on a bowling video (0113.mp4
in the NHK dataset) is given in Figure 1. As we can see from
Figure 1(a) and 1(b), the video includes two shots illustrated
with a sharp optical flow jump at frame #242.

After shot detection, we have visually consistent stacks
of video frames, such as Figure 1(c) and 1(d), that have
the visual consistency we require to extract supervoxels and
their properties.

2.2 Supervoxel Extraction
Oversegmenting a single object into multiple supervoxels

is acceptable, provided that the segment size is large enough
to benefit from pixel grouping, i.e. the resultant supervoxels
have similar visual and motion features. However, underseg-
mentation might cause mixtures between irrelevant objects,
which is not desirable. Thus, we select a spatial size for
supervoxels by assuming that the minimum size for an ob-
ject of interest is equal to 20 pixels (recall from Section 1
that videos have a size of 640 × 360 pixels). We choose the
longest possible temporal size to capture the motion of an
object throughout the video shot.

We can see an example of supervoxel extraction in Fig-
ure 2. We represent each supervoxel with their average color
(averaged in L*a*b* space) in Figure 2(b).
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Figure 1: Shot detection on a video with two shots.
Shot change is depicted with a green line in (a)
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Figure 2: Supervoxel extraction.

2.3 Feature Extraction
In order to learn the relationship between video features

and beauty, we use the visual and motion features of the
supervoxels and their trajectories.

2.3.1 Visual Features

We employ visual features similar to the ones in the state-
of-the-art methods that judge video beauty [3, 8, 9, 10],
with one important difference: we compute them from the
supervoxels. The explanation of the ten visual features (f1−
f10) we use are given in Table 1.

2.3.2 Motion Features

In order to express the motion inside a supervoxel, we
calculate the supervoxel trajectories through a video shot
by computing the center of mass of a supervoxel on each
frame. Supervoxel Xjk represents the kth supervoxel of jth

shot.

rxjk(t) =
1
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∑

x∈Xjk(t)

x

ryjk(t) =
1

|y ∈ Xjk(t)|

∑

y∈Xjk(t)

y

(2)



Table 1: Visual features computed over supervoxels.
Feature Comment

Brightness Average value of the Y channel of the YCbCr color space
Contrast Average brightness difference between a supervoxel and the rest of the supervoxels
Saturation Average value of the S channel of the HSV color space
Saturation Contrast Average saturation difference between a supervoxel and the rest of the supervoxels
Colorfulness Colorfulness measure in [4] between a supervoxel and the rest of the supervoxels
Average Color Average value of L*, a* and b* channels of the CIELab color space (3 features)
Saliency Average color difference between a supervoxel and the rest of the supervoxels (over L*a*b*)
Normalized Voxel Size The number of pixels in a supervoxel normalized by the size of the shot cube

Here, rxjk(t) and ryjk(t) are the (x, y) coordinates of the cen-
ter of mass of the supervoxel Xjk at frame t. The computed
coordinates form the trajectories. The trajectories of the
supervoxels in Figure 2(b) are illustrated in Figure 3(a) and
3(b). For didactic purposes, we illustrate stationary and
moving trajectories separately.

We can observe from Figure 3(a), for this video, the su-
pervoxels that are close to the frame border have negligible
motion. The progression of the bowling pins and the bowling
ball are illustrated in Figure 3(b).
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Figure 3: Supervoxel trajectories.

To compute our motion features, we calculate the velocity
of the supervoxel trajectories at each frame as follows:

lxjk(t) = rxjk(t+ 1) − rxjk(t)

lyjk(t) = ryjk(t+ 1) − ryjk(t)

ljk(t) =
√

[

lxjk(t)
]2

+
[

lyjk(t)
]2

(3)

Here, lxjk(t) and lyjk(t) are horizontal and vertical velocity

components of the trajectory at frame t, respectively, ljk(t)
is the magnitude of the trajectory velocity for supervoxel
Xjk at frame t. In order to profile the motion of a super-
voxel, we create a 20-bin histogram using ljk. The maximum
velocity is equal to 19 pixels per frame, because the expected
spatial size for supervoxels is 20 pixels (see Section 2.2). Af-
ter normalizing with ||ljk||1, a trajectory gives us 20 features
in total (f11 − f30).

The distribution represents how smooth a supervoxel is
advancing inside a shot. For example, a concentrated his-
togram as illustrated in Figure 4(a) corresponds to a sta-
tionary supervoxel. Conversely, a distributed histogram as
shown in Figure 4(b) corresponds to a moving supervoxel,
in this case a bowling pin (see Figure 3(b)).

In addition to a velocity histogram, we also use the nor-
malized initial and final spatial trajectory positions (4 fea-
tures in total, f31 − f34) of the supervoxels as motion-based
features. The normalization is performed using the dimen-
sions of the video frame, so that the feature values vary in
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Figure 4: Velocity histograms of two supervoxel tra-
jectories in the bowling video.

the interval [−0.5, 0.5]. These positions are related to the
composition of supervoxels in the shot.

3. VIDEO RANKING RESULTS
It is possible to define heuristic rules to estimate the beauty

of a video. For example, people might consider colorful
videos with high contrast and smooth movements as beauti-
ful. However, we choose to discover those rules, if they exist,
by regressing our features over video ratings.

We select 60 videos from the NHK dataset, half of which
can be considered as collectively “beautiful” (with rating =
1) and the rest as “not beautiful” (with rating = 0). Instead
of having a continuous rating, we create a binary ground
truth to properly learn the separation between good and
bad videos. We then train a neural network-based regressor
(with one hidden layer of 10 neurons) for rating estimation.
As video beauty is a subjective concept, parametrizing the
joint distribution of the input features and the beauty is
prone to errors. Thus, we choose a discriminative regres-
sion model instead of a generative model. The input of the
network is the supervoxel feature vector (f1 − f34) of all su-
pervoxels in all of the training videos and the ground truth
is the binary beauty ratings.

In order to estimate the rating of a video, we extract its
supervoxel features and pass them through the neural net-
work. The rating of a video is calculated by averaging the
ratings of its supervoxels as shown in (4).

RV =
1

N

∑

∀Fkj∈V

ψ(Fkj) (4)

Here, RV is the final rating of the video V, N is the number
of supervoxels in V, ψ(.) is the neural network function, and
Fjk is the feature vector of supervoxel Xjk.

We rank the videos in the NHK dataset with respect to
their estimated final ratings. The correlation coefficients of



our ranking and the user study-based ranking obtained by
the NHK challenge is given in Table 2.

Table 2: Correlation between estimated and ground
truth rankings.

Feature Type Correlation Type Value
Motion only Spearman 0.052
Visual only Spearman 0.387

Both Spearman 0.424
Motion only Kendall 0.036
Visual only Kendall 0.264

Both Kendall 0.290

As we can see from Table 2, the main contribution is pro-
vided by visual features. Another observation is that the
sum of the individual performances of visual and motion fea-
tures is very similar to their combined performances. This
shows that our supervoxel-based features are successful to
decouple the visual and motion properties of a video.

In Figure 5, we show example frames from the top- and
bottom-ranked videos in the NHK dataset. These rank-
ing results are obtained using both visual and motion-based
supervoxel features. We can observe that the top-ranked
videos are more colorful than the bottom-ranked ones. We
refer the reader to the NHK video website for judging motion
related performance.

4. CONCLUSION
We show that low-level supervoxel-based features are suc-

cessful in estimating the beauty rating of short and simple
videos in the NHK dataset. The supervoxels accurately rep-
resent and separate the coupling between the visual and mo-
tion aspects in a video. Because, different than the state-of-
the-art techniques, our method regards the spatio-temporal
aspect of the beauty by involving shot-level processing.

We build a neural network regressor to learn the relation-
ship between the perceptual components of a video and its
beauty. We then use this regressor to automatically rate and
rank the videos in the NHK dataset and obtain a moderate
amount of correlation.

We collect binary ground truth ratings for only 60 videos
of the NHK dataset. A larger training set will significantly
enhance the ranking performance. Moreover, the potential
of additional supervoxel-based features can be investigated
not only in the context of video beauty but also, in general,
video processing. For practical purposes, we might need a
scalable learning method, such as a stochastic neural net-
work, in order to perform online learning. In addition, new
features can be enabled or disabled by activating or deacti-
vating corresponding neurons.
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Figure 5: Frames from the videos in the NHK
dataset that are top-ranked (16 images above) and
bottom-ranked (16 images below) by our algorithm.


