
Functional Programming For All!
Scaling a MOOC for Students and Professionals Alike

Heather Miller
EPFL, Switzerland

Philipp Haller
Typesafe, Switzerland

Lukas Rytz
EPFL, Switzerland

Martin Odersky
EPFL, Switzerland

ABSTRACT
Massive open online courses (MOOCs) have launched a scale
shift in higher education, with several individual MOOCs
now boasting tens or hundreds of thousands of participants
worldwide. Our MOOC on the principles of functional pro-
gramming has more than 100,000 registered students to date,
and boasts one of the highest rates of completion (19.2%) for
its size. In this paper, we describe our experience organiz-
ing this popular MOOC, and demonstrate how providing in-
novative supporting tools (IDE plugins, testing frameworks,
interactive build tools, automated cloud-based graders, style
checkers) and considering key human-computer interaction
factors potentially contributed to this markedly high com-
pletion rate. We collect an unprecedented volume of course
statistics and survey results and have made them available,
along with scripts for generating interactive web-based vi-
sualizations, as an open-source project.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Experimentation, Management

Keywords
Software engineering education, programming education, au-
tomated grading, MOOC

1. INTRODUCTION
Massive open online courses (MOOCs) have the potential

to revolutionize teaching and learning in both academia and
industry. Courses that teach tools and technologies accepted
by and relevant to industry have proven a particularly at-
tractive option for students and professionals seeking skills
that they can apply immediately in practice.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

In this paper, we describe our experience organizing a
MOOC on the principles of functional programming, now
in its third iteration, that has attracted more than 100,000
registered students. What sets the course apart from other
MOOCs related to programming or software engineering
is that it has enjoyed one of the highest completion rates
(19.2%) of any MOOC worldwide1. Completion rates of
around 7% are standard [14].

In contrast to other similar SE-related MOOCs, we have
leveraged the popularity of the course to collect an unpar-
alleled volume of course statistics and survey results. This
paper describes our data set, consisting of the following com-
ponents:

• A large-scale and detailed survey with over 12,000 re-
spondents worldwide, covering their experience in the
course as well as their background, software develop-
ment experience, and skills;

• The results from a specialized on-campus course eval-
uation of our MOOC, where over 150 undergraduate
students at EPFL participated in the MOOC instead
of taking the first half of an on-campus offering of a
longer version of the same course;

• Anonymous statistics about student engagement and
performance throughout each iteration of our course
so far.

The data set has been made available in form of an open-
source project, providing additional scripts and tools for gen-
erating interactive web-based visualizations2. To the best of
our knowledge, data sets on MOOC statistics and survey
results of a comparable size have not been published before.

This data provides insight into (a) the interaction of par-
ticipants with the automated grading system, (b) the effect
of different grading policies, (c) the profile, background, and
motivation of participants, and (d) the acceptance and stu-
dent evaluation of a MOOC, both in isolation and as inte-
grated as a significant component of an on-campus software-
development course.

The data shows that SE-related MOOCs can be very use-
ful not just for students, but also for professional software
engineers. Moreover, the survey results provide new in-
sights into the role of new technologies and tools for effective

1At the time the first iteration of the course ended in Novem-
ber 2012. Today, it still has one of the highest rates of com-
pletion given its size [8].
2https://github.com/heathermiller/progfun-stats

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147998738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

teaching and learning. We find that providing innovative
course-supporting tools (IDE plugins, testing frameworks,
interactive build tools, automated cloud-based graders, style
checkers) and considering human-computer interaction fac-
tors have helped make distance learning effective and en-
joyable. In fact, our on-campus students who followed the
MOOC in place of the first half of our functional program-
ming course overwhelmingly preferred the online format over
the traditional format of the course, thanks mostly to the
tighter feedback loop made possible by the tools.

The remainder of the paper is organized as follows. Sec-
tion 2 covers the format and organization of our MOOC, and
interaction between the MOOC and the on-campus course.
In Section 3 we describe the tools used to support teaching
and learning, as well as the integration with Coursera, the
MOOC infrastructure. In Section 4 we describe the data set
and interactive tools for experimenting with it, released as
an open-source project. In Section 5 we present an evalu-
ation and analysis of some of this data. Finally, we survey
related work in Section 6 and conclude in Section 7.

2. COURSE FORMAT
The objective of our MOOC, Functional Programming

Principles in Scala (or “progfun” for short), is to introduce
functional programming principles. As such, it covers top-
ics such as recursion, persistent/immutable data structures,
higher-order functions, and pattern matching. Some of the
material is based on the well-known Structure and Inter-
pretation of Computer Programs MIT course [1]. Instead
of Scheme, the Scala programming language [11] is used
throughout the course, both in the lectures and in the home-
work assignments.

The first half of the course (online, seven weeks) is offered
as a MOOC worldwide and to EPFL undergraduates alike,
whereas the second half of the course (offline, seven weeks)
comprises a continuation of the course material exclusive to
EPFL students, intended for second year students in Com-
puter Science.

2.1 Lectures
The course lectures are provided in the form of short on-

line videos, each about 8–12 minutes in duration. Each
week, 5–7 videos are released. Students are able to speed
up or slow down the video to suit their preferred pace.

2.2 Assignments
The lectures are accompanied by interactive, not-for-credit

quizzes requiring real-time participation from the students
as they watch the videos, as well as weekly or biweekly as-
signments, all of which consist of programming exercises.

Testing and submission.
Several provided tools enable students to interact with

the assignments and their submission. The interactive build
tool [17] allows students to run unit tests and to directly
submit their solutions to our cloud-based grading infrastruc-
ture. Submitted solutions are processed in the cloud in two
steps. First, the solution is analyzed with a custom code
style checker. This style checker is based on Scalastyle [4],
which is similar to Checkstyle [21] for Java. Submissions
that are not written in the functional style taught in the
course are penalized.

In a second step, the solution is tested using a compre-
hensive test suite. The test suite that is used for grading is
secret; only a small scaffolding containing a couple of sample
tests is provided to the students. This ensures that their so-
lutions are compatible with our test suite, and also creates
an incentive for students to build a comprehensive test suite
of their own.

Interactive feedback.
Upon each submission the student receives feedback about

how the code fared on the secret test suite. This feedback
contains non-obvious hints about where the submitted code
could be logically incorrect, causing failing tests, and lists
the reduction in points. Additionally, the result of running
our style checker is included to give feedback on aspects of
style that need to be improved.

Students can submit revisions of their solution as often as
they like until the submission deadline without penalty. This
policy was changed for the second iteration of the course
where assignments could only be re-submitted up to five
times (the later submission attempts would earn no credit),
as we will discuss below. Only the best of the student’s
submissions is considered: the grade of an assignment is the
grade of the best submission for that assignment.

Certificate of completion.
Students who obtain more than 60% of all possible points

(or 48 points out of a total of 80 possible points) receive a
certificate of completion. In addition, those who earn more
than 80% of all possible points (or 64 points out of a to-
tal of 80 possible points) receive a so-called “certificate of
distinction”.

2.3 Additional elements of the EPFL course
The EPFL course is a true superset of the MOOC: EPFL

students follow the online lectures and quizzes just like any
other participant, in our case on the Coursera platform. The
elements exclusive to EPFL students consisted of:

• in-person exercise sessions where students can work
on programming assignments or review the course ma-
terial and ask teaching assistants questions; and

• written exams which accounted for a majority of the
final grade on students’ academic record. These exams
were essential to satisfy the requirements of their de-
gree.

• offline second-half of the course where subsequent
course material was presented to students as a tradi-
tional on-campus course.

2.4 Commercial tutorial sessions
The course format lends itself to additional, commercial

offerings. For the third iteration of our course on functional
programming principles, Typesafe, Inc., has introduced su-
pervised tutorial sessions accompanying selected Coursera
classes. In weekly, one-hour tutorial sessions, experts from
Typesafe provide in-depth answers to questions about the
course material and discuss solutions to homework assign-
ments past the deadline. Tutorial groups are small (10 par-
ticipants max) in order to meet individual mentoring needs
as much as possible. Tutorial session slots are offered in
both European and American time zones.

3. TOOLING AND GRADING SYSTEM
The only mandatory tool that students are required to

use is sbt [17], a standard build tool for Scala and Java.
Sbt is used to compile, run, test and submit the code for
the assignments. The build tool can also generate project
definitions for the Scala IDE for eclipse and IntelliJ IDEA,
which gives the students effortless access to those IDEs. The
developers of the Scala IDE at Typesafe introduced Scala
worksheets for the start of the first iteration of the course.
A worksheet is a single source file in which each line is eval-
uated as a separate expression and the result is presented
in a separate column on the side. This feature makes ex-
ploring the language and library features even easier than a
classical read-eval-print-loop, and the sessions can be saved
for future reference.

Automated Grading System.
The automated grading system for each assignment is

based on two components: a style checker and a test suite of
unit tests. The style checker is based on Scalastyle [4] and
allows identifying syntactic constructs that are discouraged
in the context of the course on functional programming prin-
ciples. Examples are mutable variables, return statements,
the null value, while loops, magic numbers, overlong lines
or non-standard capitalization.

The majority of the grade is obtained by running a com-
prehensive test suite that is private to the automated graders
on each student’s submission. Tests are executed by using
ScalaTest [18], a unit testing framework for Scala and Java.
The framework was customized so that each unit test can be
assigned an individual weight and the framework computes
the overall score of the successful tests. Some of the unit
tests are handed out to the students as part of the assign-
ment, which ensures that the function signatures in their
code are compatible with the test suite.

A subset of the unit tests are implemented using a custom-
written Java virtual machine agent [12] that instruments the
bytecode to record statistics about invoked methods. This
allows enforcing constraints that could not be tested with a
classical unit test, for example that a method is implemented
in terms of another one, or that some specific libraries are
not being used.

Security.
Executing code that was written and uploaded by arbi-

trary students has obvious security issues: an adversary
could try to read the private test suite, modify the computed
grade or sabotage the grading infrastructure. To prevent
such issues we rely on the security manager infrastructure
provided by the Java platform [13]. This facility allows dis-
abling sensitive functionality with detailed granularity for
specific parts of the executed code. This allows executing
the testing framework with elevated privileges (it requires
access to IO and reflection), but the code from the students
is executed in a restricted environment within each test case.
We may also add that we are not aware of any attempts to
compromise our grading infrastructure.

Infrastructure for Grading.
The submission scripts uploads the source code to the

servers of Coursera, the MOOC provider used for this class,
using their custom REST HTTP API. This API does not

only allow uploading solutions, but it also provides access
for grading scripts to download the submitted assignments
and upload a grade and feedback for the student.

Given the large number of participants and the submis-
sion model that gives the students an arbitrary (or even
unlimited) number of attempts at each assignment, the use
of a scalable cloud computing service was a natural choice
to implement the grading infrastructure. The goal is to pro-
vide the students feedback for each submission within 15–20
minutes. For this course, the grading infrastructure is im-
plemented using Amazon Web Services (AWS). This service
can be configured to automatically start up or terminate
virtual machines based on custom workload measures. The
machines are configured such that they automatically start
downloading and grading assignments from the work queue
provided by Coursera once they are booted.

The source code of our grading and submission infrastruc-
ture has been developed for one specific MOOC and cannot
be reused directly for other online courses. Most of the im-
plementation is written as a plugin for the sbt build tool,
which can be used for Scala and Java projects. The same ap-
plies to the customized test framework. Finally, the scripts
interact with the HTTP API of Coursera and would need
to be adapted for other providers. However, the main con-
cepts of our infrastructure apply to programming courses
in general and many of the ideas we implemented can be
re-used.

4. SURVEY AND DATA SET

4.1 Survey
After the completion of each iteration of our MOOC we

sent a survey to all registered participants. For the Fall 2012
iteration of the course, we received responses from 7,492 out
of about 50,000 registered students. For the Spring 2013
iteration of the course, we received responses from 4,595
out of about 37,000 registered students. Thus, we collected
results from a total of 12,087 respondents.

The survey consisted of questions included but not limited
to the following:

• What’s your age group? (Possible choices: 10-17,
18-24, 25-34, 35-44, 45-54, 55-64, 65+)

• What country do you live in?

• What’s your highest degree? (Possible choices:
No High School (or equivalent), Some High School (or
equivalent), High School (or equivalent), Some Col-
lege (or equivalent), Bachelor’s Degree (or equivalent),
Master’s Degree (or equivalent), Doctorate Degree (or
equivalent), Other)

• Did you finish the course?

• How difficult did you find the homework assign-
ments? (Possible choices: 1 - Too Easy, 2, 3, 4, 5 -
Too Hard)

• Where do you plan to apply what you’ve learned
in this course? (Possible choices: Personal projects,
Individual project at work, Team project at work, Uni-
versity projects, No application plans, Attended for
general interest)

• What experience do you have with other pro-
gramming languages or paradigms? (asked once
each for Java, C/C++/Objective-C, Python/Ruby/Per-
l/other scripting language, C#/.NET, JavaScript,
Haskell/OCaml/ML/F#, Lisp/Scheme/Clojure, pos-
sible choices: No experience / not seen it at all, I’ve
seen and understand some code, I have some experi-
ence writing code, I’m fluent, I’m an expert)

object WorthItBarGraph
extends SimpleBarGraphFactory {

import CourseraData.worthIt

val name = "worth-it.html" // f i l e name
val label = "Percentage" // label on y axis

override val width = 250
override val height = 250
override val maxy = 70

def data: List[(String, Int)] = {
val counts = getFreqs(worthIt)
.sortBy(_._1)
.map { case (name, value) =>
(name.toString, (value.toDouble /
worthIt.length * 100).round.toInt)

}

val correctedLabels: List[(String, Int)] =
List(("1 Disagree", counts(0)._2)) ++
counts.drop(1).take(3) ++
List(("5 Agree",counts(4)._2))

correctedLabels
}

}

Figure 1: Generating a bar graph which represents
how “worth it” the course was for students.

All survey results have been released as part of the
progfun-stats open-source project [9]. The survey data is
available in simple plain text formats, such as tab-separated
values. Thus, it is easy to process and analyze the data in
any general-purpose programming language. In addition to
the raw data set, progfun-stats provides a library exten-
sion for the Scala programming language [11] which makes
it easy to generate interactive, web-based visualizations3.

For example, Figure 1 shows how to create a simple bar
chart that represents how “worth it” the course was for stu-
dents, on a scale from 1 (disagree) to 5 (agree).

4.2 EPFL course evaluation
Upon the conclusion of each semester, EPFL undergrad-

uates complete an evaluation for each of their courses, typ-
ically as an assessment of course quality for the Computer
Science department.

After spending half of a semester learning functional pro-
gramming principles with a MOOC, and another half of a
semester in a traditional classroom setting, the progfun un-
dergraduates were asked to complete a specialized course
evaluation designed to compare the effectiveness of the two
approaches.

3There is also a website showcasing more data and visual-
izations than shown in this paper, http://lampwww.epfl.
ch/~hmiller/progfun

5. EVALUATION
In this section, we analyze and evaluate a selection of the

collected data. First, we’ll examine the role of the MOOC’s
tooling infrastructure (e.g., IDEs, or the automated grader)
in making distance learning more effective. Next, we’ll ex-
amine the background and motivation of MOOC partici-
pants which helps explain whether MOOCs can be useful
to professional software engineers. Finally, as a third step,
we evaluate the acceptance of our MOOC in a university
setting.

5.1 Tools for effective distance learning
In this section we evaluate the use of two important tools:

(a) the automated grading system and (b) the Scala IDE for
Eclipse plugin with the Worksheet IDE, which was released
specifically for use in the first iteration of the course.

5.1.1 Automated grading system
Before evaluating the grading system, we first clarify the

respective grading policies used. As mentioned in Section 2.1
the grading policy changed between the Fall 2012 and the
Spring 2013 iterations of the course. In the Fall 2012 iter-
ation, students could re-submit solutions as often as they
wanted without penalty until the submission deadline. In
the Spring 2013 iteration, students were allowed to re-submit
only up to five times; the sixth and later submissions would
not give any credit. In both iterations, the (valid) submis-
sion with the highest grade determined the final grade for
that assignment.

Usage of the submission system.
Figure 2 shows the correlation between the achieved score

for one representative assignment (an implementation of Huff-
man coding using pattern matching) and the number of sub-
missions required of each student to achieve that score. For
both the Fall 2012 and the Spring 2013 iterations of the
course, the largest concentration of students fell at or close
to the perfect score (10). In fact, both plots in Figure 2 show
that for a large number of students, only five submissions or
less were required to achieve their final/best score, justifying
the change made in Spring 2013.

For the Fall 2012 plot, for example, each bright yellow dot
along the y-axis and concentrated around a score of 10 repre-
sents approximately 1,200-1,700 individual user submissions.
Above 5 submissions however, the density of individual user
submissions drastically drops to approximately 250 or fewer
individual user submissions. This suggests that to achieve a
higher score (even when submissions are unlimited), a higher
number of submissions was not usually necessary.

Nevertheless, during the Fall 2012 iteration, there were
still thousands of students with 10 or even 15 submissions.
The results for the Spring 2013 iteration are quite different:
most people achieved their final score after only two or four
submissions. This difference stems from the adoption of the
different grading policy used in the second iteration of the
course: no credit for the sixth and later submissions. This
is clearly reflected in the changed submission statistics.

However, interestingly, there are still a significant number
of students who also submitted six or more times (thus earn-
ing no additional credit); this is a clear indication that the
automated grading and feedback was also used for learning
without improving one’s score.

This change in the grading policy had an interesting ef-

0 2 4 6 8 10

Score

5

10

15

20

S
u
b
m

is
si

on
s

Fall 2012

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

lo
g
10

(N
)

0 2 4 6 8 10

Score

5

10

15

20

S
u
b
m

is
si

on
s

Spring 2013

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

lo
g
10

(N
)

Figure 2: Heat maps correlating scores for the“Huffman”assignment and the number of required submissions.

5 10 15 20

Submissions

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

P
er

ce
n
ta

ge
of

S
tu

d
en

ts

Fall 2012

Spring 2013

Figure 3: The number of submissions required to
achieve a perfect score in the“Huffman”assignment.

fect on the quality of initial submissions. Figure 3 shows
the change in the number of submissions of students who
achieved a perfect score on a particular assignment. The
change in submission behavior between the Fall 2012 and
Spring 2013 offerings is quite noticeable. In the Fall 2012 it-
eration about 25% of those perfect-scorers needed only one
submission, whereas in the Spring 2013 iteration this per-
centage grew to about 40%. For perfect-scorers who needed
two submissions, the difference between the two iterations is
not as large, but still significant (an increase of about 30%).
This suggests that limitations on submissions should be an
important consideration for designers of other MOOCs.

5.1.2 The Scala IDE and Worksheet plugin
Figure 4 shows survey respondents’ code editor prefer-

ences both (a) preferred for use outside of the course, as
well as (b) the code editor used for a majority of the course.
The results show that 80% of all students prefer to use the
Scala IDE for Eclipse for the course. For almost half of those
students, Eclipse is not their preferred IDE for projects out-
side the course. One feature that was only available in the
Scala IDE for Eclipse during the first course iteration is the
Scala worksheet, introduced in Section 3. The students are
encouraged to use the worksheet for testing their code, and
the feature is also used by the lecturer in the videos. There
are other reasons that explain the popularity of the Scala
IDE: it is straightforward to download and install, the as-

Figure 4: Results for the survey questions, what is
your preferred editor, for use outside of this course?,
and what editor did you end up using for the ma-
jority of the course?

signments can be easily imported into the IDE, and it is the
recommended code editor for the course.

5.1.3 Student Performance
Figure 5 shows how students performed in both Fall 2012

and Spring 2013 offerings of the course. Students had access
to an immediate feedback loop, giving them insight into how
their code fared our automated test suite, including hints
about which of our tests failed and cost them points, or
which aspects of style needed to be improved (also a score
deduction). This format resulted in a markedly different
trend in how students seemed to navigate course material,
how they seemed to learn, and certainly how they scored
compared to a traditional course. Of particular interest is
the strong tendency of students to continue improving their
submission. Of all possible scores, the highest concentration
of any one score (excluding scores of 0/0) for both iterations
of the course was the perfect score of 80/80.

5.2 Not just for students
In this section, we evaluate the background and moti-

vation of MOOC participants, in an effort to show that
MOOCs can be useful to professional software engineers.

Figure 6 shows a summary of the educational background
of participants of the MOOC. Surprisingly, nearly half of
all respondents has completed a Master’s degree. Thus, the
question arises: how relevant are the topics of the MOOC to

10 20 30 40 50 60 70 80
Score

0

1000

2000

3000

4000

5000
N

u
m

b
er

of
S
tu

d
en

ts
Fall 2012

Spring 2013

Figure 5: Final scores after the entire course (both iterations).

Figure 6: Educational background of MOOC partic-
ipants

participants’ professional work? Survey results indicate that
about 40% of respondents plan to apply the learned knowl-
edge at work (see Figure 7). Thus, participants’ professional
work appears to be a strong motivating factor. We suspect
that the fact that the Scala programming language is not
yet taught in many universities could also contribute to the
popularity of the MOOC to (recent) university graduates.

Interestingly, professional participants felt like the course
was well worth their time even more so than across all par-
ticipants. Figure 8 shows the results of the question, “do
you feel the course was worth the time you invested in it?”
for two groups of individuals; “all respondents” as well as
those respondents who indicated they were interested ap-
plying knowledge gained from the course towards a (group
or individual) project at work. For the Fall 2012 offering,
for example, the results show that 71% of professionals (i.e.,
2,148/3,203 professional respondents) felt the course was
well worth their time, as opposed to 68% (5,077/7,492) for
all respondents. Thus, progfun was quite“effective” for prac-
ticing software engineers, indicating that some MOOCs can
be an effective training tool for professional software engi-
neers.

Another interesting observation that can be garnered from
Figure 8 is that the difference in how “worth it” progfun
was to professionals vs all respondents is large enough to
be statistically significant, but still not disparate enough
to indicate that potential newcomers (potentially 57%, or
some 4,289/7,492 respondents) struggled or were hindered
by the Scala tooling and build infrastructure. On the con-
trary, newcomers and Scala professionals alike followed suit
in their positive overall experience with the course.

Furthermore, a certificate of completion was issued. Un-
like languages established in industry for many years, there

Figure 7: Results for the survey question: where
do you plan to apply what you’ve learned in this
course?

is no standard Scala certification for developers; the com-
pletion certificate could be regarded by many as the closest
substitute.

5.3 Acceptance and student evaluation
Figure 9 shows the result of our survey among students at

EPFL who took both the MOOC as well as the subsequent
second part of a regular on-campus course.

The results show that the online part was very well re-
ceived: in Figure 9(a) about 80% of all respondents think the
online part was very good or excellent. In Figure 9(b), about
57% of respondents agree or strongly agree that they would
like to have the opportunity to take more online courses.

In fact, 69% of students say they would prefer to have all
14 weeks of a semester-long course like principles of func-
tional programming be online; only about 18% think that
the configuration which was actually used, namely 7 weeks
online, 7 weeks on-campus, was ideal. The results shown
in Figure 9(e) show that EPFL students fully accepted the
novel online part, and in fact preferred it compared to the
traditional on-campus part.

Figure 9(c-d) also show that students seem to prefer the
online help forums over EPFL’s traditional on-campus help
during weekly exercise sessions, with nearly 50% of all stu-
dents rating the online forums as excellent or very good, as
opposed to a mere 30% of students rating the traditional
in-person exercise sessions as excellent or very good.

6. RELATED WORK
The well-known MOOC on software engineering organized

by Fox and Patterson [5] has had around 50,000 registered
students in its first iteration, and is thus comparable in size
to our course; however, no survey of a comparable size was
conducted among participants of the MOOC. Moreover, our
selection of questions provides new insights, related to the
interplay of MOOCs with professional software engineering,

1
(Disagree)

2 3 4 5
(Agree)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
S
tu

d
en

ts

1 2
7

22

68

1 1
6

21

71

Fall 2012

1
(Disagree)

2 3 4 5
(Agree)

0

20

40

60

80

100

1 2
8

24

66

1 1
6

22

70

Spring 2013

All Respondents Respondents Using Scala at Work

Figure 8: Correlated results from two groups of individuals for the survey question: do you feel the course
was worth the time you invested in it? Shown are “all respondents”, and respondents that indicated they
were interested applying knowledge gained from the course towards a (group or individual) project at work.

6 - Excellent/Strongly Agree
5
4
3
2
1 - Poor/Strongly Disagree
No Opinion

Overall, the online part of the course is:
41.86% 38.37% 15.11% 4%(a)

In the future, I would like to get more online courses:
33.72% 23.26% 23.26% 9.6% 3%2%5%(b)

The online help for the course is…:
20.24% 28.57% 28.57% 8.3% 2%11.9%(c)

The help in the exercise sessions for the course is…:
4.6%24.41% 15.11% 5.8%1%48.83%(d)
In the future, I'd prefer a course like this be...
69% 17.8% 7% 6%

Online 14 weeks On-
campus
14 weeks

No OpinonOnline 7wks/
On-campus 7wks

(e)

Figure 9: MOOC-related responses from EPFL’s specialized course evaluation, given to on-campus EPFL
students following the conclusion of the online MOOC half of the course, as well as the offline traditional half
of the course.

in particular.
Vihavainen et al. report on a MOOC (“Helsinki MOOC”)

on introductory computer science with an emphasis on pro-
gramming [19]. Compared to the Helsinki MOOC, our course
had a number of registered students two orders of magni-
tude larger. Moreover, the Helsinki MOOC targets intro-
ductory programming, whereas our course targets advanced
programming principles. As a result, our course was very
popular especially among advanced developers who already
have a Bachelor’s or Master’s degree. The Helsinki MOOC
does not treat university students and MOOC participants
equal with respect to the material used for exercises: the
students in their university course are beta testers of the ex-
ercise material; thus, only after this beta test and necessary
adjustments is the material released to non-local MOOC
participants. Other organizational differences exist. For ex-
ample, they give formal credits for “apprentices” who are
unpaid “advisors” among fellow students with limited re-
sponsibilities. Their Extreme Apprenticeship (XA) learning

methodology required a staff of around 20 persons associated
with the course, with different roles and responsibilities. It
is unclear whether the XA methodology would scale to a
course of the scale of progfun (50,000 registered students
versus 500 registered students).

Looking back into the literature a bit further, there also
exists a body of work on automated grading of program-
ming, beginning as early as the late 1960’s, much of which
is nicely summarized in a survey by Douce et al. [3]. These
approaches are somewhat similar in that they are predom-
inantly test-based. That is, even the very first automated
testing systems introduced by Hext et al. [6] sought to com-
pare some stored testing data with data from a running ap-
plication. Some of these early systems, such as Assyst [7],
even developed methodologies for testing for qualities such
as efficiency and modularity, though naturally, none of these
systems are able to be run concurrently in the cloud. Simi-
lar, however, is RoboProf [2], a web-based system for testing
code submissions and providing feedback, though not suited

to scale as necessary for use with MOOCs. Meanwhile, more
recent work [16] differs in that its focus is not test-based,

but rather, based on program synthesis âĂŞ it’s addition-
ally not suited to our use-case because it provides too much
assistance.

Our pedagogical approach is reminiscent of “autonomous
learning” [15], focusing on creating rich learning environ-
ments rather than on passive transmission of information.
Moreover, our MOOC format shares the goal of combin-
ing the virtues of campus-based education and distance ed-
ucation with other approaches to interactive distance ed-
ucation [20]. However, our on-campus course offering is
still markedly different from offerings of open and distance
learning (ODL) institutions (e.g., [10]): it was an explicit
non-goal to scale our on-campus course offering to a large
audience of distance learners; instead, even though the on-
campus course format shared learning resources with the
MOOC course format, the two course formats served differ-
ent purposes and were consequently kept distinct. Changes
to the EPFL course had the sole aim of improving the learn-
ing experience without any compromises. As our evalua-
tions show, EPFL students preferred the newly introduced
resources for asynchronous learning.

7. CONCLUSION
We have presented a detailed experience report which cov-

ers the organization, format, and infrastructure, of our pop-
ular MOOC, Functional Programming Principles in Scala.
We’ve also presented and analyzed a selection of the data
we collected throughout each offering of the course, provid-
ing insight from several different perspectives; characteris-
tics and motivations of the tens of thousands of students
worldwide who have participated in the course, the experi-
ences of the on-campus EPFL students, as well as objective
anonymized data about the behavior and performance of
students as seen from the perspective of the instructor.

In our evaluation of the data, we showed that provid-
ing innovative course-supporting tools (IDE plugins, testing
frameworks, interactive build tools, automated cloud-based
graders, style checkers) and focusing on human-computer
interaction issues, such as tight feedback loops, not only
facilitates distance learning, but improves the learning ex-
perience even for on-campus students. Surprisingly, from
experience with our own undergraduate students, we found
that our MOOC format was even preferred over traditional
on-campus course format.

Finally, the results of our evaluation show that SE-related
MOOCs can be very useful not just for students, but also
for practicing professional software engineers.

8. REFERENCES
[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure

and Interpretation of Computer Programs. MIT Press,
Cambridge, Mass., 1985.

[2] C. Daly. Roboprof and an introductory computer
programming course. In ITiCSE, pages 155–158.
ACM, 1999.

[3] C. Douce, D. Livingstone, and J. Orwell. Automatic
test-based assessment of programming: a review.
Journal on Educational Resources in Computing
(JERIC), 5(3), Sept. 2005.

[4] M. Farwell. Scalastyle project.
http://www.scalastyle.org/.

[5] A. Fox and D. A. Patterson. Crossing the software
education chasm. Commun. ACM, 55(5):44–49, 2012.

[6] J. B. Hext and J. W. Winings. An automatic grading
scheme for simple programming exercises. Commun.
ACM, 12(5):272–275, 1969.

[7] D. Jackson and M. Usher. Grading student programs
using ASSYST. In SIGCSE, pages 335–339. ACM,
1997.

[8] K. Jordan. MOOC completion rates: The data.
http://www.katyjordan.com/MOOCproject.html.

[9] LAMP/EPFL. progfun-stats project. https:
//github.com/heathermiller/progfun-stats/.

[10] R. Mills and A. Tait. The convergence of distance and
conventional education: Patterns of flexibility for the
individual learner. Routledge, 2002.

[11] M. Odersky, L. Spoon, and B. Venners. Programming
in Scala. Artima Press, Mountain View, CA, 2007.

[12] K. O’Hair. How VM agents work. https:
//blogs.oracle.com/kto/entry/using_vm_agents.

[13] Oracle. Java tutorials: The security manager.
http://docs.oracle.com/javase/tutorial/
essential/environment/security.html.

[14] C. Parr. Not staying the course.
http://www.insidehighered.com/news/2013/05/
10/new-study-low-mooc-completion-rates.

[15] O. Peters. Digital learning environments: New
possibilities and opportunities. The International
Review of Research in Open and Distance Learning,
1(1), 2000.

[16] R. Singh, S. Gulwani, and A. Solar-Lezama.
Automated feedback generation for introductory
programming assignments. In PLDI, pages 15–26.
ACM, 2013.

[17] Typesafe. sbt. http://www.scala-sbt.org/.

[18] B. Venners. ScalaTest. http://www.scalatest.org/.

[19] A. Vihavainen, M. Luukkainen, and J. Kurhila.
Multi-faceted support for MOOC in programming. In
SIGITE, pages 171–176. ACM, 2012.

[20] G. L. Waddoups and S. L. Howell. Bringing online
learning to campus: The hybridization of teaching and
learning at brigham young university. The
International Review of Research in Open and
Distance Learning, 2(2), 2002.

[21] M. S. Ware and C. J. Fox. Securing Java code:
heuristics and an evaluation of static analysis tools. In
Proc. Static Analysis Workshop (SAW), Jun 2008.

