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Abstract— Numerous Directed-Acyclic Graph (DAG) sched-
ulers have been developed to improve the energy efficiency of var-
ious multi-core systems. However, the DAG monitoring modules
proposed by these schedulers make a priori assumptions about the
workload and relationship between the task dependencies. Thus,
schedulers are limited to work on a limited subset of DAG models.
To address this problem, we propose a unified online DAG mon-
itoring solution independent from the connected scheduler and
able to handle all possible DAG models. Our novel low-complexity
solution processes online the DAG of the application and provides
relevant information about each task that can be used by any
scheduler connected to it. Using H.264/AVC video decoding as
an illustrative application and multiple configurations of complex
synthetic DAGs, we demonstrate that our solution connected to an
external simple energy-efficient scheduler is able to achieve signif-
icant improvements in energy-efficiency and deadline miss rates
compared to existing approaches.

I. INTRODUCTION

Emerging real-time video processing applications such as
video data mining, video search, and streaming multimedia
(e.g., H.264 video streaming [17]) have stringent delay con-
straints, complex Directed Acyclic Graph (DAG) dependencies
among tasks, time-varying and stochastic workloads, and are
highly demanding in terms of parallel data computation. Mul-
timedia applications are in general modeled with DAGs where
each node denotes a task, each edge from node j to node k indi-
cates that task k depends on task j and each group of tasks has
a common deadline di. As illustrated in Fig. 1, DAG models
for applications with dependent tasks can be roughly classified
into 4 types depending on the relationship between the task de-
pendencies and task deadlines.

We define a DAG monitoring solution as the module used to
process and analyze these DAGs before scheduling the tasks.
This module is different from the scheduler and it is respon-
sible for finding parallelization opportunities, tracking the exe-
cution of the DAG and providing relevant information to a con-
nected external scheduler. Numerous offline [15][16] and on-
line [6][7][8] DAG monitoring solutions have been proposed to
assist schedulers for multimedia applications. However, these
solutions are usually closely related to their connected sched-
ulers, and their output cannot be directly exploited by other
schedulers. Thus, the problem of finding a generic online DAG
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monitoring solution to assist online energy-efficient schedulers,
making the DAG processing problem independent from the
connected scheduler, is becoming increasingly important.

Moreover, we also contend that none of these existing online
DAG monitoring solutions have considered the general DAG
model in which a task’s children can have different deadlines
(e.g., model 4 in Fig. 1). We present an example of this prob-
lem in the remainder of this paragraph. Fig. 2 illustrates an ex-
ample of two different DAGs modeling the same H.264 video
decoder application. The DAG of Fig. 2a preserves the orig-
inal dependencies between I, P and B frames, where I-frames
are compressed independently of the other frames, P-frames
are predicted from previous frames, and B-frames are predicted
from previous and future frames [1]. Each frame is composed
of three type of tasks, namely, initialization (e.g., I1), slice de-
coding (e.g., S2, S3 and S4) and the deblocking filter (e.g., F5).
In the example shown in Fig. 2 with 4 frames (I-B-P-B), there
are 2 deadlines corresponding to the display deadlines of the
two B frames. These deadlines are imposed by the frame rate
and the underlying dependency structure. In fact, if frame k de-
pends on frame k + l (with l > 0), then both frames will have
their deadlines set to the minimum one, i.e., k/30 seconds. Fi-
nally, in this DAG model, a task’s children may have different
deadlines (e.g., F5 → (I6, I16)). Existing online DAG mon-
itoring approaches (cf. Section II) are not able to handle the
additional dependencies between the tasks with different dead-
lines. Instead, they are forced to convert the original DAG to
the fork-join DAG model as presented in Fig. 2b where critical
edges (i.e., edges linking 2 tasks with different deadlines) are
removed and replaced by a single join edge that links the last
task with deadline di to the first task with deadline di+1. Al-
though the fork-join model (which is defined as a sequence of
sequential and parallel segments [2]) preserves the dependency
coherency between tasks, it restricts the scheduler to operate on
tasks belonging to one deadline at a time (i.e., the earliest dead-
line). Hence, several parallelization opportunities are missed
(e.g., frame B with a deadline di and frame P with a deadline
di+1 can be decoded in parallel, once frame I is decoded).

To summarize, each existing scheduler implements its own
DAG monitoring solution with several restrictions on the DAG
model. Moreover, none of the existing solutions are able to
handle the general DAG illustrated with model 4 in Fig. 1,
which allows a task’s children to have different deadlines.

In this paper, we propose a novel unified DAG monitoring
solution, which we call DAG Flow Manager (DFM). The key
contributions of this work are as follows:
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Fig. 2. H.264 decoder DAG model [1]

• A low-complexity online DAG monitoring solution that is
fully independent of the scheduler that it is connected to it.
• Our DFM does not impose any restrictions on the DAG

(e.g., restrictions on deadline dependencies as in the fork-join
model). Our DFM covers online all DAG models (Fig. 1).
• Our DFM provides detailed information about the execu-

tion status of tasks and deadlines within a look-ahead window,
allowing simple connected schedulers to have optimal control
of the core assignment and DVFS selection of each task.

Our results for the H.264 video decoder and different con-
figurations of synthetic DAGs demonstrate that our proposed
DFM allows a connected online scheduler based on [9] to reach
over 50% reduction in energy consumption and over 80% re-
duction in deadline miss rates compared to existing DAG mon-
itoring solutions [7][8] connected to the same scheduler.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the limitations of current offline and online
DAG monitoring approaches. In Section A, we introduce the
system and application model. In Sections B, C, D and E, we
describe our online DFM algorithm in detail. In Section IV,
we present our experimental results. Finally, we summarize
the main conclusions in Section V.

II. RELATED WORK

In Table I, we summarize different application models con-
sidered by existing DAG analyzers and we compare them to the
DAG modeled by our solution.

Existing static approaches [15][16] model the application as
a DAG with periodic dependent tasks as shown in Fig. 1 (model
1). They propose a coarse-grained task-level software pipelin-
ing algorithm to transform periodic dependent tasks into a set
of independent tasks based on a retiming technique. However,
these approaches are unsuitable for multimedia applications
with dynamic DAGs. In fact, the assumption of a periodic DAG

limits the applicability of static approaches because highly op-
timized modern and emerging video coders do not always have
periodic task-graphs (e.g., they may use adaptive group of pic-
tures structures). Hence, applying techniques such as pipelin-
ing is not possible, especially for applications that do not adopt
a fixed task-graph structure but instead adapt their task-graphs
on the fly (e.g., stream mining applications [18]). Moreover,
for H.264 video decoding, such pipelining techniques require
buffering delays that are proportional to the Group of Pictures
(GOP) size, which may be large. Finally, static approaches rely
on worst-case execution time estimates to generate the sched-
ulers input. These approaches are efficient if the workload and
the starting time of each task is fixed and known. However, they
are unsuitable for multimedia applications with dynamic work-
loads because modeling a non-deterministic workload with its
worst-case execution time leads a connected scheduler to create
significant slack time and utilize resource inefficiently.

Few online DAG monitoring solutions [6][7][8] have been
recently proposed for scheduling problems. In [6][7][8], they
consider periodic tasks where each task is represented as an in-
dependent DAG with a single deadline (i.e., a task is modeled
as a group of jobs or threads having the same deadline similar
to models 1-2 of Fig. 1). Therefore, in this approach, monitor-
ing n deadlines simultaneously requires n independent DAGs.
Then, each DAG (i.e., each deadline) is decomposed into seg-
ments in order to identify future parallelization opportunities.
Therefore, if we consider the general case of DAG of applica-
tions with dependent deadlines illustrated with model 4 of Fig.
1 and Fig. 2a where a job’s children may have different dead-
lines, the solutions presented in [7][8] are then forced to con-
vert these DAGs into the fork-join model (e.g., model 3 of Fig.
1 and Fig. 2b). Although the fork-join model preserves the de-
pendencies between tasks, it restricts schedulers to scheduling
tasks belonging to only one deadline at a time. Hence, several
parallelization opportunities are missed (e.g., Fig. 2: frames
B and P with deadline di and di+1 respectively). The solu-

TABLE I
COMPARISON OF EXISTING DAG MONITORING APPROACHES TO OUR

DFM: APPLICATION MODEL AND ANALYSIS TYPE

DAG-monitoring type of type of analysis
solution deadlines DAG
[15, 16] independent periodic offline
[6, 7, 8] independent periodic online

[13] dependent H.264 online
Our solution dependent general online
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tions in [10][9] also suffer from the same limitation. Only one
existing solution accounts for dependencies among tasks with
different deadlines [13], however, it is restricted to the H.264
DAG model.

III. ONLINE DAG FLOW MANAGER (DFM)

A. System Model

We model our target computationally intensive application
as a DAG G =< N , E > of dependent tasks tj with non-
deterministic workload wj and coarse-grained deadlines. N is
the node set containing all the tasks. E is the edge set, which
models the dependencies between the tasks. Each node in the
DAG denotes a task tj . ekj denotes that an edge is pointing
from tj to tk indicating that task k depends on task j. Each
task tj is characterized with its index j and a deadline di (i is
the deadline index). Each deadline can be assigned to a subset
of tasks. Our model covers all general DAG models (e.g., Fig.
1) including the general case where a task’s children may have
different deadlines than the task itself and its other children
(e.g., model 4 of Fig. 1). Finally, we assume that our target
multicore platform has M cores with DVFS capability to trade
off energy consumption and delay. Each processor can operate
at a different frequency fi ∈ z, where z denotes the set of
available operating frequencies and fi < fi+1.

B. Overview of the proposed DFM

We define Ti as the subset of tasks having the same dead-
line di. We also define the Working Set WS as a look-ahead
window buffer of n Tis. Each time all the tasks inside a Ti
finish their execution, we request the next Ti input from the
application. For each new added Ti to the WS buffer, our ap-
proach requires from the application its adjacency matrix, its
deadline value and the list of edges connecting this Ti with
Ti+l (with l 6= 0). In our DAG Flow Manager (DFM), we
propose then to process the full DAG of the application using
this WS buffer where only a limited number of deadlines are
processed at a time. Analyzing the full DAG of an application
by subset of n deadlines (i.e., Tis) is the key for having a low
complexity online DAG monitoring solution. Thus, it will be
possible to efficiently adapt to applications that have a highly
variable workload and adapt their task-graphs on the fly. Fig. 3
illustrates an example of our DFM processing a general DAG
model using a WS buffer of 3 deadline slots. In this exam-
ple, for the sake of clarity, we assume that each Ti finishes its
execution at di. First, at the beginning of the execution, the
WS buffer is filled with T0, T1 and T2. Next, when a deadline
finishes its execution, a slot becomes available and it gets auto-
matically filled with the next available deadline. In Section C,
we describe the initialization phase that we apply on each new
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Fig. 4. A complete overview of our DFM

added Ti to the WS buffer and how we handle online the addi-
tional dependencies between these Tis. In Section D, we then
describe different data structures that our DFM provides to as-
sist an external scheduler and how they can be used efficiently.
Finally, we explain how we update online the generated data
structures and synchronize it with recent scheduling decisions.

C. Initialization of each new added deadline to the WS

The full initialization process is illustrated in Fig. 4 (arrows
1, 2, 3 and 4). First, we sort the tasks of each new added Ti
in the WS buffer, in topological order. An optimal topological
sorting algorithm with a complexity of O(|N |+ |E|) has been
proposed in [12]. Moreover, in [14], it was demonstrated that
a DAG with n nodes has a worst case of n ∗ (n − 1)/2 edges.
The topological sorting step is applied only once for each new
Ti. This reduces the complexity of computing the depth δji of
each task tj with deadline di in the WS buffer. While sorting
the tasks, the list of direct parent tasks LPj (i.e., list of tasks tk
linked to ingoing edges ejk) and the list of direct children tasks
LCj (i.e., list of tasks tk linked to outgoing edges ekj ) for each
task tj are also generated. LPj is used to compute the critical
path workload in Section D, while LCj is used for the depth
level computations of each available task in the WS buffer. In
fact, for each outgoing edge ekj (i.e., edges connecting tj to LCj
tasks) of each remaining task tj in Ti, our solution updates the
depth value δki of the node tk with δki ←max(δji +1, δki ). The
complexity of the graph traversal algorithm that we apply to
compute δki is then O(|E|).

We denote by li,k the group of tasks tj having the same depth
level δji = k in Ti. Note that, for all tasks in Ti, tasks at depth
level k + 1 (i.e., li,k+1) can only be scheduled after tasks at
depth level k (i.e., li,k) are finished. Fig. 5 illustrates in detail
the difference between tj , Ti, li,k and δji after applying our
algorithm on a WS buffer containing part of the DAG of the
H.264 video decoder.

While traversing the DAG for the first time for each new Ti,
the number of unfinished direct parent tasks tk for each task tj ,
that we call the dependency status rj , is also computed. rj is
used to assist the scheduler in detecting available paralleliza-
tion opportunities from the remaining unscheduled tasks in the
WS (i.e., entry nodes rj = 0). In fact, the dependency status
rj is the key idea to track existing dependencies between tasks
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Fig. 5. The decomposition applied by our DFM on H.264 DAG [1]

with different deadlines (i.e., between Tis). Once the initial de-
pendency status rj is computed for each task within the newly
added Ti, we check for its dependencies with other deadlines.
To this end, for each task tj in Ti with an incoming edge from
tasks with earlier deadlines (i.e., Ti+l with l < 0), we incre-
ment its rj value. Then, for each task tj in Ti with an outgoing
edge to other deadlines tasks (i.e., Ti+l with l > 0) we update
its list of direct children tasks LCj . This will be used later for
the update phase in Section E for clearing the dependencies be-
tween the Tis. Finally, it may happen that a task finishes its
execution and the other deadline that is connected to does not
yet exist in the WS buffer. In this case, we need to make sure
that when this new deadline is added to the buffer, its depen-
dency with this finished task is cleared correctly. Therefore,
we store this dependency in a new list, that we call the list of
non-cleared dependencies. This list is generated during the up-
date process (cf. Section E). We use the list of non-cleared
dependencies in the last step of this initialization phase in or-
der to check if a dependency has to be cleared by decrementing
the rj value of the concerned task. Each time a dependency is
cleared, we remove its corresponding entry from the list.

D. Generation of the scheduler input

To assist online schedulers with immediate parallelization
opportunities and the priorities of the available tasks, we define
the first output structure, called Priority Table, that we provide
to any connected scheduler. Each entry in the Priority Table
corresponds to a task tj and it is characterized by: estimated
workload wj , earliest release time sj , expected ending time zj ,
fixed deadline dji where i refers to Ti and dji = di ∀j, critical
path workload to its deadline wdij and the dependency status rj
(i.e., the total number of parent tasks that it still depends on).
wj , sj , zj and wdij are in clock cycles and dji is in seconds.
The tasks in the Priority Table are sorted by our DFM accord-
ing first to their deadline di, then refined to their depth level
li,k in Ti and finally to their estimated workload in case of a
tie. We use the Quicksort algorithm with an average complex-
ity of O(|N |.log(|N |)). Several workload estimation methods
[3][4] with a negligible overhead have been proposed for multi-
media applications. Full overhead measurements on the H.264
decoder application are provided in Section IV.

Regarding the computation of this output, zj and sj are cal-
culated while the WS buffer is traversed by the depth level
computation algorithm (cf. Section C) with zj ← wj + sj and
sk ← max(zj , sk) for ∀tk ∈ LCj . If the task is currently run-
ning at frequency fj then we use zj ← wj ∗ fmax

fj
+ sj to take

into account the applied frequency. Finally, for the calculation

of the critical path workload value wdij starting from each task
tj to its local sink node in Ti, the method used to calculate wdij
is the same as the depth level computation algorithm except that
we traverse the topological graph in the inverse order and we
replace LCj with LPj . Our solution indicates to the scheduler
which tasks are entry nodes in the remaining tasks set using
the dependency status rj of each task tj . Nodes with rj = 0 in
the Priority Table are potential starting tasks for parallelization.
Even though the Priority Table gives a straightforward solution
to select the task to schedule, it does not give the scheduler
general information related to the execution status of each re-
maining Ti in the buffer, such as their currently running tasks
progress. Having such information, a scheduler will be able to
efficiently tune the deadlines values for a more energy efficient
execution [9]. Moreover, such information could be exploited
by any connected scheduler to set the priority of each Ti, which
can be efficiently used in parallel with the priority table. To this
end, we then propose a second output to online schedulers in
order to track the execution status of future deadlines tasks that
we call the DeadlineSpec Table. This latter output is used to
track the overall progress of each group of tasks Ti. Each entry
in the DeadlineSpec Table stores relevant computed informa-
tion related to each Ti namely: total workload, executed work-
load, scheduled workload and finally a depth table. Each entry
k in the depth table corresponds to a li,k in Ti and it stores rele-
vant computed information namely: total workload, maximum
number of allowed cores and minimum amount of paralleliz-
able workload. The full DeadlineSpec Table is initially gen-
erated using previously computed information related to each
task. The complexity of creating this table is then linear to the
number of nodes in the considered WS.

E. Updating the DAG decomposition and the scheduler input

As shown in Fig. 4 (arrows 8, 9 and 10), the working set
decomposition and the generated output are updated each time
a task finishes its execution. First, we remove the finished task
tj from the list of remaining tasks and re-estimate the workload
of similar tasks. Then, we decrement rk of each task tk in LCj
(i.e., its direct children tasks tk). However, it may happen that
one direct child has a different deadline that is not available yet
in the WS buffer. In this case, we save this dependency in a
list that contains all the non-cleared dependencies. This list is
used during the initialization phase to clear future dependen-
cies when a new Ti linked to this edge is added to the WS
buffer as described in Section C. This first step allows instantly
detecting new entry nodes (i.e., when rj = 0 ) among all the
available tasks of all the Tis in the Priority Table output. Then,
we set the earliest starting time of each task tj depending on
its execution status. If the task tj is an entry node and did not
start yet, then the current execution time is assigned as its earli-
est starting time. However, if the task tj is currently executing
then some values from the DeadlineSpec Table, namely, the
scheduled workload and executed workload, are updated from
values of the currently running task tj . Finally, we update the
information related to each remaining task tj in Ti by applying
the same graph traversal algorithm of Section C on the remain-
ing unscheduled nodes of Ti. Therefore, the total number of
times the graph traversal algorithm is applied for the full exe-
cution of a Ti will be equal to twice the number of tasks in the
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Ti and during each update it will be executed with one node
less (i.e., without the finished tasks). Indeed, each time a task
finishes its execution the algorithm will be executed first dur-
ing the depth computation phase and then for the critical path
workload. This guarantees real-time information regarding fu-
ture available parallelization each time before a scheduler has
to make a decision.

IV. EXPERIMENTAL RESULTS

We demonstrate the advantages of our DFM, which we have
implemented in C, to assist an energy-efficient online sched-
uler on two experimental benchmarks namely, the H.264 video
decoder [17], and multiple configurations of synthetic DAGs
generated with GGEN tool [11]. We explain our experimental
setup in Section A. Then, we present our results for the two
sets of experiments in Sections B and C.

A. Experimental setup

As described in Sections I and II, existing online DAG mon-
itoring solutions [6][7][8] do not consider DAG models where
a task’s children can have different deadlines. The only way for
these approaches to handle such a DAG online is to process it
deadline by deadline (i.e., fork-join parallelism model) where
critical dependencies between the deadlines are replaced with
a single join edge as shown in Fig. 2. However and since our
DFM applies similar task decompositions technique to exist-
ing solutions for DAGs without critical dependencies between
the deadlines, we can perfectly simulate existing approaches by
first converting general DAG model to the fork-join model then
by applying our DFM on the converted DAGs.

We connect the simulated existing solution [8] ([8] uses
the same decomposition technique as in [7]) and our DFM to
an external online scheduler based on [9], which applies the
least possible restrictions on its application model compared to
other schedulers. In [9], an online scheduling approach called
MLTF was proposed for multimedia application, where the ear-
liest deadline is scheduled with limited consideration of future
tasks’ deadlines and workloads. Indeed, based on the derived
estimated duration of all pending tasks, a new virtual deadline
is set in order to have more balanced workload distribution over
the time. Then, a Largest Task First (LTF) schedule is applied.
In [9], the algorithm applied for frequency selection does not
take into account the dependencies between the tasks. There-
fore, we made the scheduler select the frequency of each task
based on the remaining critical path workload and the available
amount of clock cycles. Due to dependencies between tasks,
gaps (i.e., when a core is idle and waiting for another task to fin-
ish) may occur during the schedule. Therefore, we add another
simple module on top of the MLTF scheduler presented in [9]

to fill the gap. This module compares the amount of available
gap (which can be easily estimated from the schedule generated
by [9]) to the workload estimation of the available task tj with
tj ∈ Te+l (i.e., having deadline de+l) to compute the minimum
frequency f jde that allows tj to fit the available gap occurring
before de. Then, the module applies again the MLTF schedule
but this time on Te+l between de+l and de+l−1 to estimate the
minimum frequency f jde+l

used when scheduling task tj dur-
ing its allocated time (i.e., between de+l and de+l−1. Finally, if
f jde ≤ f jde+l

, then the gap is filled. All these computations are
then based on MLTF [9].

B. H.264 decoder - Energy, deadline miss rates and overhead

For our multimedia benchmark, we have used the Joint
Model reference software version 17.2 (JM 17.2) of an H.264
encoder [17]. The DAG model and the deadlines configura-
tion that we consider for our benchmark are similar to the
one shown in Fig. 2 with an IBPB GOP structure, 8 slices
per frame and 30 frames/second for CIF (352x288) resolution
video sequences. We use accurate statistics generated from an
H.264 decoder that we have parallelized and executed on a so-
phisticated multiprocessor virtual platform simulator. In fact,
in this work, we use the multiprocessor ARM (MPARM) vir-
tual platform simulator [5], which is a complete SystemC sim-
ulation environment for MPSoC architectural design and ex-
ploration. MPARM provides cycle-accurate and bus signal-
accurate simulation for different processors. In our experi-
ments, we have generated with MPARM the workloads and
the dynamic power consumption statistics of each task (i.e.,
frame initialization, slice decoding and deblocking filter) us-
ing ARM9 power consumption figures with DVFS support
(300MHZ at 1.07V, 400MHZ at 1.24V and 500MHZ at 1.6V).

In Fig. 6, we show the energy consumption and frame miss
rates when decoding the Foreman sequence. We have used the
same scheduler connected first to our DFM and second to exist-
ing DAG monitoring solution [8] as described in the previous
section. The results of Fig. 6a show that [8] does not allow the
connected scheduler to use more than 8 cores as the maximum
number of parallelizable tasks within a single Ti is 8 in the con-
sidered DAG (i.e., 8 slices per frame). However, our solution
allows the connected scheduler to take advantage of the addi-
tional number of cores as demonstrated by the relative energy
decreasing with the number of cores. The results show also
that our DFM can efficiently exploit the increased size of the
WS buffer. In fact, our DFM allows the connected scheduler
to reduce the energy consumption by up to 52% compared to
[8] thanks to the information provided by our DFM regarding
each of the available deadlines in the buffer to the connected
scheduler. For the frame miss rates, the decomposition tech-
nique and the information provided by existing DAG monitor-
ing solution do not allow the connected scheduler to efficiently
schedule the tasks before their deadlines. In fact, as shown in
Fig. 6b, all the frames are missed if the number of cores is less
than 8 cores due to heavy workloads. However, by exploiting
our DFM output related to each of the available deadlines in
the buffer and the detected parallelization among the deadlines
tasks, the connected scheduler is then able to achieve less than
1.5% miss rates starting from only 6 cores as the gaps are filled
with available tasks with future deadlines.

718



0% 

25% 

50% 

75% 

100% 

[8]	
   DFM	
   [8]	
   DFM	
   [8]	
   DFM	
  

TGFF	
   Layers	
   Erdos	
  

W
or

kl
oa

d 
%

 

(a) 

f1=300MhZ f2=400MhZ f3=500MhZ 

45% 

0% 

63% 

2% 0% 0% 

[8]	
   DFM	
   [8]	
   DFM	
   [8]	
   DFM	
  

TGFF	
   Layers	
   Erdos	
  (b) 

Deadline miss rates 

Fig. 7. Synthetic DAGs (deadlines values are only 1% greater than the critical
path workload) : comparison between our DFM and [8], connected to the
same scheduler. (a)Frequency usage. (b)Deadline miss rates.

Finally, we present the overhead in terms of processor clock
cycles with respect to the workload of the Foreman video se-
quence. We measured an overhead of 0.82%, 0.93% and 1.04%
of our proposed DFM when using 2, 3 and 4 deadlines per WS
respectively (with 20 tasks per deadline). The overhead of the
connected scheduler varies between 0.7% and 1.24% depend-
ing on the number of cores and the WS buffer size.

C. Generalizing the results to the general DAG model

We use the GGEN [11] tool to model an application with
100 connected generated DAGs. We connect these DAGs by
randomly adding m edges in a way that some tasks in DAG g
depend on some other tasks in DAG g−1. For the workload, we
assume that an application of n tasks has k types of workloads.
We assign then each task tj with a random type number aj
between 1 and k, and we compute the workload with wj =
w(aj) + x where w(aj) is the minimum workload value of all
the tasks with type aj , and x is a random number between 0
and (w(aj) ∗ α) with α ∈ [0, 0.5]. x represents the workload
variation of each task with respect to its type. Finally, to assign
a deadline to each DAG, we compute the critical path workload
wcpi of each DAG i and the final deadlines values (in seconds)
are assigned with di = di−1 + wcpi ∗

1+β
fmax

with β ∈ [0, 0.5].
We generate the synthetics DAGs with Erdos, TGFF and

Layers DAG generation methods as presented in [11]. We set
the number of cores to 6 and previously described parame-
ters to n = 25, k = 5, β = 0.01 (i.e., deadlines values are
only 1% greater than the critical path workload), α = 0.4 and
m ∈ [10, 15]. For TGFF method, we set the maximum num-
ber of ingoing and outgoing edges per node to 4, for Erdos and
Layer we set the probability of an edge to appear in each DAG
to 0.5 and for the Layer method we set the number of layers to
4. We choose these parameters in order to simulate a congested
system. Fig. 7a shows the distribution of the frequency us-
age of the total workload assigned by the scheduler exploiting
our DFM output compared to the same scheduler exploiting [8]
output. A higher fraction of workload processed at lower fre-
quencies is desirable because it indicates lower dynamic energy
consumption. We also compare the deadlines miss rates in Fig.
7b. Our DFM significantly reduces the usage of the maximum
frequency by up to 84% and the deadline miss rates by up to
61% (with 0% to 2% miss rates overall). Our solution provides
the information related to the execution status of each dead-
line which allows a connected scheduler to take foresighted
decisions that target the lowest possible frequency, reducing
then the dynamic energy consumption. Moreover, connecting
the deadlines together with multiple edges restricts existing so-
lutions [8] to provide the scheduler with only parallelization
within a single deadline. Therefore, our DFM allows any con-

nected scheduler to exploit more parallelization opportunities
resulting into a more balanced workload distribution and more
optimal usage of the available resources.

V. CONCLUSION

In this paper we have proposed a novel unified DAG mon-
itoring solution, that we called DAG Flow Manager (DFM).
The key contributions of this work were as follows: (i) A low-
complexity online DAG monitoring solution that is fully inde-
pendent of the scheduler that it is connected to it; (ii) Our DFM
does not impose any restrictions on the DAG and covers on-
line all DAG models (Fig. 1); (iii) Our DFM provides detailed
information about the execution status of tasks and deadlines
within a look-ahead window, allowing simple connected sched-
ulers to have optimal control of the core assignment and DVFS
selection of each task. Our results for the H.264 decoder have
demonstrated that our proposed DFM solution allowed a con-
nected online scheduler to reach up to 52% reduction in energy
consumption and over 80% reduction in deadline miss rates
compared to the schedule generated by the same scheduler but
relying on existing DAG monitoring solutions. The overhead in
terms of processor clock cycles for the proposed DFM, for the
aforementioned results, is less than 1% with respect to the total
workload of the foreman video sequence. Finally we have gen-
eralized these results on synthetic DAGs with different DAG
configurations.
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