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Abstract 

 

To overcome the problem of outlier data in the regression analysis for numerical-based damage spectra, 

the C4.5 decision tree learning algorithm is used to predict damage in reinforced concrete buildings in 

future earthquake scenarios. Reinforced concrete buildings are modelled as single-degree-of-freedom 

systems and various time-history nonlinear analyses are performed to create a dataset of damage indices. 

Subsequently, two decision trees are trained using the qualitative interpretations of those indices. The 

first decision tree determines whether damage occurs in an RC building. Consequently, the second 

decision tree predicts the severity of damage as repairable, beyond repair, or collapse. 
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1. Introduction 

 

Predicting damage in structures as a result of future earthquakes can be a very useful tool for seismic 

risk mitigation plans. A reliable estimation of damage has wide ranges of application in the seismic 

vulnerability evaluation of buildings that have not been designed to withstand earthquake loads. Such 

damage prediction can be used in scenario studies where effects of a single earthquake, often historically 

significant, on present-day portfolios in a region are evaluated [1].         
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Equivalent single-degree-of-freedom (SDOF) systems have significant contribution in many research in 

the field of earthquake and structural engineering [2,3,4]. The response of the multi-degree-of-freedom 

(MDF) structure including regular RC buildings can be related to the response of an equivalent SDOF 

system, if the response is controlled by a single mode, determined from a high enough modal 

participation factor. Different methods also make use of equivalent SDOF systems to predict damage in 

structures [5]. One useful way to predict damage in scenario studies is to calculate a damage index (DI) 

which normally has a value close to zero if the structure remains elastic and close to 1.0 when the 

structure reaches complete damage or collapse. The available methodologies in the literature to calculate 

the damage index can be classified according to the number of parameters used (e.g., single-parameter 

[6,7,8] or double-parameter [9,10]), type of the concept used (e.g., fatigue-based [11,12,13], energy-

based [14,15], or drift-based [16,17]) or according to the assessment level (local [18,19] or global 

[20,21,22]). The main problem with most of those methodologies, however, is the use of quantitative 

(numerical) representations of damage to replace the qualitative (nominal) meaning of different damage 

levels. 

 

A very frequently-used damage index in the literature is the one proposed by Park and Ang [23] shown 

in Eq. (1). 

 

𝐷𝐼𝑃𝑎𝑟𝑘 𝑎𝑛𝑑 𝐴𝑛𝑔 = (
𝑢𝑚𝑎𝑥

𝑢𝑚𝑜𝑛
⁄ ) +

𝛽. 𝐸𝐻
𝐹𝑦. 𝑢𝑚𝑜𝑛

⁄       (1) 

 

The term umax in this equation is the maximum deformations under earthquake loads (dynamic analysis), 

and the terms umon and Fy, also shown in Fig. 1, are ultimate deformation and the maximum base shear 

force  from pushover analysis, respectively. Moreover, EH is the non-recoverable dissipated hysteretic 

energy (Eq. 2), and β is a positive constant between about -0.3 to +1.2 (obtains from 250 experimental 

tests), which depends on structural characteristics and history of inelastic response [24].  

 

𝐸𝐻 = 𝐹𝑦(𝑢𝑚𝑜𝑛 − 𝑢𝑦)     (2) 



 
 

 

An advantage of Park and Ang’s equation is that it has been calibrated with experimental data. However, 

in some cases, when the system remains in the elastic mode (EH =0), the equation gives DI values way 

bigger than zero which can be misleading towards the damage evaluation of the building. To overcome 

this problem, a modified version of Eq. (1) is proposed [25] as shown in Eq. (3).  

 

𝐷𝐼𝐾𝑢𝑛𝑛𝑎𝑡ℎ 𝑒𝑡 𝑎𝑙. = (
(𝑢𝑚𝑎𝑥 − 𝑢𝑦

∗ )

(𝑢𝑚𝑜𝑛 − 𝑢𝑦
∗ )

⁄ ) +
𝛽. 𝐸𝐻

𝐹𝑦. 𝑢𝑚𝑜𝑛
⁄          (3) 

 

The added term 𝑢𝑦
∗  in this equation is the displacement at yield of the equivalent SDOF system (Fig. 1) 

used to calculate the damage index.  

 

The variation of damage index values for a series of single-degree-of-freedom (SDOF) systems with 

different structural properties subjected to multiple earthquakes with different characteristics forms 

damage spectra [26]. To accomplish that, a regression analyses is performed to express the damage 

index as a function of structural properties and earthquake characteristics [27]. The main problem in 

developing damage spectra, however, is the damage index outlier values. According to the definition of 

the damage index, once the DI exceeds 1.0, the building is assumed to be in complete damage state. In 

other words, values higher than 1.0 would not physically make sense as higher DI values do not indicate 

heavier collapse. However, as the calculation of the damage index from any equation presented in the 

literature including Eq. (3) is mathematical, the result can be theoretically any value bigger than 1.0. 

Such values would become outliers in the regression analysis to develop damage spectra. To overcome 

this problem, as the main novelty in this research, we have replaced the numerical damage spectra 

concept by a damage predictor algorithm (DPA) that uses the qualitative (nominal) meaning of the 

damage indices instead of the quantitative (numerical) representation. Consequently, the damage index 

values are translated into the corresponding damage description and grouped into 4 damage classes from 

no damage to collapse. 

 



 
 

The main objective of this paper is to present a damage predictor algorithms in the form of decision 

trees for reinforce concrete buildings based on the qualitative meaning of the damage index, considering 

the soil class of the building’s site. The proposed decision trees can be used as the first step of the seismic 

vulnerability assessment for a group of buildings to determine buildings in dangerous condition, for a 

more elaborated investigation. A machine learning procedure is applied to train two algorithms for each 

soil class using multiple nonlinear dynamic analyses performed on SDOF systems with different 

structural properties, using 612 ground motion records. To keep the calculations simple, the damage 

predictor algorithms are calculated as functions of the parameters shown in Eq. (4). 

    

    𝐷𝐼𝐴 = 𝑓(𝑀, 𝑅, 𝑃𝐺𝐴, 𝜇, 𝑇,
𝐹𝑦

𝑊
)                    (4) 

 

M, R, and PGA in this equation are the magnitude, site-to-source distance, and the peak ground 

acceleration at the structure’s site in g, respectively. The symbol µ denotes the global displacement 

ductility of the structure, T is the period of the mode of vibration with the highest modal participation 

factor (normally the first mode), and 
𝐹𝑦

𝑊
 is the normalized yield strength of the structure. The accuracy 

of the damage predicting algorithms are later evaluated using results obtained from the nonlinear 

dynamic analyses done on a 3-D model of a 7-storey building. Finally, it is shown that the algorithms 

identify similar damage levels for reinforce concrete buildings damaged in two earthquake in Athens 

(1999) and in L’Aquila (2009).     

 

2. Damage index for RC frame buildings 

  

2.1. Structural properties of representing SDOF 

 

The damage predictor algorithms in this article are developed for existing RC frame buildings with no 

significant vertical or horizontal irregularities. For this reason, equivalent SDOF systems (Fig. 1) with 

the structural properties shown in Table 1 are used in the non-linear dynamic analyses to calculate the 



 
 

damage indices. The Takeda hysteresis model [28] is used for the numerical analyses that are performed 

with the computer program IDARC [29].  

 

2.2. Ground motion characteristics  

 

The proposed algorithm here is not supposed to take into account near-fault effects such as directivity 

and fling-step effects. Moreover, the number of data of ground motion records with a magnitude bigger 

than 7 is limited in a way that is difficult to properly develop an algorithm in that range. Consequently, 

earthquakes with a magnitude (Ms) between 5 and 6.9 that occurred in Europe since 1970 with a site-to-

source distance between 10 to 100 km are selected from the European Strong-Motion Data [30]. For 

that purpose, 412 ground motion records at various stations, located on rock or stiff soil (Fig. 2), and 

another 200 recorded on soft and very soft soil (Fig.3) are chosen to perform the nonlinear dynamic 

analyses using the structural properties shown in Table 1. 

  

2.3. Calculation of damage indices  

 

Using the structural properties shown in Table 1, Eq. (3) is applied to calculate the damage indices 

through conducting 82 480 nonlinear dynamic analyses using the ground motion records shown in Fig. 

2 for rock and stiff soil class, and other 40 000 analyses using the records shown in Fig. 3 for soft soil 

class. Examples of those damage index values are shown in Table 2. The values of Fy, uy, umon, and EH  

in Eq. (2), are calculated from pushover analysis on the equivalent SDOF systems, as shown in Fig. 1.  

 

2.4. Outlier data in damage index values 

 

According to the basic definition of the damage index in Eq. (3), once the DI exceeds 1.0, the building 

is assumed to be in complete damage state. In other words, values higher than 1.0 would not make sense 

physically, and higher DI values do not indicate heavier collapse. However, for several cases, the 

calculated DI values (examples seen in Table 2) is computed to be much higher than 1.0. Such values 



 
 

would become outliers when a regression analysis is performed to develop the damage spectra, which 

determine the relation among ground motion characteristics and the structural properties with the 

damage state in RC frame buildings. To overcome this problem, the qualitative aspect of the damage 

indices instead of the quantitative meaning is used in this paper. To this end, the relations between the 

damage levels with Park-Ang damage index values, shown in Table 3, are used to translate and group 

the calculated values into damage levels from no damage to collapse.  

 

An observation of the “state of the building” column in Table 3 also indicates that the damage index 

values can be also classified differently from another perspective. Up to a DI value of 0.4, the building 

is considered to be repairable which leads to small economical loss. For DI’s from 0.4 to 1.0, the building 

would be in a “beyond repair” damage state which results in a high economical loss as a consequence 

of the obligation to destroy and replace the building after the earthquake. Having a DI bigger than one 

means that the building is collapsed (economical loss) leading to loss of life. These three classes of 

building damage states are important for insurance purposes and public safety management, and 

therefore are used as a part of the proposed damage predictor algorithms in this paper. 

    

The challenge is to develop a classifier tool that can be trained with the qualitative (nominal) building 

damage state data instead of the quantitative (numerical) values. This is a supervised machine learning 

case in which, by definition, an algorithm (classifier) should be trained through analyzing a set of 

classified examples called instances (e.g., combination of ground motion parameters and structural 

characteristics) as input data to predict the correct class (e.g., the damage state of an RC building) for 

unseen instances. Each variable from the structural characteristics and the ground motion parameters at 

each instance are called the attributes [32]. Considering that our case is developing a decision support 

tool to identify vulnerable buildings, the decision tree concept is used in this paper to propose the damage 

predictor algorithms.  

 

 

 

 



 
 

3. Decision trees  

 

Decision trees are produced by developing algorithms which split a dataset (instances) into branch-like 

segments. These segments form an inverted decision tree that originates with a root node at the top of 

the tree. Example of such a tree, which has 5 nodes and 6 leaves, is shown in Fig. 4.    

 

The example in Fig. 4 shows that the decision tree can consist of both continuous and discrete attributes. 

The relationship between the object of analysis that serves as the target field in the data and those which 

serve as input fields is used to create the decision rule to form the branches or segments underneath the 

root node. Once the relationship is configured, then one or more decision rules can be derived that 

describe the relationships between inputs and targets. Rules can be selected and used to display the 

decision tree, which provides means to visually examine and describe the tree-like network of 

relationships that characterize the input and target values. Decision rules predict, with a certain level of 

accuracy, the values of new or unseen observations that contain values for the inputs, but might not 

contain values for the targets. 

 

3.1. C4.5 algorithm 

 

To generate the decision tree in this paper, the C4.5 learning algorithm [33], also known as a statistical 

classifier, is used. The C4.5 algorithm, builds decision trees from a set of training data using the 

information entropy concept. In general, entropy in information theory is the measure of the uncertainty 

associated with the random variables. As this paper does not intent to go into the details of such 

mathematical concept, the reader is referred to a related reference [34] for more information.  

 

The training data in supervised machine learning is a set S of already classified instances I1, I2, …, In. 

Each Ii consists of a number of attributes A1, A2, ..., Am. The training is augmented with values of C1, C2, 

…, Cn where a certain Ci represents the class to which a certain instance Ii belongs. Table 4, a repetition 



 
 

of Table 2 but with the qualitative damage data, shows a set of 5 instances (I1 to I5) each having 6 

attributes (A1=M, A2=R, etc.).  

 

As seen in Table 4, a damage class (C1=no damage, C2= repairable, C3=beyond repair, and C4=collapse) 

is assigned to each instance based on the numerical value of its damage index. Such instances are used 

to train the decision tree in this paper. At each node of the tree, C4.5 algorithm chooses one attribute of 

the dataset that most effectively divides its set of samples into subsets enriched in one class or the other. 

The dividing efficiency is calculated according to the differences in entropy or the information gain that 

results from choosing an attribute for splitting the dataset. The information entropy for the set S over a 

chosen attribute (over which the split is being performed) is calculated as follows. 

 

𝐸(𝑆) = − ∑ 𝑓𝑠(𝑘)𝑙𝑜𝑔2
𝑧
𝑘=1 𝑓𝑠(𝑘)    (5) 

 

In Eq. (5), z is the number of different values of the chosen attribute and fs(k) is the frequency of that 

attribute’s kith value in the set S. Based on the definition of entropy, an entropy equal to zero indicates a 

perfectly classified set. Consequently, attributes with higher entropies have higher potential to become 

the splitter node to improve the classification. This is measured through the calculation of the gain 

resulted in from a split over an attribute Ai. 

   

𝐺(𝑆, 𝐴𝑖) = 𝐸(𝑆) − ∑ 𝑓𝑠(𝐴𝑖𝑘)𝑙𝑜𝑔2
𝑧
𝑘=1 𝐸(𝑆𝐴𝑖𝑘

)    (6) 

 

In Eq. (6), 𝐴𝑖𝑘 is the kith value of the attribute 𝐴𝑖, 𝑓𝑠(𝐴𝑖𝑘) is the frequency of instances in the set S having 

𝐴𝑖𝑘  as the value for the attribute 𝐴𝑖, and 𝑆𝐴𝑖𝑘
is the subset of S containing all instances, where 𝐴𝑖 is 𝐴𝑖𝑘. 

Finally, the attribute with higher gain is picked as the splitter node to improve the entropy. The data 

mining task to divide the dataset to develop the damage predictor decision tree algorithms is conducted 

using WEKA [35] a free software developed at the University of Waikato, New Zealand for Machine 

Learning.  



 
 

3.2. Decision tree algorithm for damage prediction 

 

To reduce the prediction error in the proposed decision trees, the damage prediction procedure is 

developed as a two-phase algorithm using the relations between the damage index values and damage 

levels in RC buildings, shown in Table 3. In the first phase, a two-class decision tree classifies the status 

of the structure as damaged or no damage. Subsequently, in the second phase, a three-class decision tree 

determines whether the structure classified as damaged in the first phase is repairable, beyond repair, 

or has collapsed. Each pair of the decision trees has been developed for two soil classes: rock/stiff soil 

and soft soil. Fig. 5 demonstrates the steps to follow to use these decision tree algorithm for a regular 

RC building.      

 

3.2.1 Damage or no damage: two-class decision tree algorithm  

 

The distributions of the input attributes according to the damage or no damage outcome for each soil 

class are shown in Figs. 6 and 7. Using WEKA, a decision tree is developed for each soil class. For the 

rock and stiff soil class, the decision tree consists of 807 leaves and 1613 nodes. The decision tree for 

soft soil class, on the other hand, has 262 leaves with 523 nodes. The full two-class decision tree 

algorithm for each soil class can be downloaded from here2.  

 

3.2.2 Extent of damage: three-class decision tree algorithm  

 

The distributions of the input attributes according to repairable, beyond repair, or collapse outcome for 

each soil class are shown in Figs. 8 and 9. Using WEKA, a decision tree is developed for each soil class. 

For the rock and stiff soil class, the decision tree consists of 647 leaves and 1293 nodes. The tree for the 

soft soil class, on the other hand, has 228 leaves and 455 nodes. The full three-class decision tree 

algorithm for each soil class can be downloaded from here1.  

                                                           
2 https://documents.epfl.ch/users/k/ka/karbassi/www/ 

 



 
 

 

4. Discussion of the results 

 

4.1. Performance of the decision tree algorithms 

 

The goal of a decision tree is to have a decision tool to predict future outcomes in the most possible 

precise manner. The performance of the decision tree is, therefore, evaluated according to the instances 

correctly classified for unseen inputs. For example, the performance of a decision tree with two 

outcomes as positive and negative is evaluated according to the ratio of the sum of the true positive and 

true negative outcomes to total outcomes. As shown in Table 5, the performance is usually shown as a 

2-D matrix, known as the confusion matrix. Each class (outcome) has a row and a column in that matrix. 

The rows correspond to the actual outcome while the column corresponds to the classified outcome for 

the class. Elements in the matrix show how well the decision tree has correctly predicted a true outcome. 

A precise decision tool is one with large numbers on the main diagonal and small, ideally zero, off-

diagonal elements.  

 

The tenfold cross-validation technique [32] is used here to evaluate the decision trees. In this technique, 

the dataset is divided into 10 random sections and each time, the tree is trained with 90 percent of the 

data and tested with the remaining 10 percent. The process is done 10 times and the overall error of the 

decision tree is calculated by averaging the error from all of the ten folds. Tables 6 to 9 show the 

confusion matrix for each decision tree developed in the previous section using the tenfold cross 

validation technique.  

 

As seen from the sum of the numbers on the diagonals of Tables 6 and 7, the two-class decision trees 

correctly classify the instances in 95% (rock/stiff soil) and 97% (soft soil) of the cases. For the three-

class algorithms the damage extent is predicted correctly in 75% of the cases for the rock/stiff soil classes 

and 81% for soft soil class (Tables 8 and 9).  

 



 
 

 

4.2 Verification of the decision tree algorithms 

    

4.2.1. Comparison with results from the numerical modelling of a multi-storey RC building 

 

In order to verify the outcomes from the developed decision trees in this paper, the overall damage in a 

seven-storey buildings from the nonlinear dynamic analyses is compared with the predicted damage 

from those algorithms. The seven-storey RC building in Fig. 10 with a total mass of 892 Ton with the 

material properties shown in Table 10 is subjected to the series of ground motion records presented in 

Table 11. The pushover analysis of the building (Fig. 10.b) shows the shorter direction as the weaker 

direction; therefore, the nonlinear time-history analyses are performed in that direction using an Applied 

Element-based software [36].  

 

When the algorithms are used to predict damage for the RC building, an equivalent moment of inertia 

of 0.5Ig is used to calculate the building’s period of vibration, base shear coefficient, and ductility (Table 

12) to incorporate the cracking effect in the concrete [37].  

 

The comparison is shown in Figs 11 and 12. It is important to note that the distance of the points to the 

boundary of each region does not have any relation with the damage level in the building. In other words, 

e.g., a circle point in Fig. 11 at a further distance from the edge of the damage region inside that area 

does not necessarily indicate a higher damage level as a result of that ground motion record.      

 

As seen in Figs. 11, if the nonlinear dynamic analysis results are taken as the benchmark (Fig. 11.a), the 

two-class algorithm miss-classifies the existence of damage for only one case (ground motion rec. 8). 

In this case (Fig. 11.b), a conservative error has happened and the two-class algorithm classifies the 

building as damaged for that record, while the nonlinear dynamic analysis doesn’t show any global 

damage in the building for the same ground motion record.   

  



 
 

The classification of the damage extent in the seven-storey RC building for those ground motion records 

that cause damage in the building (Fig. 11) is shown in Figure 12. It is assumed that yielding in a few 

columns from the nonlinear dynamic analysis is equivalent to repairable damage. Moreover, extensive 

yielding in the columns and the beams of the first floor is taken as “beyond repair” status of damage. 

With such assumptions, it is seen that the three-class algorithm (Figure 12.b) correctly classifies the 

damage extent in all cases.   

 

4.2.2. Earthquake case in Athens  

 

The Ms=5.8 earthquake in Athens Greece happened on September 7, 1999. It was observed that low-to 

mid-rise RC buildings with low ductility experienced the highest damage in the meizoseismal area 

(Table 13) with an epicentral distance between 10 to 20 km [38]. Example of this is the apartment 

building that suffered a major damage during the earthquake resulting the collapse of 60% of the 

structure [39]. The dynamic properties for such a building can be estimated as the values shown in Table 

14 reflecting the absence of ductility provisions and the poor construction quality.   

 

As shown in Table 15, the algorithms developed in this paper predict similar damage to the observed 

damage (collapse) for such buildings located in Nea Filadelfeia that was one of the worst affected 

municipalities.  

 

4.2.3. Earthquake case in L’Aquila  

 

The L'Aquila earthquake occurred in central part of Italy on April 6, 2009. It is reported that about 80% 

of the total collapse of the RC buildings in downtown of L’Aquila (11 out of 16) were in the south-

western part of the city founded on silt [40]. Those are mainly two- to six-storey residential RC buildings 

without seismic design that are classified as C according to the vulnerability class of EMS98 [41]. 

Dynamic properties shown in Table 16 are used to examine the damage prediction from the algorithms 

for that building class in a similar earthquake scenario with ground motion characteristics shown in 



 
 

Table 17. The results of such damage prediction from the algorithms that are also similar to the observed 

damage after the earthquake in 2009 are shown in Table 18. 

 

5. CONCLUSION 

 

This paper presented a qualitative-based damage prediction tool for regular RC buildings using only a 

few earthquake parameters and structural properties: the magnitude, site-to-source distance, the peak 

ground acceleration (g) at the building’s site, the displacement ductility of the structure, the fundamental 

period of vibration, and the normalized yield strength of the structure. A learning algorithm in the form 

of decision trees were trained using results from a large series of nonlinear dynamic analyses using 

ground motions on rock and stiff soil, and on soft soil. The first decision tree determines whether damage 

occurs in the target building or not. Consequently, if the first tree shows damage, the second decision 

tree is used to predict the severity of damage (repairable, beyond repair, or collapse). To verify the 

damage predicting ability of the developed algorithms, structural damage in real earthquake scenarios 

in Greece and in Italy and also from a 3-D numerical model of a 7-storey building were used. It was 

shown that the damage prediction from the algorithms coincided well with the damage observed in all 

of those benchmarks.  

A good application of the developed algorithms in this paper depend on two conditions: (i) that the 

response of the building is controlled by one single mode, and (ii) that an accurate equivalent SDOF be 

developed (from pushover analysis) for the target building. Even if the torsional mode is dominant for 

a building, the first condition can be easily met. The challenge, however, is with the second condition 

which strongly depends on the shape of the loading vector used in the pushover analysis. If, for example, 

a bending load shape (which is normally used for regular buildings) is used to determine the equivalent 

SDOF for such irregular buildings, the algorithms will not provide reliable predictions. The second 

condition for such buildings, however, can be met through using proper loading vector shapes in the 

pushover analysis. 



 
 

From a machine learning point of view, the accuracy of the developed decision trees is related to the 

availability of different training values for each attribute (i.e., M, R, amax, µ, T, 
𝐹𝑦

𝑊
). As seen in Figs. 6 

and 7, the number of instances for the magnitude, site-to-source, and peak ground acceleration attributes 

above 6.2, 60 km, and 0.2 g, respectively, are relatively lower because of fewer data in those ranges. 

Consequently, when the decision trees are used to assess damage for scenarios with a combination of 

the earthquake parameters in those ranges (e.g., M=6.5 at D= 65km with a PGA= 0.3 g), the results 

should be considered with more prudence.  Alternatively, when more data becomes available with time, 

the algorithms can be easily updated and improved. 

Finally, from a design point of view, if the hazard de-aggregation information for a region is available, 

the decision tree algorithms can be used backwards for quick design purposes to determine the required 

ductility and yield strength for the credible earthquake in the region based on the acceptable damage 

level in the building code. The seismic hazard information for the region can be used to relate the 

acceptable level of risk to the peak ground acceleration at the building’s site. 
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Fig. 1. Equivalent SDOF for the RC frame building 

  



 
 

 

 

Fig 2. Distribution of the magnitude and site-to-source distance of ground motion records on rock and 

stiff soil  

  



 
 

 

Fig. 3. Distribution of the magnitude and site-to-source distance of the ground motion records on soft 

soil 

  



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Example of a decision tree 
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Fig. 5. Flowchart to indicate the step by step use of the proposed algorithms 

  



 
 

 

 

 

 

 

Fig. 6. Distribution of the six attributes according to the decision tree’s two outcomes for rock/stiff soil 

class 
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Fig. 7. Distribution of the six attributes according to the decision tree’s two outcomes for soft soil class  
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Fig. 8. Distribution of the six attributes according to the decision tree’s three outcomes for rock/stiff soil 

class  
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Fig. 9. Distribution of the six attributes according to the decision tree’s three outcomes for soft soil class  
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(a)                                                       (b) 

Fig. 10.a. 7-storey RC building used to verify the accuracy of the decision tree algorithms b. pushover 

curves in the longer and shorter directions of the building 

  



 
 

 

 

(a)                                                                        (b) 

Fig. 11. Comparison of damage prediction for the seven-storey RC building as a result of the 

earthquake records in Table 11 from a. nonlinear dynamic analysis (used as the benchmark) and b. the 

two-class algorithm 

  



 
 

 

 

(a)                                                                       (b) 

Fig. 12. Comparison of damage extent prediction for the seven-storey RC building as a result of the 

earthquake records of Table 11 which cause damage in the building (Fig. 11).  a. nonlinear dynamic 

analysis (benchmark) and b. three-class algorithm 

  



 
 

Table 1. Structural properties of the RC frame buildings used to develop the damage predictor 

algorithms 

Period  
𝐹𝑦

𝑊
 Ductility  

0.1-1.0 0.05-0.2 2-6 
 

  



 
 

Table 2. Examples of damage index values for different ground motions and structural parameters  

M R (km.) 𝑎𝑚𝑎𝑥(𝑔) 𝜇 
𝐹𝑦

𝑊
 T DI 

6.5 42 0.3 2 0.1 0.5 0.76 

5.3 18 0.21 3 0.05 0.1 4.23 

5.5 15 0.4 3 0.05 0.1 8.84 

5.6 26 0.1 4 0.15 0.3 0 

5.9 19 0.09 2 0.2 0.2 0.34 

 

  



 
 

Table 3. Relations between damage index and damage levels in RC buildings [31]  

Damage extent Damage index State of building 

Slight < 0.1 no damage  

Minor 0.1-0.25 minor damage 

Moderate 0.25-0.4 repairable 

Severe 0.4-1.0 beyond repair 

Collapse > 1.0 loss of building 

 

  



 
 

Table 4. Classified instances according to the damage extent for the combination of different ground 

motions and structural parameters as input attributes  

instance M R (km.) 𝑎𝑚𝑎𝑥(𝑔) 𝜇 
𝐹𝑦

𝑊
 T damage class 

I1 6.5 42 0.3 2 0.1 0.5 beyond repair 

I2 5.3 18 0.21 3 0.05 0.1 collapse 

I3 5.5 15 0.4 3 0.05 0.1 collapse 

I4 5.6 26 0.1 4 0.15 0.3 no damage 

I5 5.9 19 0.09 2 0.2 0.2 repairable 

 

  



 
 

Table 5. Confusion matrix for a two-class decision tree algorithm 

           Classified as 

Actual 
Class 1 Class 2 

Class 1 

True positive 

(instances correctly classified as 

Class 1) 

False negative  

(instances from Class 1, 

incorrectly labelled as Class 2) 

Class 2 

False positive  

(instances from Class 2, 

incorrectly labelled as Class 1) 

True negative  

(instances that were correctly 

classified as Class 2) 

 

  



 
 

Table 6. Confusion matrix for the 2-class decision tree for rock/stiff soil    

                 Classified as 

Actual 
no damage damaged 

no damage 73% 2% 

damaged 3% 22% 

 

 

  



 
 

Table 7. Confusion matrix for the 2-class decision tree for soft soil    

                 Classified as 

Actual 
no damaged damaged 

no damaged 74% 1% 

damaged 2% 23% 

 

  



 
 

Table 8. Confusion matrix for the 3-class decision tree for rock/stiff soil    

                 Classified as 

Actual 
repairable beyond Repair collapse 

 

repairable 11% 5% 2%  

beyond repair 8% 29% 5%  

Collapse 1% 4% 35%  

 

  



 
 

Table 9. Confusion matrix for the 3-class decision tree for soft soil    

                 Classified as 

Actual 
Repairable Beyond Repair Collapse 

 

repairable 27% 4% 1%  

beyond repair 6% 11% 4%  

Collapse 1% 3% 43%  

 

  



 
 

Table 10. Material properties for the multi-storey frames shown in Fig. 10    

 Concrete Reinforcement Steel 

Modulus of elasticity (GPA) 25 200 

Unconfined compression strength (MPA) 23.5 - 

Yield strength (MPA) - 39 

Tensile strength (MPA) 

Density (kN/m3) 

2.8 

24 

- 

78 

 

  



 
 

Table 11. M-R of the ground motion records used to verify the decision tree algorithms 

record no. Ms R (km.) 𝑎𝑚𝑎𝑥(𝑔) soil class 

1 6.8 24 0.17 stiff  

2 5.8 29 0.16 soft 

3 5.6 21 0.13 stiff 

4 6.1 16 0.25 soft 

5 6.1 28 0.17 soft  

6 6.8 29 0.17 stiff 

7 5.4 22 0.35 stiff 

8 6.5 25 0.35 soft 

9 6.3 20 0.15 stiff 

10 6.8 15 0.36 soft 

11 6.4 13 0.32 soft 

12 6.3 12 0.38 stiff 

13 6.3 10 0.4 soft 

14 6.3 12.5 0.37 soft  

 

  



 
 

Table 12. Structural features of the seven-storey building in the weaker direction 

Tcracked(sec.) Fy/W ductility 

0.73 0.2 6.0 

 

  



 
 

Table 13. Characteristic for ground excitation at Nea Filadelfeia [38] 

Ms R (km.) PGA(g) 

5.8 12 0.27 

 

  



 
 

Table 14. Typical structural features of RC buildings which experienced the highest damage in Athens 

1999 earthquake 

no. of storeys T (sec.) Fy/W ductility 

3-7 0.3-0.4 0.05-0.10 2-3 

 

  



 
 

Table 15. Predicting damage from the algorithms for Athens 1999 earthquake scenario using the inputs 

of Tables 13 and 14 

soil class two-class algorithm three-class algorithm 

rock/stiff damaged collapse 

Soft damaged 
collapse(µ=2) 

beyond repair (µ=3) 

 

  



 
 

Table 16. Typical structural features of RC buildings which experienced the highest damage in L’Aquila 

2009 earthquake 

no. of storeys T (sec.) Fy/W ductility 

2-6 0.3-0.5 0.15 3 

 

  



 
 

Table 17. Characteristic for ground excitation at seismic station AQK [42] 

Ms R (km.) PGA(g) 

6.3 10.5 0.36 

 

  



 
 

Table 18. Damage predictions from the algorithms for L’Aquila 2009 earthquake scenario using the 

inputs of Tables 16 and 17 

soil class two-class algorithm three-class algorithm 

Soft damaged 
collapse(T≤0.4)  

beyond repair (T=0.5) 

 


