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SUMMARY

Compressive sampling (CS) offers bandwidth, power, and memory size reduction compared to conventional
(Nyquist) sampling. These are very attractive features for the design of modern complementary metal-oxide
semiconductor (CMOS) image sensors, cameras, and camera systems. However, very few integrated circuit
(IC) designs based on CS exist because of the missing link between the well-established CS theory on one
side, and the practical aspects/effects related to physical IC design on the other side. This paper focuses on
the application of compressed image acquisition in CMOS image sensor integrated circuit design. A new CS
scheme is proposed, which is suited for hardware implementation in CMOS IC design. All the main physical
non-idealities are explained and carefully modeled. Their influences on the acquired image quality are
analyzed in the general case and quantified for the case of the proposed CS scheme. The presented
methodology can also be used for different CS schemes and as a general guideline in future CS based CMOS
image sensor designs. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modern applications of complementary metal-oxide semiconductor (CMOS) image sensors, cameras,
and camera systems often require battery powered (remote) operation and a large amount of memory
for the image/video storage. Introducing online image compression before image storage is very
important for modern multi-camera systems where the required data bandwidth, power consumption,
and the memory size can each form a severe bottleneck in the system design. This is especially the
case in wireless video sensor networks and ultra-low-power biomedical applications (such as
wireless camera-pills) where high sensor efficiency is required. In order to achieve higher sensor
efficiency, several different methods of image compression on the focal plane have been presented
in literature. Many sensors report traditional compression methods based on discrete cosine
transform (DCT) and discrete wavelet transform (DWT). Although performing DCT and DWT is
mainly reported on very small pixel arrays due to high hardware complexity, a few designs report
successful compression on larger arrays (see [1] and [2]). Using alternate scanning patterns, such as
the Z-curve or Hilbert curve [3], followed by quadtree decomposition results in the compressive
image acquisition schemes presented in [4], [5], and [6]. The work presented in [7] uses a random
scan pattern (chaotic scan) in order to achieve compressive acquisition. These techniques can result
in very efficient compression levels of less than 1 bit per pixel. Finally, the sensors in [8] and [9]
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use address event representation ([10]), in order to discard the redundant video information and only
capture active events. This method is very convenient for machine vision and surveillance applications.

Compressive sampling (CS) intrinsically requires less bandwidth than the traditional (Nyquist)
sampling and directly compresses images during the acquisition. Hence, CS reduces the power
consumption, bandwidth, and the memory requirements. Because of the reduction in the overall
image acquisition cost, CS theory has recently attracted significant attention [11], and the potential
of CS in the integrated circuit (IC) design has been discussed in literature [12]. Being a relatively
new concept and in spite of its expected benefits, CS is still far from the mainstream IC design
practice. This work offers a practical approach to the theoretical features of CS from the perspective
of IC designers. By exhaustive modeling, it explores the influence that physical implementation
effects have on the compressed image acquisition. The presented results offer an insight on the
potential benefits and limitations of compressive sampling.

Several image sensor designs based on CS have been presented in literature. The optical domain CS
imager in [13] suffers from a large camera size and limited resolution. The CS imager in [14] is very
sensitive to mismatch and process variation effects and has limited frame rate because the pixel output
currents are responsible for charging and discharging the column-line parasitic capacitance. The
separable-transform image sensor in [15] allows high readout speed and camera resolution but
suffers from device mismatch effects in the analog-matrix generation as well as high readout noise.
Another separable-transform imager [16] can perform CS; however, it is limited to very small pixel
blocks. The most promising design proposed in [17] implements the first reported single-shot
imaging CS acquisition that is suitable for video applications. The design benefits from CS in terms
of high frame rate and overall power reduction but still consumes relatively high power for some
applications (93–96mW, depending on the frame rate). All the reported designs gain in terms of
power consumption, compression factor (bandwidth reduction) and/or memory usage, but trade
these benefits for relatively poor raw image quality. This is expectable considering that existing CS
algorithms cannot yet support the utilization of CS in high quality imaging applications. However,
techniques such as multiple capture can use high oversampling and different exposure times to
achieve high video quality even with low quality raw images (frames). Moreover, high frame rates
are desirable for the implementation of many novel post-processing video applications such as
motion vector estimation, multiple capture, motion capture, pattern recognition, and so on.
2. COMPRESSIVE SAMPLING

2.1. General methods

Sparse signals can be reconstructed from significantly fewer measurements (coefficients or samples)
than required using Nyquist sampling, which only constrains signals to be band-limited. Although
images are not sparse in their natural (spatial) domain, they are known to be sparse in other
domains. For example, as they mainly contain low-frequency components, the DCT can be used to
represent the images in the DCT domain where they are sparse (the main principle of JPEG
compression). DWT can also be used to represent images in the wavelet domain where the image
sparsity is even higher (JPEG2000). If a signal is represented in a domain where it is sparse
(or mainly ‘consists of’ zero values), the formed concentrated signal can be sampled with incoherent
(spread-out and random) measurements. This process can be understood as a dual case to Nyquist
sampling, where the signal, which is spread-out in a certain domain, is sampled by the measurement
window, which is concentrated in the same domain (e.g., time). Hence, instead of band-limitation,
CS exploits signal sparsity to perform an accurate signal acquisition from a small number of linear
measurements.

Based on the previous discussion, the complete CS model is illustrated in Figure 1 (see also [18]).
An image x∈Rn is represented as a vectorized n� 1 version of a Nrow�Ncol image frame with a total
number of pixels equal to n (n =Nrow�Ncol, where Nrow/col is the number of image rows/columns). An
orthonormal basis (e.g., DCT or DWT)Ψ∈Rn�n is used to transform the image into a domain where it
forms a sparse signal (vector) α, x=Ψα. Incoherent (noisy) linear measurements y are obtained by
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2013)
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Figure 1. Compressive sampling.

COMPRESSIVE IMAGE ACQUISITION IN MODERN CMOS IC DESIGN
applying a random measurement matrix Φ to the original signal x. If the number of required
measurements is equal to m, then y∈Rm and Φ∈Rm�n. Because α is a sparse vector and has a small
number of unknowns, it is possible to reconstruct the signal with a relatively small number of
measurements m≪ n. The ratio between m and n represents the compression rate of the CS, because
the number of samples required by Nyquist image sampling is equal to n (total pixel count).

The CS theory states that the measurement matrix Φ should satisfy the restricted isometry property
(see [18]) in order to perfectly recover a signal from m linear samples. This constraint is fulfilled by
matrices that are randomly generated from a Gaussian distribution or several other random
distributions, such as Bernoulli and Rademacher distributions. In this paper, the Rademacher
distribution is used to generate the measurement matrix. However, the conventional method is
modified, and an improved scheme is used and analyzed instead. The modification improves the
speed of the reconstruction algorithm and allows an efficient hardware implementation, which is
compliant with common CMOS image sensor design techniques. The reconstruction algorithm
benefit is explained in the next subsection. In Section 6, the benefits of the new scheme related to
the hardware implementation are discussed.

The image reconstruction from the acquired measurements requires solving an inverse equation:
x=Φ� 1 � y. Thanks to the sparsity of α, the problem reduces to finding the sparsest α such that
ΦΨα = y. The measure of signal (or vector) sparseness can be mathematically defined by using the l0
or l1 norms in the Ψ domain. Minimizing the norm and performing an iterative algorithm finally
results in finding the correct α. It should be mentioned that using the l0 norm results in a
combinatorial NP-hard optimization problem. Hence, defining the sparseness using the l1 norm is
significantly more effective as it results in a typical linear programming basis pursuit problem.
Still, the CS reconstruction algorithms are complex and require a significant amount of time in order
to converge to the correct solution. The conversion time depends on the specific algorithm,
convergence criterion, image size and content, and the measurement noise intensity. In practice,
the frame reconstruction can last from minutes to hours depending on the mentioned parameters.
As a consequence, image frame reconstruction is performed off-line using any of the currently
existing algorithms.

For images, the sparseness can be alternatively defined by using the total variation (TV), which is
the measure of image gradient. Using TV eliminates the need for the sparsity basis Ψ and solves the
optimization problem by finding the image x directly. Minimizing the image TV also results in the
sparsest solution with the same algorithm complexity (basis pursuit) as minimizing the l1 norm. A
formal link can also be made between the TV and l1 norm, because the TV can be interpreted as the
l1 of the appropriately discretized gradient. In this work, the image x is directly recovered from the
measurements, using TV minimization:

argmin
x∈RN

xk kTV þ λ y�Φxk k22
n o

; (1)

where λ is an empirical regularization parameter and ‖x‖TV is the TV semi norm [19]. Parameter λ
controls image smoothing and must be adapted to the overall image noise. Typically, the values
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2013)
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used in this work are in the range [0.05,0.1]. The iterative reconstruction algorithm is directly defined
by using a set of updating rules from the fast iterative shrinkage-thresholding algorithm (FISTA). The
details of the FISTA implementation and the exact set of updating rules can be found in [20].

2.2. Modified method

In the conventional Rademacher method, the matrix Φ is completely populated with either 1 or �1
(Rademacher distribution). This results in a dense and large matrix Φ with size m� n, where
n =Nrow�Ncol is the total pixel count. In each iteration, the reconstruction algorithm requires matrix
multiplications with Φ and ΦT resulting in the multiplication complexity of the order O(N 4)
(without loss of generality, we can define N=Nrow =Ncol). To reduce the order of the required
multiplication, the modified method applies the same random vector to each image column. This is
illustrated in Figure 2, where the square-board corresponds to a single image frame, which has each
of its pixels multiplied by either + 1 (black square) or �1 (white square). Expressed in mathematical
form, this technique results in the modified matrix Φ:

Φm�n ¼

Ξ 0 0 ⋯ 0

0 Ξ 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ Ξ

2
6664

3
7775;Ξ ¼

ϕ1;1 ϕ1;2 ⋯ ϕ1;N

ϕ2;1 ϕ2;2 ⋯ ϕ2;N

⋮ ⋮ ⋱ ⋮
ϕM;1 ϕM;2 ⋯ ϕM;N

2
66664

3
77775 (2)

where ϕij= ± 1/N and m=M�N. The block-diagonal structure of the new measurement matrix reduces
the multiplications with Φ and ΦT into N multiplications with Ξ and ΞT, which results in the total order
of O(N3). Although the reduction from the order O(N4) to the order O(N3) does not appear significant
when defined mathematically, the actual required program memory and the reconstruction time of the
algorithm are substantially reduced. In practice, the reconstruction time can be reduced from several
hours to only a few minutes using this technique while maintaining the same performance as the
conventional Rademacher method. The benefit of the new scheme improves with the size of the
pixel array, which allows hardware design scalability. Moreover, the column-parallel measurement
technique allows a straightforward hardware implementation and reduces in-pixel hardware and
matrix generation hardware complexity, which is further explained in Section 6.

The simulation results are shown in Figure 3 for the two different conventional methods and the
newly proposed method using the sample image ‘Cameraman’, showing the peak signal-to-noise
ratio (PSNR) values for each. Random selection forms the measurements by randomly multiplying
the pixel values by either 1 or 0 and creating a sum over the entire image. The matrix Φ is therefore
randomly populated with ones and zeros from the Bernoulli distribution, which is very convenient
for hardware implementation. Random convolution forms the random measurements by using a
diagonal random phase matrix and the discrete Fourier matrix (see [21]). As expected, random
convolution (Figure 3(c)) provides the best image quality as it is a more optimal compression model
Figure 2. Modified Rademacher method.
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Figure 3. (a) Original image; (b) random selection: PSNR = 23.6 dB; (c) random convolution: PSNR= 26.3
dB; and (d) proposed scheme: PSNR= 25.2 dB.

COMPRESSIVE IMAGE ACQUISITION IN MODERN CMOS IC DESIGN
than the random selection (Figure 3(b)) and the presented Rademacher method. However, random
convolution is significantly more complex to implement in hardware. It requires randomization of
the phase, and thus the measurement matrix in the form F� 1 �D �F, where D is a diagonal phase
randomization (random) matrix and F is the discrete Fourier matrix. The matrix generation and the
multiplication with the full-frame are hard to obtain in hardware and do not result in a well-scalable
design. The proposed modification of the Rademacher method (Figure 3(d)) provides the same result
in terms of PSNR (25.2 dB) as the conventional Rademacher scheme, which is noticeably higher
than the random selection PSNR (23.6 dB). The reconstructed image of the proposed scheme
(Figure 3(d)) also preserves more details of the scene than the random selection while some details
also appear more clear than in the case of random convolution. Even though the overall noise is low
compared to random selection, for the human eye, a single frame (Figure 3(d)) may appear to be
less smooth. In video applications, this appears as high-frequency low-correlated temporal noise and
is mainly filtered by the low-pass characteristics of the human eye. Moreover, the level of image
smoothing can be controlled by the parameter λ (see expression (1)), in which case it will be traded
versus the detail preservation.

The proposed scheme represents a very good compromise between the possibility of compact
hardware implementation and the final image quality. In the following sections, the details about the
modeling of the physical design effects and the hardware implementation are presented. Physical
modeling is developed for the proposed scheme (Sections 4 and 5), but the methodology and the
majority of the results can be easily reused for any other compressive sampling scheme.
3. THEORETICAL AND MODELING FUNDAMENTALS

The physical design of CMOS image sensors introduces a set of non-idealities that affect the final
performance of the image acquisition. These non-idealities such as gain errors or temporal noise are
well characterized and understood both intuitively and theoretically for the case of Nyquist
sampling. However, compressive sampling represents a completely new acquisition method to
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2013)
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which the effects of non-idealities are not yet well characterized. For some of these effects, such as
pixel offset and pixel temporal noise, a detailed mathematical analysis can be derived independently
of the image content. For other effects, such as pixel gain error or dark current, a-priori knowledge
of the image content is required, and hence, only a statistical estimate can be obtained. In order to
mathematically describe the influence of the pixel-level non-idealities that depend on the image
content, the image signal amplitude is assumed to be normalized and uniformly distributed over the
interval [0,1] (i.e., U(0,1)) in the following analysis. This assumption basically defines an image as a
set of normalized and limited amplitude values, where every amplitude may appear with an equal
probability. The actual nature of the image content is modeled very closely under this assumption.
Furthermore, it allows performing a general analysis and the statistical estimation of the non-ideality
effects, which depend on the image content.

The mathematical solution or statistical estimates are always bound to the specific CS scheme. More
precisely, they are bound to the sparsity basis, the applied reconstruction method, and the probability
distribution from which the measurement matrix is generated. Hence, in this work, the obtained results
are only applied to the example of the proposed scheme (Subsection 2.2). However, the methodology
for obtaining the theoretical results and the described model are applicable for any CS scheme with the
adjustment of the measurements matrix Φ probability distribution. The modeling derivations presented
in this work assume the Rademacher distribution of the measurement matrix and the uniform
distribution of image amplitudes as previously explained. In the developed circuit model, the pixel
array has a size of 256� 256, and the readout follows a column-parallel scheme, which is a common
trend in modern CMOS image sensors. In addition, the proposed modified Rademacher scheme is
used, which performs the CS on each column separately with the same random sequence. The
reconstruction is performed using the FISTA algorithm [20]. All the major non-idealities are
addressed in the following sections. They are separated in two subgroups: pixel-level non-idealities
and readout-level non-idealities.
4. PIXEL-LEVEL NON-IDEALITIES

Pixel-level non-idealities comprise all physical photo-detector and pixel circuit imperfections that
cause deviations from the ideal signal. Intuitively, because they modify the image before the
image compression by CS, they should cause similar effects as in the Nyquist sampling
schemes. Theoretically, as long as they preserve the image sparsity, the image should be
reconstructed correctly. However, careful modeling is required to quantitatively characterize the
effect on image quality.

Every pixel-level non-ideality will cause a certain error in the pixel output. In each pixel, the error is
multiplied by a corresponding random value of the measurement matrix drawn from a certain
distribution. The output error eout can therefore be formed as a product of two random variables
where variable eX is the normalized pixel error and variable W is the random coefficient of the
measurement matrix. Because random variables eX and W are independent, the variance of the
product can be calculated from the following expression:

Var eoutð Þ ¼ E eXð Þ2Var Wð Þ þ E Wð Þ2Var eXð Þ þ Var eXð ÞVar Wð Þ: (3)

Expression (3) provides two important hints for the circuit design phase. In order to minimize the
effect of the pixel-level non-idealities, the mean of the random measurement matrix should
preferably be equal to 0 (E(W) = 0). Hence, the Rademacher distribution provides more
attenuation of the pixel-level errors than, for example, the Bernoulli distribution matrices with
E(W)≠ 0. Furthermore, it is preferable that the mean of the non-ideality error eX is close to 0 as
well. This is further discussed within the context of the pixel offset fixed pattern noise (FPN)
(Subsection 4.3.), where it relates to the minimization of the systematic offset in the
design phase. If E(W) = 0 and the pixel-level non-ideality error has approximately zero mean,
expression (3) reduces to Var (eout)≈Var (eX)Var (W).
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2013)
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In the CS scheme, the measurements are formed as the sum of multiple pixel randomized outputs.
Because the random measurement matrix values are mutually independent, the randomized pixel
outputs can also be considered independent. According to the central limit theorem (CLT), the
measurement error caused by the sum of multiple pixel errors is approximately normally distributed.
Moreover, the variance of the total measurement error is the sum of the individual variances:

Var ey
� � ¼ σ2

e ¼ N�Var eoutð Þ ¼ N�σ2
out: (4)

Substituting expression (3) into (4), the final result can be interpreted as follows: If the random
measurement matrix values are uncorrelated, any pixel-level error in any CS scheme can be
approximately modeled as an output-referred White Gaussian Noise (WGN) of the image
measurements y (ey), with the variance given as

Var ey
� � ¼ N� E eXð Þ2Var Wð Þ þ E Wð Þ2Var eXð Þ þ Var eXð ÞVar Wð Þ

h i
; (5)

and the mean given as

E ey
� � ¼ N�E eXð Þ�E Wð Þ; (6)

where variable eX is the pixel error due to physical non-ideality, variable W is the random coefficient of
the measurement matrix and N is the number of the summed pixel outputs for the single measurement.

In CS schemes, pixel amplitudes are multiplied by random coefficients and summed together to
form signal measurements. This enables amplitudes to be scaled in a similar way as previously
described for errors (noise). If the image is assumed to be uniformly distributed (U(0,1)), and X is
considered to be the image signal, according to the CLT, the image measurements y follow a normal
distribution with the variance:

Var yð Þ ¼ N� E Xð Þ2Var Wð Þ þ E Wð Þ2Var Xð Þ þ Var Xð ÞVar Wð Þ
h i

; (7)

and the mean

E yð Þ ¼ N�E Xð Þ�E Wð Þ: (8)

Hence, assuming E(W) = 0, the measurement amplitudes also scale with a factor
ffiffiffiffi
N

p
as errors do, if

N pixels are combined together. Moreover, most of the amplitudes are in the range of [�3σy, 3σy]

where σy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var yð Þp

. Therefore, 3σy is used as a maximum measurement amplitude (ymax) in the
following analysis for normalizing the output-referred noise (error) relatively to the measurement
amplitude. This is also required considering that the readout circuit has a limited output voltage
range. Choosing [�3σy, 3σy] to cover the full swing at the output is a reasonable design choice.
More detail explanation related to the readout output saturation is covered in Subsection 5.5.

4.1. Dark current

Dark Current is a physical effect typical to all semiconductor photo-detectors. It represents the current
(signal) level observed when the received light is equal to 0, that is, when there is no charge carrier
generation induced by photons. Dark current is caused by multiple physical phenomena such as
diffusion of carriers, carrier generation in the depleting region and carrier tunneling. Even though it
has a complex physical origin, dark current can be simply modeled by setting a fixed boundary to
the minimum detectable signal. More specifically, if the image signal amplitude u satisfies
u<Δidark, then the resulting signal amplitude is u =Δidark, where Δidark is the normalized dark
current with respect to the normalized maximum signal amplitude (equal to 1). If the image is
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2013)
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assumed to be uniformly distributed (U [0,1]), the error caused by dark current can therefore directly be
represented by the following probability density function (PDF):

pdark xð Þ ¼
1� Δ i darkð Þδ xð Þ if x ¼ 0

1 if 0 < x≤Δi dark
0 elsewhere;

8><
>: (9)

where δ(x) is the Dirac delta function. The given PDF is derived from the fact that the dark current error
is uniformly distributed in the range (0,Δidark) and is equal to 0 for all the image signal amplitudes
higher than Δidark (Dirac function).

In the case of the proposed scheme, random measurement coefficients are generated from the
Rademacher distribution (E(W) = 0,Var (W) = 1). The resulting variance of the randomized pixel
output error can be derived using the resulting dark current error PDF (Figure 4 shows the PDF after
multiplication with random coefficients) and expression (3):

Var eoutð Þ ¼ σ2
dark ¼

1
2
Δi2dark þ

1
3
Δi3dark (10)

Because the Rademacher distribution has a mean equal to 0, the mean value of the randomized error
is also equal to 0 (see expression (6) and Figure 4). Moreover, for relatively small values of Δidark, the
output error variance can be considered to be Var eoutð Þ≈1

2 Δi
2
dark. In the case of the proposed scheme,

where N pixels are summed within the column, the resulting measurement error variance is

Var ey
� � ¼ σ2

e ¼
N

2
Δi2dark (11)

with the zero mean and normal distribution. For the Rademacher scheme, using expression (7), and
assuming the uniform distribution of the input image as discussed, the maximum measurement
amplitude is

y ¼ 3σy ¼
ffiffiffi
3

p ffiffiffiffi
N

p
�max xð Þ (12)

where max(x) = 1 is the maximum of the normalized pixel amplitude. The error caused by the dark
current therefore results in the output-referred noise with zero mean and the normalized standard
deviation:

σe

y
¼ Δidarkffiffiffi

6
p : (13)

For the proposed CS scheme, the derived theoretical result (13) of the output-referred noise is shown
in Figure 5 versus the conventional (directly implemented) model of the dark current simulated on a
Figure 4. Dark current error probability density function (PDF).
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COMPRESSIVE IMAGE ACQUISITION IN MODERN CMOS IC DESIGN
sample image ‘Cameraman’. The results are still stochastic thanks to the random nature of the
measurement matrix and are averaged over five independent image frame reconstructions.
The horizontal axis represents Δidark (normalized dark current value), while vertical axis depicts the
resulting image PSNR. The derived theoretical result shows a relatively pessimistic PSNR compared
to the direct dark current model simulation due to relatively low number of ‘dark’ pixels in the
benchmark image (Cameraman). Nevertheless, the theoretical curve is a more reliable option in a
conservative design approach as it depends less on the chosen benchmark image and is closer to the
general case. Nevertheless, both curves show a similar trend. The influence of the dark current
causes a noticeable decrease in image quality only at very high dark current levels (10% of the
maximum signal), which is almost never observed in practice except for some specific applications
such as astronomical imaging, or if high-temperature operation is required. This low sensitivity to
the dark current is an expected result from the perspective that the image quality is initially
relatively low due to compression.
4.2. Dark-signal-non-uniformity

Dark-signal-non-uniformity (DSNU) is the statistical variation of the photo-detector dark current due
to fabrication processing imperfections such as doping variation or impurity atoms in the silicon
lattice. Alike the dark current, DSNU also has to be taken into account when calculating the overall
signal-to-noise ratio (SNR) and the dynamic range of the image sensor. Physically, DSNU depends
on multiple uncorrelated random variables and can therefore be approximately modeled as a random
variation of dark current generated from the Gaussian distribution. The direct modeling of the
DSNU is included in the model developed in this work. However, the isolated influence of the
DSNU on the image quality for the existing CS schemes is negligible, because it is a small variation
of the dark current, which initially has a very low effect on image quality. Hence, there is no
practical benefit in deriving the isolated expressions for output-referred noise caused by DSNU and
presenting the resulting PSNR, which is practically unaffected.
4.3. Offset fixed pattern noise

Offset FPN is the pixel response spatial variation that results in pixel-to-pixel offset in the image frame.
It is caused by device parameter variations due to fabrication imperfections in the pixel circuit (readout
mismatch is discussed separately in the next section). A minor portion of the pixel offset FPN is a
consequence of DSNU, which was already discussed. In the case of conventional active pixels, the
main contributor to the overall offset FPN is the pixel source-follower output buffer. Physically, the
main causes of offset FPN are standard metal-oxide semiconductor device variations such as
variations in doping, oxide thickness, and device dimension variation, which can be considered as
uncorrelated random variables. Because it originates from multiple uncorrelated random processes in
multiple devices, the overall output error can be approximately modeled as a random variation
extracted from the Gaussian distribution (according to CLT). In the pixel design phase, if the pixel
circuit and the fabrication process are known, the offset FPN standard deviation can be estimated
from circuit-level Monte-Carlo simulations. For the proposed scheme, the error caused by offset
FPN is multiplied with the random coefficients from the Rademacher distribution. The variance of
eout can be derived using expression (3):
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. (2013)
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Var eoutð Þ ¼ σ2
offset ¼ μ2

eX
þ σ2

eX
(14)

where μeX and σeX are the pixel offset mean and standard deviation, respectively (both normalized
relatively to the maximum image signal amplitude max(x) = 1 because x∼U(0,1)). Based on
equation (14), it should be noted that the systematic offset μeX has the same effect on the overall
pixel error as the random offset σeX . Because systematic offset can be controlled by appropriate
design practices, in CS schemes it should be minimized during the design phase to reduce the
variation of the pixel output error. This represents a major difference compared to Nyquist sampling,
where the systematic offset can be easily canceled by post-fabrication calibration (if not already
canceled by circuit design techniques). In CS, unless it is minimized or canceled by circuit design
techniques, the systematic offset appears as noise in the image measurements and therefore in the
reconstructed image as well. Hence, no post-fabrication calibration of the systematic offset is
possible in CS.

Summing N pixel outputs to form the CS measurement results in

Var ey
� � ¼ σ2

e ¼ N� μ2
eX
þ σ2

eX

� �
: (15)

If the systematic offset is considered to be minimized (μ2
eX
≈0), and the CS measurement amplitude is

given by (12), the output-referred normalized measurement error standard deviation due to pixel offset
FPN is

σe

y
¼ σeXffiffiffi

3
p : (16)

The influence of offset FPN on the proposed scheme image quality is presented in Figure 6, for a
sample image ‘Cameraman’. The results are averaged over five independent image frame
reconstructions. The x-axis represents the normalized standard deviation of the pixel offset σeX . The
theoretical curve based on (16) and the simulated curve based on direct modeling of the pixel offset
match significantly better than the dark current curves do (Figure 5). This is an expected result
because the overall dark current error depends on the benchmark image content, while the pixel
offset error is scene-independent.

For the sake of comparing various effects, the 2 dB of image PSNR loss is chosen as an acceptable
limit, because in the used examples it does not cause an observable difference to the human eye. A 2 dB
PSNR loss is observed when the offset FPN standard deviation is approximately 5% of the maximum
signal amplitude. In CMOS image sensors, offset FPN is mainly canceled using offset and noise
cancelation techniques such as correlated double sampling (CDS). If CDS is used, the offset FPN is
not a major concern in CS image acquisition. Without offset cancelation techniques, a careful pixel
design is required to minimize the systematic offset and keep the random offset due to device
mismatch below the preferable limit for the targeted image quality.

4.4. Photo-response non-uniformity

Photo-response non-uniformity is another form of FPN (or spatial variation), which manifests itself as
a random pixel gain error due to device mismatch in the fabrication process. PRNU cannot be canceled
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Figure 6. Pixel offset fixed pattern noise (FPN) influence on image peak signal-to-noise ratio (PSNR).
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by using conventional FPN cancelation techniques as for offset FPN. However, it can be reduced by
more complex circuit design techniques. Nevertheless, similarly as offset FPN, it also depends on
multiple independent random variables. Hence, it can approximately be modeled as a random gain
variation with the Gaussian distribution. The normalized gain error of each pixel can be represented
as ΔG

G , if the gain error is represented as ΔG, and the nominal gain value is G. The corresponding
signal error is therefore the product of the normalized signal amplitude and the normalized gain
error ΔG

G . Hence, if the image is considered to be uniformly distributed (U(0,1)), the signal error is
also uniformly distributed over the interval 0; ΔGG

� �
. From the signal error PDF, the randomized pixel

output signal error variance can be calculated using (3):

Var eoutð Þ ¼ μ2
eX
þ σ2

eX
¼

ΔG
G

� �2

4
þ

ΔG
G

� �2

3
¼ 7

12
ΔG
G

	 
2

: (17)

Summing N pixel outputs to form the CS measurement results in

Var ey
� � ¼ ∑

N

i¼1
Var eout;i

� � ¼ 7
12

∑
N

i¼1

ΔGi

G

	 
2

; (18)

where eout,i and
ΔGi
G are the randomized output error and the normalized gain error of pixel i,

respectively. Assuming that the gain error has zero mean, the expected variance is

E Var ey
� �� � ¼ 7

12
∑
N

i¼1
E

ΔGi

G

	 
2
" #

¼ 7
12

�N�σ2
g; (19)

where σg is the normalized gain error standard deviation. Using (12), the normalized measurement
error standard deviation is expressed as

σe

y
¼

ffiffiffi
7

p

6
σg: (20)

As mentioned for the offset FPN standard deviationσeX, the gain error standard deviation σg can also
be extracted from Monte-Carlo circuit-level simulations during the design phase.

The simulated effect of PRNU on the proposed scheme’s image quality is presented in Figure 7. The
x-axis represents the normalized gain error standard deviation σg. The theoretical curve is based on (20),
while the simulations are performed by modeling the gain error directly from the Gaussian
distribution and including it into the system model. Similar as for dark current, because of the
simulation result dependence on the benchmark image, the results of direct PRNU simulation
show slightly higher PSNR. Nevertheless, for both curves, the PSNR loss of 2 dB is observed
when the PRNU standard deviation is approximately 10%. This value can be considered as a
relatively large gain error margin, which is the result of reduced constraints on image quality.
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Figure 7. Photo-response non-uniformity (PRNU) influence on image peak signal-to-noise ratio (PSNR).
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However, because pixel gain error calibration (or cancelation) would be very difficult in systems
using CS, PRNU must be estimated and precisely limited during the sensor design phase.
4.5. Pixel-response nonlinearity

Pixel-response nonlinearity is a fixed characteristic of the pixel, as pixel response is never perfectly
linear. A nonlinear response is desirable in many applications (e.g., high dynamic range). If the
pixel topology is known, the pixel-response nonlinearity can be modeled by fitting the circuit-level
response curve to the specific polynomial function. Because the nonlinearity of the pixel response
preserves image sparsity, even highly distorted images can be correctly reconstructed.
Therefore, after the CS reconstruction, the image is mapped to the initial nonlinear image without
any error directly caused by pixel nonlinearity. If compared to the ideal (completely linear) pixel
response, the effect of the pixel error due to pixel response nonlinearity could be modeled as output-
referred WGN by using a similar analysis as for PRNU. However, because the initial image
would be nonlinear itself, calculating this error would not be meaningful from the perspective of the
circuit design.

The effect of pixel response nonlinearity is illustrated in Figure 8 where two highly distorted images
are reconstructed while the nonlinearity is modeled as y = (eKx� 1)/(eK� 1) with x being the
normalized pixel intensity value within the range (0,1] and parameter K defining the exponential
slope (for K = {+5,� 5}). The effect that the pixel response nonlinearity has on the CS reconstructed
images is the same as the effect it has on the original image, or the image signal sampled by
Nyquist sampling.
4.6. Pixel temporal noise

Pixel temporal noise is a random time-dependent variation of the pixel response. It is caused by the
combination of multiple physical phenomena observed in all integrated circuits such as thermal
noise, electron-shot noise, and flicker noise. The overall pixel temporal noise power depends on the
type and the geometry of the photo-detector, the overall pixel topology, and the fabrication process
parameters. The temporal noise can be approximately modeled as white Gaussian noise with zero
mean, assuming that the sources of noise are independent from pixel to pixel on a single image
frame. For the proposed scheme, the pixel output error caused by the temporal noise is multiplied
with the coefficients from the Rademacher distribution and therefore using (3)

Var eoutð Þ ¼ σ2
temp ¼ σ2

eX
; (21)

whereσeX is the normalized pixel temporal noise standard deviation. Using (5) and (12), the normalized
measurement error standard deviation due to pixel temporal noise can be expressed as
(a) (b)

Figure 8. Reconstruction of distorted (nonlinear) images: (a) K = 5 and (b) K = –5.
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σe

y
¼ σeXffiffiffi

3
p : (22)

The effect of temporal noise on the image quality for the proposed scheme is shown in Figure 9,
where the x-axis represents the normalized temporal noise standard deviation. As for offset FPN,
because the temporal noise does not depend on the benchmark image, the simulated and the
theoretical curve match very well. The PSNR loss of 2 dB is observed when the temporal noise
standard deviation is approximately 6% of the maximum signal amplitude. CMOS active pixel
sensors (APS) typically achieve a dynamic range of more than 60 dB and can easily achieve an SNR
of 40 dB, and thus comfortably fulfill the mentioned requirement. However, as for Nyquist
sampling, the pixel temporal noise is a pixel non-ideality that requires the highest attention.
Performing CDS can reduce flicker noise and eliminate reset noise which is common for standard
APS. However, as for PRNU, the residual of the temporal noise has to be estimated and precisely
limited during the sensor design phase.
5. READOUT-LEVEL NON-IDEALITIES

In CS schemes, the readout circuit is responsible for forming the image measurements y (Figure 1). If
the multiplication with the measurement matrix Φ is performed within the pixel circuit, the readout
circuit should only form the sum of the pixel outputs. It is also possible to form the measurement
matrix multiplication within the readout circuit [17]. Irrespective of the selected case, any error
caused by any physical non-ideality in the readout circuit, directly causes an error in the image
measurements. Consequently, these non-idealities can be easily understood, controlled, and modeled
by directly referring them to the output. Hence, in this section, only the results based on direct
modeling will be presented, because all the error effects are already output-referred. Nevertheless,
because they cause errors in the image measurements and not in the actual image signal, they cannot
be added to the pixel-level effects simply using superposition. This is especially important for
effects such as readout nonlinearity and readout output saturation. In Nyquist sampling schemes, the
readout nonlinearity would distort the image signal directly, which can be tolerated by the human
eye and in the general case is not a major concern. Moreover, saturation of the readout circuit output
only sets the upper limit of the detectable signal and therefore defines the brightest possible signal
that can be detected. In CS schemes, both of these effects cause errors in the image measurements
that reduce the accuracy of the actual image reconstruction. Hence, they reduce the image quality
independently of the actual image content. All the readout circuit non-ideality effects and their
consequences on the circuit design considerations are discussed in more detail in the following
subsections.

5.1. Offset column-fixed pattern noise

Offset column-FPN appears in the column-parallel readout due to fabrication mismatch of the devices
from the different columns. For Nyquist sampling, column-FPN introduces random variation in the
form of vertical stripes, which are very uncomfortable to the human eye. In CS schemes, column-
FPN causes an error in the measurement values and depending on the scheme does not necessarily
result in the vertical (nor horizontal) stripes. However, it causes high image noise and has to be
handled properly. It is modeled as a random variation of the readout output with a Gaussian
0 0.05 0.1 0.15 0.2
16

18

20

22

24

26

Normalized Standard Deviation

Im
ag

e 
P

S
N

R
 [d

B
]

Theory
Simulation

Figure 9. Pixel temporal noise influence on image peak signal-to-noise ratio (PSNR).
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distribution. The relation between the reconstructed image PSNR and the offset column-FPN for the
proposed scheme is presented in Figure 10. The standard deviation is normalized to the maximum
measurement amplitude (3σy). The PSNR drop introduced by this non-ideality is higher than any
other physical effect discussed to this point. More than 2 dB drop is observed for column-FPN
standard deviation at 3% of the maximum signal amplitude. As already mentioned, post-fabrication
calibration would not be feasible in most CS schemes, so offset column-FPN has to be carefully
addressed in the design phase. If satisfying column-to-column device matching is not achievable,
offset cancelation techniques such as delta double sampling or CDS must be implemented.
5.2. Gain error column-fixed pattern noise

Gain error column-FPN occurs if the column-parallel readout circuits perform amplification of the
signal. It is also caused by fabrication mismatch between the devices of different columns, causing
discrepancies in the applied gain. Similarly to PRNU, it can be modeled as a random gain variation
with a Gaussian distribution and cannot be canceled using conventional FPN cancelation techniques.
If the circuit topology and the fabrication process are known, as for any other kind of FPN including
PRNU, the standard deviation can be extracted from circuit-level Monte-Carlo simulations. The
effect of gain error column-FPN on the reconstructed image quality for the proposed scheme is
shown in Figure 11. The PSNR drop of 2 dB is observed for a normalized gain error standard
deviation of approximately 5%, which is generally not difficult to achieve in CMOS. However, alike
PRNU, gain error column-FPN must be carefully estimated and limited during the sensor design phase.
5.3. Readout nonlinearity

Readout nonlinearity has a very different effect on image acquisition using CS than the nonlinearity of
the pixel response. It is also different compared to the Nyquist sampling where the nonlinearity of the
readout directly introduces distortion of the image signal. The direct image signal nonlinearity is not a
concern for the majority of applications. In Nyquist sampling schemes, the readout is often nonlinear.
Moreover, a common design practice in image sensor analog-to-digital converter (ADC) design is to
consider and characterize SNR as a relevant parameter without considering distortion. For general-
purpose ADCs, signal-to-noise and distortion ratio (SNDR) is crucial parameter as it includes the
ADC nonlinearity and defines the effective number of conversion bits (ADC resolution). In CS
schemes, however, the nonlinearity of the readout introduces distortion of the measurements
that essentially causes measurement errors. Errors in measurements reduce the accuracy of the
image reconstruction. They finally appear as noise in the reconstructed image, hence reducing
the image quality. Stated otherwise, CS transforms readout nonlinearity into random noise after the
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Figure 10. Offset column-fixed pattern noise (FPN) influence on image peak signal-to-noise ratio (PSNR).
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Figure 11. Gain error fixed pattern noise (FPN) influence on image peak signal-to-noise ratio (PSNR).
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image reconstruction. Figure 12 presents the effect of the nonlinearity modeled as the exponential
equation: y= (eKx� 1)/(eK� 1) for the values of the parameter K between �1 and 1, which
corresponds to the relative measurement error of K/10 (e.g. K= 1 provides a relative error of 10%).
The nonlinear function is applied to the measurements normalized (scaled) to the range of [0,1]. The
drop of 2 dB in image PSNR is observed for K≈ 0.1, which approximately corresponds to 1% of
relative error. In practice, this directly relates to the total harmonic distortion of the column-parallel
readout and SNDR of the ADCs. In the case of the proposed CS scheme, if less than 2 dB of PSNR
loss is required, the SNDR of the column-parallel ADC should be higher than 40 dB. Hence, there is
a design constraint on the minimum SNDR of the ADC. It should be noted, however, that the
required level of linearity to preserve acceptable image quality is easily achievable in CMOS design.
Nevertheless, considering the nonlinearity of the readout, a fundamental difference exists compared
to Nyquist sampling, which requires careful design consideration.
5.4. Readout temporal noise

Readout temporal noise is mainly caused by thermal and flicker noise in the readout circuit.
Nevertheless the signal cross-talk, substrate coupling, power supply noise, electromagnetic
interference, and several other sources also contribute to the overall temporal noise. Because all
these sources can be considered as independent and uncorrelated, for estimating the image quality,
the readout temporal noise can be modeled as WGN added to the image measurements.

The effect of the readout temporal noise on the reconstructed image quality for the proposed scheme
is presented in Figure 13. The temporal noise standard deviation is normalized versus the maximum
image measurement amplitude (3σy). Compared to the other physical non-idealities, readout
temporal noise has the highest impact on image quality reduction. In a single frame, the effect is
quantitatively very similar to the effect of the readout offset FPN. Nevertheless, the temporal noise
is significantly harder to reduce by using circuit design cancelation techniques than the offset FPN.
Some components such as reset noise (in APS) and flicker noise can be reduced by CDS. However,
all the other components of the temporal noise remain unchanged. Therefore, readout temporal noise
is the most important concern for designing image acquisition with CS schemes. This, however,
does not represent a major difference from the Nyquist sampling, where the readout temporal noise
is also considered as a fundamental factor limiting the achievable image quality.
5.5. Readout output voltage range

Readout output voltage range is fundamentally limited by the readout circuit supply voltage.
Moreover, because the linearity of the readout is important in CS schemes, the output swing limit is
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Figure 12. Readout nonlinearity versus image peak signal-to-noise ratio (PSNR).
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Figure 13. Readout temporal noise versus image peak signal-to-noise ratio (PSNR).
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usually reduced below the power supply limit. The image measurements, which represent the output of
the readout, are typically formed as sums of the outputs originating from a large number of pixels.
Conveniently, if these outputs are multiplied with a measurement matrix with zero mean (such as
the Rademacher distribution), the final output amplitude has zero mean as well, scales with

ffiffiffiffi
N

p
and

has a stochastic nature. The differential output range of [�3σy, 3σy], where σy is the amplitude
standard deviation (equation (12)), is sufficient for accurate image reconstruction. If the readout
circuit temporal noise is relatively high, a further increase of the measurement amplitude can be
considered. The results obtained from the readout circuit saturation modeling and simulation are
presented in Figure 14. If the measurement amplitude is increased such that the available output
range only covers the range of [�2σy, 2σy], the drop in the image quality is still acceptable and
below the empirical 2 dB limit. However, a very steep roll-off in image PSNR is observed after
the amplitude is limited by output saturation to 2σy. Hence, the maximum measurement
amplitude can be increased to some extent, in the case of high readout noise. Nevertheless, the
trade-off should be carefully weighted to avoid a high image quality reduction due to saturation
in the region below 2σy. The distribution of image measurement amplitudes for an actual
benchmark image (Cameraman) is shown in Figure 15. The theoretical measurement amplitude
PDF is shown as well, if the image amplitude is considered to be uniformly distributed. The
majority of image measurement amplitudes are in the range of [�3σy, 3σy], and thus the output
saturation at this level does not cause a significant measurement error. If the range approaches
[�2σy, 2σy], many amplitudes will be saturated and be subjected to an error. The image quality
will consequently decrease.
5.6. Quantization

Quantization is last in the chain of the design non-idealities. For the CS schemes, it can be modeled by
restricting the measurement values to the predefined quantization levels. The number of quantization
levels depends on the number of bits in the ADCs. The effect of quantization on the proposed
scheme image PSNR is presented in Figure 16. For an image quality above 23 dB, approximately
six conversion bits are sufficient. This result is closely related to the error caused by the readout
nonlinearity. For a similar image quality, 40 dB of SNDR was needed, which in turn requires an
ADC of ENOB≈ 6.37.
5.7. Compression ratio

Compression ratio is a controlled parameter that determines how many CS measurements are taken per
image frame compared to the total number of pixels. Even though formally it is not a non-ideality, the
compression ratio defines the loss of information in the CS scheme and therefore influences the
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Figure 14. Saturation versus image peak signal-to-noise ratio (PSNR).
Figure 15. Histogram of measurement amplitudes.
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reconstructed image quality. The image PSNR dependence to the compression ratio (factor) for the
proposed scheme is shown in Figure 17. Combined with the number of quantization bits, the
compression ratio defines the compression level and the memory and/or bandwidth requirements for
the specific compression scheme. For example, a compression ratio of 0.25 with 6-bit measurement
quantization (Figure 16) results in compression level of 1.5 bit per pixel. This directly defines the
memory size required to store the image frame. Depending on the required frame rate, the required
image transmission bandwidth can also be defined accordingly.
6. DISCUSSION

The general architecture of the CS acquisition system can be represented by the diagram in Figure 18
based on the CS scheme proposed in Section 2.2 and the analysis presented in Sections 4 and 5. The
presented CS architecture has several benefits compared to conventional CS CMOS image sensor
design approaches. As explained in Section 2, it transforms the measurement matrix into the block-
diagonal structure, which increases the speed of the image reconstruction. Furthermore, the
measurement matrix generation hardware can be placed outside the physical area of the pixel array.
This effectively reduces the pixel size compared to the methods where the measurement matrix is
generated directly on the focal plane using additional in-pixel hardware. Moreover, only horizontal
metal lines are required to route the random matrix coefficients toward the pixels, which further
reduces the effective pixel size compared to other methods. Using the same random coefficient (bit)
for the full image row (Figure 18) results in the same spatial random vector in every image column.
As shown in Section 2, this technique provides a similar image quality as in the case where the full
image array is random (Figures 2 and 3). Consequently, a completely new measurement matrix can
be generated in only a single clock cycle of the random sequence generators (Figure 18).
Hence, single-shot (or single clock) image measurement is achievable, which allows very high frame
rates. The random sequences can easily be generated by linear feedback shift registers (LFSRs), in a
way that a completely new measurement matrix is formed in every LFSR clock cycle. An example
of the complete circuit that implements the proposed scheme to obtain high frame-rate operation is
given in [22].

A general comparison of the proposed scheme with other compression schemes that can be
implemented on the focal plane is shown in Table I. The proposed scheme shows comparable image
quality to conventional CS schemes and schemes based on custom scan patterns (for a comparable
compression level), while providing a more scalable and compact hardware implementation. The
schemes based on DCT/DWT and address event representation can provide better image quality and
higher compression ratios but typically suffer from higher hardware complexity and lower scalability.
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Figure 17. Image peak signal-to-noise ratio (PSNR) versus compression factor.
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Figure 18. Top level view.

Table I. Comparison with related work.

Typical Compression Hardware Hardware Image
PSNR [dB] Level [BPP] Complexity Scalability Reconstruction

DCT/DWT [1] [2] 20–50 0.5–6 High Poor Real-time
Custom scans [4] [5] [6] 20–35 0.5–1 Medium Medium Off-line
AER [8] [9] 40–50 N/Aa High Medium Real-time
Traditional CS [17] 20–35 0.5–2 High Poor Off-line
Proposed scheme 20–25 0.375–1.5 Low High Off-line

aAER compression depends on active events in the scene.
BPP = bit-per-pixel; DCT= discrete cosine transform; DWT= discrete wavelet transform; PSNR= peak signal-to-
noise ratio.

N. KATIC ET AL.
The physical non-ideality modeling methodology and guidelines presented in this work can easily
be adapted for any CS scheme. Depending on the measurement matrix probability distribution, the
results may slightly differ in the final error mean and variance values, because the random matrix
mean and variance may be different. Nevertheless, the general approach does not differ. Even if the
image measurements are not performed over columns, but rather on a full pixel array, the only
difference would be the number of pixels that are combined to form the image measurement.
However, a special care is required in that case, because there is a fundamental limitation to the
actual number of pixels that can be summed together to form the image measurement. This
limitation is caused by the limited output swing of the readout circuit. As shown in Section 5, the
amplitude of the image measurements increases proportionally to the

ffiffiffiffi
N

p
, where N is the number of

combined pixels (equation (12)). Hence, increasing N increases σy. The same
ffiffiffiffi
N

p
proportionality is

valid for the circuit noise and for all the other pixel non-ideality errors (as shown in Section 4).
However, the maximum measurement amplitude is limited by the available readout circuit output
swing and the fact that it cannot be lower than 2σy (Figure 14). If σy raises to a level such that the
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output swing limit of 2σy is reached, the effective signal amplitude originating from every pixel must
be deceased to allow any further increase of N. On the other hand, pixel noise floor is a fixed pixel
performance metric, thus the decrease in pixel signal amplitude results in decreasing the pixel SNR,
hence decreasing the image quality. Therefore, for larger pixel arrays, combining pixel columns
instead of full array in order to form image measurements represents a very reasonable design
choice. This can be considered as a side-benefit of the proposed scheme. It should be noted that
instead of decreasing the pixel amplitude, a large number of pixels can be combined by time-
multiplexing the pixel charge transfers, using switch capacitor circuits. However, time-multiplexing
would simply trade the image quality versus the achievable frame rate. Moreover, single-shot
(or single cycle) measurements are not feasible if the time-multiplexing of charge transfer is performed.
7. CONCLUSION

A novel compressive sampling acquisition scheme convenient for hardware implementation in CMOS
image sensor is presented in this work. The scheme uses an identical random vector for every pixel
column, which reduces the required metal lines within the pixel array, thereby reducing the effective
pixel size. Moreover, it enables simple and efficient measurement matrix generation outside of the
pixel array physical area. The full matrix can be generated in a single clock cycle, which enables
high frame rate operation.

The CS theoretical concepts and modeling fundamentals are presented, which can be used for any
CS image acquisition scheme design. On the example of the proposed scheme, the most important
physical non-idealities related to IC design are modeled and analyzed. All the modeling steps are
presented in detail; hence, the proposed methodology can be used during the system design phase of
any other compressive sensing scheme. All the physical IC design effects are characterized and
discussed in the context of circuit design constraints. The final results are useful for the future
design practice in CS image acquisition.

The final results show that the proposed or similar CS schemes can be used for applications where
relatively low image quality is acceptable. Many of the design constraints are relaxed because of the
image quality reduction, but the further performance benefit can be obtained in terms of circuit
power consumption, frame rate, and memory usage. For higher video quality, additional signal
quantization levels can be extracted from the temporal domain as a benefit of high oversampling.
Moreover, in video applications, image quality can be improved using smart reconstruction
algorithms that exploit the temporal sparsity. Potentially, these algorithms, which are under
development [23] [24], offer an additional degree of compression and therefore higher performance
of CS in video acquisition.
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