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Abstract

As the number of schema repositories grows rapidly and several web-based

platforms exist to support publishing schemas, schema reuse becomes a

new trend. Schema reuse is a methodology that allows users to create new

schemas by copying and adapting existing ones. This methodology sup-

ports to reduce not only the effort of designing new schemas but also the

heterogeneity between them. One of the biggest barriers of schema reuse

is privacy concerns that discourage the participants from contributing their

schemas. Addressing this problem, we develop a framework that enables

privacy-preserving schema reuse. To this end, our framework supports users

to define their own protection policies in the form of privacy constraints.

Instead of showing original schemas, the framework returns an anonymized

schema with maximal utility while satisfying these privacy constraints. To

validate our approach, we empirically show the efficiency of different heuris-

tics, the correctness of the proposed utility function, the computation time,

as well as the trade-off between utility and privacy.
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Introduction

Schema reuse is a new trend in creating schemas by allowing users to copy and adapt

existing ones. The key driving forces behind schema reuse are the slight differences be-

tween schemas in the same domain; thus making the reuse becomes realistic. Reusing

existing schemas supports to reduce not only the effort of creating a new schema but

also the heterogeneity between schemas. Moreover, as the number of publicly avail-

able schema repositories (e.g. schema.org[1], Factual[2], Socrata[3], niem.gov[4]) grows

rapidly and several web-based platforms (e.g. Freebase [5], Google Fusion Tables [6])

exists to support publishing schemas, reusing them becomes a great interest in both

academic and industrial world.

One of the biggest barriers of reuse is the privacy concerns that discourage the

participants from contributing their schemas [7]. In traditional approaches, all origi-

nal schemas and their own attributes are presented to users [8]. However, in practical

scenarios, the linking of attributes to their containing schemas, namely attribute prove-

nance, is dangerous because of two reasons. First, providing the whole schema leads

to privacy risks and potential attacks (e.g. SQL injection, see Appendix) on the owner

database. Second, since some parts of a schema are the source of revenue and business

strategy, the schema contributors want to protect these sensitive attributes to maintain

their competitiveness. As a result, there is a need of developing new techniques to cope

with these requirements.

In this paper, we develop a framework that protects attribute provenance in schema

reuse. To this end, our framework enables users to define their own protection policies

in terms of privacy constraints. Unlike previous works [8, 9, 10], we do not focus on

finding and ranking schemas relevant to a user search query. Instead, our framework

takes as input these relevant schemas and visualizes them in a unified view, namely

anonymized schema, which satisfies pre-defined privacy constraints. Constructing such

an anonymized schema is challenging because of three reasons. First, defining the rep-

resentation for an anonymized schema is non-trivial. The anonymized schema should

be concise enough to avoid overwhelming but also generic enough to provide compre-

hensive understanding. Second, for the purpose of comparing different anonymized
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schemas, we need to define a utility function to measure the amount of information

they carry. The utility value must reflect the conciseness and the completeness of an

anonymized schema. Third, finding an anonymized schema that maximizes the utility

function and satisfies privacy constraints is NP-complete.

The key contributions of this paper are as follows. First, we model the problem of

schema reuse with privacy constraints. In doing so, we propose a novel approach that

constructs an anonymized schema (unified view) of original ones. In this approach, we

introduce the concept of affinity matrix (represents a group of relevant schemas) and

presence constraint (is a privacy constraint that translates human-understandable poli-

cies into mathematical standards). Then we show how to check whether an anonymized

schema satisfies a pre-defined presence constraint using the probability theory.

Our second contribution is the development of a quantitative metric for assessing

the quality of an anonymized schema. This metric captures two important aspects:

(i) attribute importance—which reflects the popularity of an attribute—and (ii) com-

pleteness—which reflects the diversity of attributes in the anonymized schema. Both

of them are combined in a single comprehensive notion, called utility of an anonymized

schema.

As our final contribution, we show the intractability result for the problem of find-

ing an anonymized schema with maximal utility, given a set of privacy constraints.

Hence, we sketch out a heuristic-based algorithm and then improve its performance by

caching redundant computations and decomposing the set of privacy constraints into

inter-independent subsets, namely conflicting zones. Through experiments on real and

synthetic data, we show the effectiveness of our algorithm with proposed heuristics.

The paper is organized as follows. Section 2 gives an overview of our approach.

Section 3 formally introduces the notion of schema group, anonymized schema and pri-

vacy constraint. Section 4 shows how to measure the quality of an anonymized schema.

Section 5 demonstrates the intractability result and the heuristic-based algorithm to

the maximizing anonymized schema problem. Section 6 provides experiment results

establishing the efficacy of our framework. Section 7 and 8 present related work and

the conclusions.
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Overview

Figure 1.1 provides an illustration of schema reuse systems. In these systems, there is

a repository of schemas—which are contributed by many participants. These schemas

have similar meanings but different structures and vocabularies. We focus on the

scenario in which end-users want to design a new schema. To find relevant schemas

for their design, they will explore the repository through search queries [8, 9, 10]. In

traditional approaches, relevant schemas and their whole attributes are shown to users.

However, revealing sensitive attributes and their linking to containing schemas could

lead to privacy threats and unprivileged accesses (e.g. SQL injection, see Appendix).

For this reason, we propose a novel approach that shows a unified view of original

schemas, namely anonymized schema. In our approach, schema owners are given the

rights to protect sensitive attributes by defining privacy constraints. The resulting

anonymized schema has to be representative to cover original ones but opaque enough

to prevent leaking the provenance of sensitive attributes (i.e. the linking to containing

schemas).

Towards this approach, we propose a framework that enables privacy-preserving

schema reuse. The input of our framework is a group of schemas—which is relevant to

user query—and a set of privacy constraints—which translates human-understandable

policies into mathematically sound standards. Respecting these constraints, the frame-

work returns an anonymized schema with maximal utility, which reflects the amount

of information it carries. The problem of constructing such an anonymized schema

Table 2.1: Summary of Important Notations

Symbol Description

S = {si} a group of schemas
As a set of attributes of the schema s
C a set of attribute correspondences
M , I affinity matrix, affinity instance

Ŝ, Â anonymized schema, abstract attribute

u(Ŝ) utility of an anonymized schema
Γ = {γi} a set of privacy constraints
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is challenging and its details will be described in Section 5. Figure 1.2 depicts the

simplified process of our solution for this problem, starting with a schema group and

generated correspondences (solid lines) that indicates the semantic similarity between

attributes. First, we represent a schema group by an internal data structure, called

affinity matrix. In an affinity matrix, attributes in the same column belongs to the

same schema, while attributes in the same row have similar meanings. Next, we de-

rive various affinity instances by eliminating some attributes from the affinity matrix.

For each affinity instance, we construct an anonymized schema with many abstract at-

tributes. Each abstract attribute is a set of original attributes in the same row. Among

constructed anonymized schemas, we select the one that maximizes the utility function

and then present this “best” anonymized schema to user as final output. Table 2.1

summarizes important notations, which will described in the next section.

4



3

Model

In this section, we describe three important elements of our schema reuse ap-

proach: (i) schema group—a set of schemas relevant to a user search query, (ii)

anonymized schema—a unified view of all relevant schemas in the group, and (iii)

privacy constraint—a mean to represent human-understandable policies by mathemat-

ical standards. All these elements are fundamental primitives for potential applications

built on top of our framework.

3.1 Schema Group

First of all, we model a schema as a finite set of attributes As = {a1, ..., an}. Let

S = {s1, ..., sn} be a schema group that is a set of schemas relevant to a specific search

query. Let AS denote the set of attributes in S, i.e. AS =
⋃
iAsi . Two schemas can share

a common attribute; i.e. Asi ∩Asj 6= ∅ for some i, j. Given a pair of schemas s1, s2 ∈ S,

an attribute correspondence is an attribute pair (a ∈ As1 , b ∈ As2) that reflects the

similarity of their semantic meanings. The union of attribute correspondences for all

pairs of schemas is denoted as C, each of which is generated by well-known matchers

(e.g. COMA++ [11], AMC [12]).

To model a schema group as well as correspondences between attributes of its

schemas, we define an affinity matrix Mm×n as an internal data structure. Each of n

columns represents an original schema and its attributes. Each of m rows represents

an equivalence relation between attributes which belong to different schemas but have

similar meanings. More than that, an affinity matrix must satisfy following conditions,

which is designed specifically for the schema-reuse problem: (i) each element is either

an attribute or null, (ii) all attributes (not null) at column j belongs to the schema

sj ∈ S, (iii) all attributes (not null) at the same row are equivalent, and (iv) not exists

two attributes at different rows are equivalent. Formally, the definition of an affinity

matrix is given as follows.

Definition 1 Affinity Matrix. Given a schema group S and a set of correspondences
C, an affinity matrix is a matrix Mm×n such that: (i) ∀i , j : Mij ∈ A ∪ {null}, (ii)
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3.2 Anonymized Schema

∀i , j : Mij ∈ Asj , (iii) ∀i , j1 6= j2 ,Mij1 6= null ,Mij2 6= null : (Mij1 ,Mij2 ) ∈ C , and (iv)
@i1 6= i2 , j1 , j2 : (Mi1 j1 ,Mi2 j2 ) ∈ C .

Given a schema group S and a set of correspondences C, we can construct many

affinity matrices, but all of which are just permutations of rows. In order to construct

a unique affinity matrix, we define an order relation on AS. We consider each attribute

a ∈ AS as a character. The order relation between any two attributes is the alphabetical

order between two characters. Consequently, a row Mi. of the affinity matrix M is a

string of n characters. An affinity matrix is valid if the string of row r1 is less than the

string of row r2 (r1 < r2) with respect to the lexicographical order. Without loss of

generality, we hereby consider valid affinity matrices only.

Example 1 Consider a group of 3 schemas S = {s1,s2,s3} and their attributes As1 =
{a1, a2}, As2 = {b1, b2, b3}, As3 = {c1, c2, c3}. We have 8 correspondences C =
{(a1, b1), (a1, c1), (b1, c1), (a2, b2), (a2, c2), (b2, c2), (b3, c3)}. Assume that the lexi-
cographical order of all attributes is a1 < a2 < b1 < b2 < b3 < c1 < c2 < c3. Then
we can construct a unique affinity matrix M for this schema group and these corre-
spondences as in fig. 1.2. The string of the first, second, third row of M is “a1b1c1”,
“a2b2c2”, “b3c3” respectively. M is valid because “a1b1c1” < “a2b2c2” < “b3c3” with
respect to the assumed lexicographical order.

In summary, an affinity matrix is an internal data structure that represents a schema

group and generated correspondences. Based on the affinity matrix, we can construct

anonymized schemas as well as define privacy constraints. These concepts will be de-

scribed in next subsections. For simplicity sake, the scope of this paper only focuses on

one-to-one correspondences. Most well-known matching tools [11, 12] generate this type

of correspondence, which relates an attribute of one schema to at most one attribute

in another schema. Nonetheless, it must be noted that our model can be extended

to one-to-many correspondences (one source attribute to many target attributes) by

representing a group of target attributes as a ‘complex’ attribute [13]. Following this

representation, we can treat these correspondences as their one-to-one counter-parts.

3.2 Anonymized Schema

As mentioned above, showing original schemas is dangerous. Although we can hide the

identity of schema owners, an adversary can still see the whole schema and make use

of external information (e.g. list of possible contributors) to exploit the provenance of

presented attributes. Moreover, when the number of relevant schemas in a group is

small, the adversary can easily “generate and test” all possible combinations to know

which schema belongs to which owner. Therefore, instead of showing original schemas,

we unify them into only a single one, namely anonymized schema.

An anonymized schema should meet following desirable properties: (i) representa-

tion, and (ii) anonymization. First, the anonymized schema has to be representative to

6



3.2 Anonymized Schema

cover the attributes of a schema group. It should show to end-user all possible attributes

and the variations of each attribute. By showing these important attributes as well as

their variations (i.e. same meaning but different name), the anonymized schema should

cover enough information but not overwhelming. Second, the anonymized schema

should be opaque enough to prevent adversaries from reconstructing a part or the whole

of an original schema. For example in Figure 1.2, given the schema group S1, S2, S3,

the anonymized schema should show that there are three distinct attributes Name,

CCNum, and Expiry. In that, the attribute Name has two variations Name and

Holder. Whereas, the attribute CCNum and Expiry have three variations (Num,

CCNum, CC) and one variation (Expiry), respectively.

Our approach is inspired by the generalization technique [14], with some modifi-

cations, to protect the owners of original schemas. In this technique, the schemas are

combined together such that if a user were to reuse existing schema attributes, he

would not know to which owner they belong. One benefit of our approach is that the

reconstruction of original schemas from an anonymized schema is extremely hard. The

“generate and test” attack is not effective due to the combinatorial explosion of linking

each attribute to its schema and each schema to its owner. In fact, there are many other

approaches to define an anonymized schema, such as randomization and suppression

[15][16]. Randomization is simply adding noisy attributes; while in suppression, the

attributes which need to be protected are replaced by special values (e.g. ‘*’). Using

these methods has some disadvantages. Regarding randomization, it might be easy

for an adversary to detect noises since each attribute has semantic. For example, we

add a noise Nmea for the attribute Name, this noisy attribute has no meaning and

can be detected. Concerning suppression, replacing an important attribute or schema

could lead to loss of information or misleading semantics. For example, if the attribute

CCNum is replaced by ‘*’, user would not know attribute Expiry is the expired date of

credit card. These are the reasons why we opt for the generalization technique, which

is most relevant to our setting, to develop the solution.

Now we introduce how to construct anonymized schemas from a given schema group.

To do this, we represent them as internal data structures called affinity instances. An

affinity instance Im×n is constructed from an affinity matrix Mm×n by removing one

or many cells; i.e. ∀i , j : Iij = Mij ∨ Iij = null . Formally, an anonymized schema Ŝ is

constructed from an affinity instance Im×n as follows.

Ŝ = {Â1, . . . , Âm | Âi =
⋃

1≤j≤n
Iij} (3.1)

where Â is an abstract attribute (a set of attributes at the same row). In other words,

an abstract attribute of an anonymized schema is a set of equivalent attributes (i.e.

any pair of attributes has a correspondence). Following the running example in Figure

1.2, a possible affinity instance is I1 and the corresponding anonymized schema is

Ŝ1 = {Â′1 , Â2} with Â′1 = {a1 , b1} and Â2 = {a2 , b2 , c2}.

7



3.3 Privacy Constraint

With this definition, the anonymized schema meets two aforementioned properties—

representation and anonymization. First, the representation property is satisfied be-

cause by showing abstract attributes, users can observe all possible variations to design

their own schemas. Second, the anonymization property is satisfied because it is non-

trivial to recover the original affinity matrix from a given anonymized schema. In the

next section, we will illustrate this property in terms of the probability that an adver-

sary can construct an original schema (column of affinity matrix) from a set of abstract

attributes (elements of anonymized schema).

3.3 Privacy Constraint

Privacy constraint is a mean to represent human-understandable policies by mathe-

matical standards. In order to define a privacy constraint, we have to identify two

elements:

• Sensitive information. In our setting, the sensitive information is attributes of a

given schema. We need to protect this information because of two reasons. First,

each attribute has different levels of sensitivity (e.g. credit card number is more

sensitive than phone number). Second, some attributes are the source of revenue

and business strategy and can only be shared under specific conditions.

• Privacy requirement. In this paper, the privacy requirement is to prevent adver-

saries to infer the provenance of sensitive attributes. By knowing which attribute

belongs to which schema, an adversary can attack the database system using

various techniques such as SQL injection (see Appendix).

To capture these elements, we employ the concept of presence constraint that allows

contributors to represent their privacy policies in terms of mathematical formulas. A

presence constraint defines an upper bound of the probability Pr(D ∈ s|Ŝ) that an

adversary can infer the presence of a set of attributes D in a particular schema s, if

he sees an anonymized schema Ŝ. The formal definition of the presence constraint is

given as follows.

Definition 2 Presence Constraint. A presence constraint γ is a triple 〈s,D, θ〉,
where s is a schema, D is a set of attributes, and θ is a specified threshold. An
anonymized schema Ŝ satisfies the presence constraint γ if Pr(D ∈ s|Ŝ) ≤ θ.

Checking presence constraint. Now we show how to check an anonymized schema

satisfying a presence constraint. Given an anonymized schema Ŝ constructed from the

affinity instance I and a presence constraint γ = 〈s,D, θ〉, we can check whether Ŝ

satisfies γ by computing the probability Pr(D ∈ s | Ŝ) as follows:

Pr(D ∈ s | Ŝ ) =

{
1∏n

i=1 |Âi|
, if Â1, . . . , Âk 6= ∅

0, otherwise
(3.2)

8



3.3 Privacy Constraint

where D = {a1, . . . , ak} is a subset of attributes of s and Âi ∈ Ŝ is the abstract attribute

(a group of attributes at the same row of I) that contains ai. In case there is no abstract

attribute which contains ai, we consider Âi = ∅. Note that the presence constraint is

often defined on a set of attributes, not one attribute. This is because in real scenarios,

leaking information of only one attribute is far less dangerous than that of two or more

attributes (e.g. revealing both the credit card number and the security code is more

dangerous than revealing only one of them).

Example 2 Continuing our running example in Fig. 1.2, we consider the anonymized
schema Ŝ = {Â1, Â2}, where Â1 = {a1, c1} and Â2 = {a2, b2}. Based on eq. (3.2),
we have Pr({a1, a2} ∈ s1 | Ŝ) = 1

|Â1|·|Â2|
= 0.25. Obviously, Ŝ satisfies γ1 =

〈s1, {a1, a2}, 0.6〉 but does not satisfies γ2 = 〈s1, {a1, a2}, 0.1〉.

Privacy vs. utility trade-off. It is worth noting that there is a trade-off between

privacy and utility [18]. In general, anonymization techniques reduce the utility of

querying results when trying to provide privacy protection [19]. On one hand, the utility

of an anonymized schema is maximal when there is no presence constraint (i.e. θ = 1).

On the other hand, when user set the threshold θ of a presence constraint 〈s,D, θ〉
very small (closed to 0), D will not appear in the anonymized schema. Consequently,

the utility of this anonymized schema is low since we loss the information of these

attributes. As a result, privacy should be seen as a spectrum on which users can

choose their place. From now on, we use two terms—privacy constraint and presence

constraint—interchangeably to represent the privacy spectrum defined by users.

9



4

Anonymized Schema Quality

In this section, we will discuss about the quality of an anonymized schema. Technically,

the quality of an anonymized schema Ŝ is measured by a utility function u : S → R,

where S is the set of all possible anonymized schemas. The utility value reflects the

amount of information Ŝ carries. To define this utility function, we first introduce two

main properties of an anonymized schema in the next two subsections: importance and

completeness.

4.1 Importance

The importance of an anonymized schema is measured by the popularity of attributes

it contains. The higher popularity of these attributes, the higher is the importance

of this anonymized schema. Technically, we denote the importance of an anonymized

schema as a function σ : S̄ → R and the popularity of an attribute as a function

t : AS → [0, 1], where AS is a set of possible attributes and the domain value of t is

normalized to [0, 1] for comparison purposes. There are many aggregate methods (e.g.

sum, average) to define σ(.) from t(.). In this paper, we compute the importance of a

particular anonymized schema Ŝ by summing over the popularity of all attributes in

Ŝ; i.e. σ(Ŝ) =
∑

a∈Ŝ t(a). Consequently, we could say that one anonymized schema

is important than another anonymized schema because it has more attributes or its

attributes are more popular than those of the other anonymized schema.

We compute the popularity of an attribute t(.) based on two kinds of information,

which capture the relationship between attributes and their containing schemas:

• Cardinality. The cardinality of an attribute is the number of schemas it appears

in. If there are many schemas containing an attribute, then that attribute is likely

to be of greater popularity than another one with fewer schemas.

• Significance. The significance of a schema is measured by following observations.

A schema is significant than another schema if it contains more popular attributes.

At the same time, an attribute which belongs to more significant schemas is more

popular than those with less significant schemas.

10



4.2 Completeness

As we attempt to develop a model that combines these two concepts, we notice some

similarities to the world-wide-web setting. In this setting, the importance of a web

page is determined by both the goodness of the match of search terms on the page

itself and the links connecting to it from other important pages. Adapting this idea

to our context, we apply the hub-authority model [20] to quantify the popularity of

an attribute and the significance of related schemas. The details of this model are

described in the Appendix.

4.2 Completeness

The completeness reflects how well an anonymized schema collectively covers the at-

tributes of original schemas, with each abstract attribute is responsible for original

attributes it represents. This coverage is necessary to penalize trivial anonymized

schemas that contain only one attribute appearing in all original schemas. To moti-

vate the use of this property, we illustrate some observations in Figure 1.2. In this

running example, Ŝ2 has more abstract attributes than Ŝ3 (Ŝ2 has three while Ŝ3 has

two). As Ŝ3 is lack of information about CCNum or CC attributes, users would prefer

Ŝ2 in order to have a better overview of necessary attributes for their schema design.

Intuitively, an anonymized schema is more preferred if it covers more information of

original schemas.

In this paper, we measure the completeness of an anonymized schema by the num-

ber of abstract attributes it contains. The more abstract attributes, the higher is the

completeness. Technically, the completeness is defined as a function λ : S̄ → R and

λ(Ŝ) = |Ŝ|. Although the importance of an anonymized schema captures the popular-

ity of covered attributes, it clearly does not reflect how many attributes covered by this

anonymized schema. Complementing this aspect, the completeness is practically sig-

nificant since in schema design, users usually prefer more attributes with less variations

rather than less attributes with more variations.

4.3 Put It All Together

As mentioned above, there are two properties (importance and completeness) needs to

be considered for the purpose of comparing different anonymized schemas. We attempt

to combine these properties into a single comprehensive notion of utility that measures

the quality of an anonymized schema. Formally, we have:

u(Ŝ) = w × σ(Ŝ) + (1− w)× λ(Ŝ) (4.1)

where w ∈ [0, 1] is a regularization parameter that controls the trade-off between com-

pleteness and importance. In terms of comparison, an anonymized schema is more

preferred than another anonymized schema if its utility is higher. Back to the running

11



4.3 Put It All Together

example in Figure 1.2, consider three anonymized schemas Ŝ1, Ŝ2 and Ŝ3. By defi-

nitions, we have σ(Ŝ1) = 5, σ(Ŝ2) = σ(Ŝ3) = 4 and λ(Ŝ1) = λ(Ŝ2) = 3, λ(Ŝ3) = 2.

Assuming w = 1, we have u(Ŝ1) > u(Ŝ2) > u(Ŝ3). Ŝ1 is more preferred than Ŝ2 since Ŝ1

contains more original attributes (importance property). While, Ŝ2 is more preferred

than Ŝ3 since Ŝ2 contains more abstract attributes (completeness property).

12



5

Maximizing Anonymized Schema

Maximizing anonymized schema is the selection of an optimal (w.r.t. utility function)

anonymized schema among potential ones that satisfy pre-defined privacy constraints.

Formally, the maximization problem of our schema reuse setting is defined as follows.

Problem 1 (Maximizing Anonymized Schema) Given a schema group S and a
set of privacy constraints Γ, construct an anonymized schema Ŝ such that Ŝ satisfies
all constraints Γ, i.e. Ŝ |= Γ, and the utility value u(Ŝ) is maximized.

Now we present an intractability result for the decision version of maximizing

anonymized schema, showing that the problem is NP-complete even for a group of

only one schema.

Theorem 1 Let S be a schema group and Γ be a set of privacy constraints. Then, for
a constant U , the problem of determining if there exists an anonymized schema Ŝ |= Γ,
whose utility value u(Ŝ) is at most U , is NP-complete.

Proof 1 (Sketch) To show the decision problem is NP-complete, let us consider a
special case in which the schema group contains only one schema and all presence
constraints are defined on every pairs of attributes with threshold θ = 0. This spe-
cial case can be transformed into the Independent Set problem, which is known to be
NP-complete. The full proof is omitted here for brevity sake and can be found in the
Appendix.

In brief, solving the problem of maximizing anonymized schema requires investigat-

ing all permutations of all subsets of correspondences. As such, the space that needs to

be explored is exponential in the size of the set of generated correspondences. In the

next section, we consider the heuristic-based approach to relax optimization constraints

and find the approximate solution in polynomial time.
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5.1 Algorithm

5.1 Algorithm

In light of Theorem 1, we necessarily consider heuristic approaches to the maximizing

anonymized schema problem. Our heuristic-based algorithm takes two parameters as

input: a schema group modeled by an affinity matrixM and a set of presence constraints

Γ. It will efficiently return an approximate solution—an anonymized schema Ŝ which

satisfies Γ—with the trade-off that the utility value u(Ŝ) is not necessarily maximal.

In fact, we found it non-trivial to develop such an algorithm. The key difficulty is

that during the optimization process, repairing the approximation solution to satisfy

one constraint can break another. At a high level, our algorithm makes use of greedy

and local-search heuristics to search the optimal anonymized schema in the space of

conflict-free candidates (i.e. anonymized schemas without violations). The details are

illustrated in Algorithm 1 and described in what follows.

Algorithm 1: Heuristics-based Algorithm
input : 〈M,Γ〉 // An affinity matrix M and a set of predefined constraints Γ
output: Iop // Maximal Affinity Instance
denote: u(I−a): utility of I after removing attribute a out of I

u(I+a): utility of I after adding attribute a into I
1 Adel = ∅ // Set of deleted attributes; Γs = ∅ // Set of satisfied constraints
2 I = M
3 while Γs 6= Γ do
4 /* Violation Repair: greedy deletion until satisfying constraints */

5 â = argmaxa∈{Iij} u(I−a)

6 I.delete(â); Adel = Adel ∪ {â}
7 Γs = I.checkConstraints()

8 Iop = I; T = Queue[k] // a queue with fixed size k
9 while ∆stop do

10 /* Local search by non-deterministic insertion */

11 Ω = {〈a, u(I+a)〉 : a ∈ Adel}}
12 â = Ω.rouletteSelection()
13 I.add(â) ; T.add(â)
14 Γs = I.checkConstraints()
15 while Γs 6= Γ do
16 /* Violation Repair: greedy deletion until satisfying constraints */

17 â = argmaxa∈{Iij}\T u(I−a)

18 I.delete(â)
19 Γs = I.checkConstraints()

20 if u(I) > u(Iop) then
21 Iop = I

22 return Iop

Technically, we begin by constructing a valid affinity instance from the original

affinity matrix (line 2 to line 7). The core idea is we generate an initial affinity instance

I = M and then continuously remove the attributes of I until all constraints are satisfied

(Γs = Γ). The challenge then becomes how to choose which attributes for deletion

such that the resulting instance has maximal utility. To overcome this challenge, we

use a repair routine (line 3 to line 7) which greedily removes the attributes out of I

to eliminate all violations. The greedy choice is that at each stage, we remove the

14
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attribute â with lowest utility reduction (line 5); i.e. choose an attribute a such that

the utility of I after removing a is maximized. However, this greedy strategy could

make unnecessary deletions since some constraints might share common attributes, thus

making the utility not maximal. For example in Figure 1.2, consider the anonymized

schema Ŝ = {{a1, c1}, {a2, b2}} with two predefined constraints γ1 = Pr(a1 ∈ s1 | Ŝ) ≤
0.4 and γ2 = Pr({a1, a2} ∈ s1 | Ŝ) ≤ 0.1. The best way to satisfy these constraints is

removing only attribute a2, but the algorithm will delete a1 first and then a2. Hence,

we need to insert a2 back into Ŝ to increase the utility. For this purpose, Adel stores

all deleted attributes (line 6) for the following step.

The above observation motivates the next step in which we will explore neighbor

instances using local search and keep track of the instance with highest utility (line 9

to line 21). Starting with the lower-bound instance from the previous step (Iop = I),

the local search is repeated until the termination condition ∆stop is satisfied (e.g. k

iterations or time-out). In each iteration, we incrementally increase the utility of the

current instance I by reverting unnecessary deletions from the previous step. The

raising issue is how to avoid local optima if we just add an attribute with highest

utility gain; i.e. choose an attribute a such that the utility of I is maximized after

adding a. To tackle this issue, we perform two routines:

• Insertion. Each attribute a ∈ Adel is a possible candidate to insert into I (line

11). We use Roulette-wheel selection [21] as a non-deterministic strategy, where

an attribute with greater utility has higher probability to add first (line 12).

• Repair. When a particular attribute is inserted, it might make some constraints

unsatisfied (Γs 6= Γ). Thus, the repair routine is invoked again to eliminate new

violations by removing the potential attributes out of I (line 15 to line 19).

In an iteration of local-search, an attribute could be inserted into an affinity instance

and then removed immediately by the repair routine, making this instance unchanged

and leading to being trapped in local optima. For this reason, we employ the Tabu

search method [22] that uses a fixed-size “tabu” (forbidden) list T of attributes so that

the algorithm does not consider these attributes repeatedly. In the end, the maximal

affinity instance Iop is returned by selecting the one with the highest utility among

explored instances (line 21).

5.2 Algorithm Analysis

Our algorithm is terminated and correct. Termination follows from the fact that the

stopping condition ∆stop can be defined to execute at most k iterations (k is a tuning

parameter). The correctness follows from the following points. (1) When a new at-

tribute a added into I (line 13) violates some constraints, I is repaired immediately.

This repair routine takes at most O(|M |), where |M | is the number of attributes of the

schema group represented by M . (2) The newly added attributes are not removed in

the repair routine since they are kept in the “tabu” list T . The generation of Ω takes

at most O(|M |). (3) Iop always maintains the instance with maximal utility (line 21).
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Sum it up, the worse-case running time is O(k × |M |2)—which is reasonably tractable

for real datasets.

Looking ahead for repair cost. We have another approach to improve the repair

technique. The goal of this approach is to avoid bad repairs (that cause many deletions)

by adding some degree of lookahead to the repair cost (i.e. number of deletions). In

Algorithm 1, the utility value u(I−a) is used as an indicator to select an attribute

for deletion. Now we modify this utility value to include a look-ahead approximation

of the cost of deleting one further attribute. More precisely, when an attribute a is

considered for deletion (first step), we will consider a next attribute a′ given that a

is already deleted (second step). Our look-ahead function will be the utility of the

resulting instance after these two steps. In other words, we prevent a bad repair by

computing the utility of the resulting instances one step further.

5.3 Improving Performance

After analyzing the complexity of our algorithm, we attempt to improve its performance

by using two important heuristics.

Redundant Computation. We avoid redundant computations of checking privacy

constraints by tracking unsatisfied constraints. The rationale behind this heuristic

is that a modification of instance (adding or removing one attribute) only affects a

few constraints. Thus, it is imprudent to re-check all constraints per modification.

Technically, we propose an important efficiency optimization by keeping track of all

unsatisfied constraints for each attribute. To accomplish this, we maintain an internal

data structure 〈a,Γa〉 which map each attribute a to a set of constraints Γa ⊆ Γ in which

a involved. Denote Γu is a set of unsatisfied constraints. Specially, we improve the

function checkConstraints() by following maintenance mechanism: (i) Initialization -

for each attribute a, Γa initially contains all constraints that involve a, Γu is initialized

as empty. (ii) Each repair step - when an attribute a is deleted from the current instance

I, new violated constraints in Γs moved to Γu and then all constraints Γa are removed

out of Γu. (iii) Each insertion step - when an attribute a is inserted to the current

instance I, re-check all constraints in Γa then these satisfied and unsatisfied constraints

are added into Γs and Γu respectively.

This maintenance is efficient due to the following observations. In the repair routine,

the rule (ii) works since a constraint violation will become valid if any attribute involved

in the violation is removed. However, this observation is not totally valid for the

insertion routine. When we insert an attribute a, not all constraints related to a are

violated, depending on the existence of other involved attributes. Although we need

to re-check these constraints Γa, this computation is several orders of magnitude faster

the checking of all constraints Γ since |Γa| � |Γ|. As a result, this optimization is

practically important and always used in our experiments.
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Constraint Decomposition. The key challenge in the maximizing anonymized schema

problem is satisfying one constraint (through deletion and insertion of attributes) can

break other constraints. In other words, two constraints are independent of each other

if satisfying one of them does not affect the other. To reduce the complexity, we decom-

pose the set of presence constraints into inter-independent subsets, called conflicting

zones in which any two constraints in two different zones are independent of each other.

Technically, let D1 and D2 are the sets of attributes involved in the constraint γ1 and γ2,

respectively. Let M be an affinity matrix and Mr is a set of all attributes at the row r.

Two constraints γ1 and γ2 are dependent iff exists a row r of M such that D1∩Mr 6= ∅
and D2 ∩Mr 6= ∅. Based on this relationship, we build a graph G = (V,E), where a

vertex v ∈ V is a constraint, an edge e = (vi, vj) ∈ E indicates the dependence between

vi and vj . A conflicting zone z is a connected component of G. Finding the set of all

connected components can be computed efficiently in O(|V |+ |E|) time.

Now we show that constraint decomposition significantly reduces the complexity of

our problem. The original problem is now divided into sub-problems—each of which

is the maximizing anonymized schema problem for a given zone z. We denote |z| is

the number of attributes in this zone; i.e. |z| = |
⋃
Di : γi ∈ z|. One can imagine that

the naive approach of a sub-problem is enumerating all possible subsets of attributes,

the number of which is 2|z|. Without partitioning, the cost of finding a solution for the

original problem is O(2|z1|+...+|zk|). With partitioning, we simply combine the solutions

of sub-problems to construct that solution in O(2|z1| + . . .+ 2|zk|) time. Since O(2|z1| +

. . . + 2|zk|) << O(2|z1|+...+|zk|), this optimization is significantly useful and empirically

studied in our experiments.
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6

Experiments

The main goal of the following evaluation is to examine our approach about schema

reuse with privacy constraints. To verify the effectiveness of the proposed framework

in designing and constructing the anonymized schema, following experiments are per-

formed: (i) effects of different heuristics for the maximizing anonymized schema prob-

lem, (ii) the correctness of utility function, (iii) the computation time of our heuristic-

based algorithm in various settings, and (iv) the tradeoff between utility and privacy.

We proceed to report the results on real datasets and synthetic data.

6.1 Experimental Settings

Datasets. Our experiments will be conducted on two types of data: real data and

synthetic data. While the real data provides a pragmatic view on real-world scenarios,

the synthetic data helps to evaluate the performance with different settings.

• Real Data. For evaluation purposes, we only examine well-known datasets for

which the sources are available and licensing permits their use. We have used

3 real-world datasets, extracted from various domains: Google Fusion Tables,

UniversityAppForm, and WebForm. They are publicly available on our website 1

for repeatability and extensibility.

• Synthetic Data. In order to have the flexibility of controlling many parameters

(input size, privacy threshold, number of constraints etc.), we also use synthetic

data. We want to simulate practical cases in which one attribute is used re-

peatedly in different schemas (e.g. ‘username’). To generate a set of n synthetic

schemas, two steps are performed. In the first step, we generate k core schemas,

each of which has m attributes, such that all attributes within single schema as

well as across multiple schemas are completely different. Without loss of general-

ity, for any two schemas a and b, we create all 1-1 correspondences between their

1http://lsirwww.epfl.ch/schema_matching
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attributes; i.e. (ai, bi)1≤i≤m. In the second step, n−k remaining schemas are per-

muted from k previous ones. For each schema, we generate m attributes, each of

which is copied randomly from one of k attributes which have all correspondences

between them; i.e. attributes at the same row of the affinity matrix.

Privacy Constraints. To generate a set of privacy constraints Γ for simulation, we

need to consider two aspects:

• The number of attributes per constraint. To mix the constraints with different

size, we set a parameter αi as the number of constraints with i attributes. Since

the chance for an adversary to conclude a group of four or more attributes is

small, we only consider constraints with less than four attributes (i.e. αi≥4 = 0).

For all experiments, we set α1 = 50%, α2 = 30%, and α3 = 20%.

• Privacy threshold. We generate the privacy threshold θ of all constraints according

to uniform distribution in the range [a, b], 0 ≤ a, b ≤ 1. In all experiments, we set

a = (1/n)i and b = (2/n)i, where n is the number of schemas and i is the number

of attributes in the associated constraint.

In general, the number of constraints is proportional to the percentage of the total

number of attributes; i.e. |Γ| ∝ m ·n). In each experiment, we will vary the percentage

value differently.

Evaluation Metrics. Beside measuring the computation time to evaluate proposed

heuristics, we also consider two important metrics:

• Privacy Loss. Privacy loss measures the amount of disagreement between the

two probability distributions: actual privacy and expected privacy. Technically,

given an anonymized schema Ŝ and a set of presence constraints Γ = {γ1, . . . , γn}
where γi = 〈si, Di, θi〉, we denote pi = Pr(Di ∈ si|Ŝ). Privacy loss is computed

by the Kullback-Leiber divergence between two distributions P = {pi} (actual)

and Θ = {θi} (expected):

∆p = KL(P ‖ Θ) =
∑
i

pi log
pi
θi

(6.1)

• Utility Loss. Utility loss measures the amount of utility reduction with regard

to the existence of privacy constraints. Technically, denote u∅ is the utility of

an anonymized schema without privacy constraints and uΓ is the utility of an

anonymized schema with privacy constraints Γ, utility loss is calculated as:

∆u =
u∅ − uΓ

u∅
(6.2)

We implement our schema reuse framework in Java and use it to evaluate the effective-

ness of our approach. All the experiments ran on an Intel Core i7 processor 2.8 GHz

system with 4 GB of RAM.
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6.2 Effects of Heuristics

This experiment will compare the utility loss of the anonymized schema returned by dif-

ferent heuristics. As aforementioned in Section 5, the maximizing anonymized schema

problem is NP-Complete and a heuristic-based algorithm is proposed. In this experi-

ment, we study the proposed algorithm with two heuristics, namely: (1) Greedy (with-

out lookahead): choose candidate attributes with the original utility function, and (2)

Lookahead (greedy with lookahead): choose candidate attributes by using the modified

utility function with looking ahead of utility change. We use a synthetic data with a

random number of schemas n ∈ [50, 100] and each schema has a random number of

attributes m ∈ [50, 100]. In that, the copy percentage is varied from 10% to 20%; i.e.

k/n ∈ [0.1, 0.2]. The number of constraints is varied from 5% to 50% of total number

of attributes. The results for each configuration are averaged over 100 runs. Regarding

utility function, we set w = 1 which means the completeness is equally preferred as the
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6.3 Correctness of Utility Function

importance.

Figure 6.1 depicts the result of two described heuristics. The X-axis shows the

number of constraints, while the Y-axis shows the utility loss (the lower, the better). A

noticeable observation is that the Lookahead heuristic performs better than the Greedy

heuristic. Moreover, when there are more constraints, this difference is more significant

(up to 30% when the number of constraints is 50%). This is because the Lookahead

heuristic enables our algorithm to foresee and avoid bad repairs, which cause new

violations when eliminating the old ones, thus improves the quality of the result.

6.3 Correctness of Utility Function

In this experiment, we would like to validate the correctness of our utility function by

comparing the results of the proposed algorithm with the choices of users. Technically,

we expect that the ranking of anonymized schemas by utility function is equivalent

to their ranking by users. Regarding the setting, we use the real data to extract 20

different schema groups, each of which is constructed by extracting random numbers

of schemas and attributes. For each group, we present five of constructed anonymized

schemas (ranked #1,#2,#3,#4,#5 by the decreasing order of utility) to 10 users

(users do not know the order). These presented anonymized schemas are not top-5,

but taken from the highest such that the utility difference between two consecutive

ranks is at least 10% to avoid insignificant differences. Each user is asked to choose

the best anonymized schema in his opinion (200 votes in total). We fix the number

of constraints at 30% of total attributes. Since the Lookahead strategy is better than

the Greedy strategy as presented in the previous experiment (Section 6.2), we use it to

construct anonymized schemas.

The results are depicted in Figure 6.2. X-axis shows top-5 anonymized schemas

returned by our algorithm. Y-axis presents the selection rate (percentage of users voting

for an anonymized schema), averaged over all schema groups. A key finding is that the

order of selection rate corresponds to the ranking of solutions by the utility function.

That is, the first-rank anonymized schema (#1) has highest selection rate (55%) and

the last-rank anonymized schema (#5) has lowest selection rate (1%). Moreover, most

of users opt for the first-rank and second-rank solution (88% in total), indicating that

our algorithm is able to produce anonymized schemas similar to what users want in

real-world datasets.

6.4 Computation Time

Various schema-reuse applications often have limited resources on computing speed,

or pre-defined timeouts on searching queries. As a result, the computation time to

construct an anonymized schema becomes an important aspect, when we consider dif-

ferent heuristics. In this experiment, we design various settings to study this aspect
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with two above-mentioned strategies (Greedy vs. Lookahead) using synthetic data. In

each setting, we measure the average computation time over 100 runs.

Effects of Input Size. In this setting, the computation time is recorded by varying the

input size of the affinity matrix; i.e. the number of schemas and the number of attributes

per schema. Table 6.1 shows the output of this setting. A significant observation is that

the Greedy strategy outperforms the Lookahead strategy. For example with the largest

input size (50× 100), while the Greedy strategy returns the result less than 7 seconds,

the Lookahead strategy exceeds 3000 seconds, which is not suitable for applications that

require fast response time. This is because the cost of looking-ahead utility change is

expensive with the trade-off that the utility loss is smaller as presented in the previous

experiment (Section 6.2). We recommend interested readers to use this result as a

guideline to choose the best-suited heuristics for their specific applications.

Effects of Constraints Size. In this setting, the computation time is recorded by

varying #constraints from 5% to 50% of total number of attributes. Based on results

of the previous setting, we fix the input size at 20× 50 for a low starting point. Figure

6.3 illustrates the output, in which the X-axis is the constraint size and the Y-axis is

the computation time (ms.) in logarithmic scale of base 2.

A noticeable observation is that the Lookahead strategy is much slower than the

Greedy strategy. For example, with #constraints of only 5%, the Greedy strategy is

already 4-times faster than the Lookahead strategy and this difference is larger with

more constraints. In fact, adding degrees of look-ahead into utility function actually

degrades the performance. The running time of those extra computations increases

due to the large number of combinations of privacy constraints. Like the previous

setting, potential applications should make use of this result to choose the best strategy

accordingly, in terms of both utility and computation time.

Effects of Constraint Decomposition. Now we study the impact of constraint

decomposition on the computation time. In this setting, we report only the Greedy

strategy (the Lookahead strategy is omitted due to similar behaviors). The compu-

tation time is compared between two cases: (i) Greedy strategy without constraint

decomposition, and (ii) Greedy strategy with constraint decomposition. In the former

case, the Greedy strategy is applied on the original problem; while in the latter case, we

Table 6.1: Computation Time (log2 of msec.)

Size of M * Greedy LookAhead

10 × 20 2.58 5.04
10 × 50 5.13 10.29
20 × 50 7.30 13.36
20 × 100 9.95 17.60
50 × 100 12.62 21.58

* m×n: m attributes (per schema) and
n schemas
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divide the original problem into independent sub-problems (as described in Section 5.3)

and then apply the Greedy strategy sequentially. The running time of combining solu-

tions of all sub-problems is not counted since it is much smaller than the computation

time of each solution itself.

The results are presented in Figure 6.4.The X and Y axes corresponds to the num-

ber of constraints (varied from 5% to 30% of total attributes) and computation time,

respectively. One can observe that constraint decomposition dramatically reduces the

computation time. This is compatible with results of the previous setting, in which

the computation time is significantly smaller with fewer constraints. Moreover, the

constraint decomposition also enables us (in future work) to extend proposed heuris-

tics with parallel computing, which is especially useful when the problem size is much

larger.

6.5 Trade-off between Privacy and Utility

In this experiment, we validate the trade-off between privacy and utility. As pointed out

in Section 3.3, the utility of the resulting anonymized schema reduces when we enforce

high privacy. Thus, we gave users a parameter (i.e. presence threshold θ) to specify the

privacy according to their expectations. To support users decide on the appropriate

value of θ, we examine its effects. More precisely, we relax each presence constraint

γ ∈ Γ by increasing the threshold θ to (1 + r)θ, where r is called relaxing ratio and

varied according to normal distribution N(0.3, 0.2). Based on previous experiments, we

use the Lookahead strategy on the synthetic data with different input size and fix the

number of constraints at 30% of total attributes. For a resulting anonymized schema,

privacy is quantified by privacy loss (eq. (6.1)), while utility is quantified by utility

loss (eq. (6.2)). For comparison purposes, both utility loss and privacy loss values

are normalized to [0, 1] by the thresholding technique: ∆u = ∆u−min∆u
max∆u−min∆u

and ∆p =
∆p−min∆p

max∆p−min∆p
, where max∆u, min∆u, max∆p, min∆p are the maximum and minimum

values of utility loss and privacy loss in this experiment.
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Figure 6.5 shows the distribution of all the points whose x and y values are pri-

vacy loss and utility loss, respectively. Each point represents the resulting anonymized

schema in a specific configuration of the relaxing ratio and the input size. One can

easily observe a trade-off between privacy and utility: the utility loss decreases when

the privacy loss increases and vice-versa. For example, the maximal privacy (privacy

loss = 0) is achieved when the utility is minimal (utility loss = 1). This is because the

decrease of presence threshold θ will reduce the number of presented attributes, which

contributes to the utility of resulting anonymized schemas.
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7

Related Work

We now review salient work in schema reuse, privacy models, anonymization tech-

niques, and utility measures that is related to our research. Some concepts are briefly

interpreted in our setting.

Schema reuse. There is a large body of research on schema-reuse. Some of the works

focus on building large-scale schema repositories [6, 8, 23, 24], designing management

models to maintain them [25, 26], and establishing semantic interoperability between

collected schemas in those repositories [11, 27, 28]. While, some of the others support to

find relevant schemas according to a user query, including similarity metrics [9, 10, 29],

techniques to speed-up the querying process by clustering relevant schemas into multiple

domains [30], and visualization aspects [31, 32]. In the context of reusing information,

there is another approach that reuses the design of databases through ERD models

[33]. This approach is out of the scope of this paper. Unlike these works, we aim at

reusing schemas with privacy constraints for the purpose of encouraging contributors

to share their schemas.

Privacy Models. Privacy model is a mean to prevent information disclosure by

representing user-defined policies under mathematical standards. Numerous types of

information disclosure have been studied in the literature [34], such as attribute disclo-

sure [35] and identity disclosure [36], and membership disclosure [37]. In the context

of schema reuse, the linking of attribute to its containing schema is considered as an

information disclosure. There is a wide body of work have proposed privacy models,

including k-anonymity [38], l-diversity [39], and t-closeness [40]. These models can

be interpreted in the schema-reuse setting as follows. The k-anonymity model pre-

vents identity disclosure by requiring each attribute is indistinguishable from at least

k−1 other attributes which have correspondences to it. The l-diversity model prevents

attribute disclosure by requiring that in any group of sensitive attributes that have

correspondences between them, there are l distinct attributes. The t-closeness model

extends the l-diversity one by allowing different groups of sensitive attributes to have

different l values. Similar to most of these works, the model proposed in this paper

employs the concept of presence constraint. In that, we define a presence threshold θ
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which provides flexibility to limit the chance that an adversary can infer the linking of a

sensitive attribute to its containing schema; i.e. the probability of inferring a sensitive

attribute is bounded by different user-defined threshold.

Anonymization Techniques To implement privacy models, there are a wide range

of techniques have been proposed in the literature. Five of the most popular tech-

niques are generalization, bucketization, randomization, suppression, and differential

privacy. In terms of schema reuse, these techniques can be interpreted as follows. The

generalization technique [14] replaces the sensitive attribute with a common attribute,

which still preserves the utility of attributes shown to users (no noises). The bucketi-

zation technique [41] extends the generalization technique for multi-dimensional data

through partitioning. The randomization technique [15, 42] adds a “noisy” attribute

(e.g. ‘aaa’). The suppression technique [16] replaces a sensitive attribute by a special

value (e.g. ‘*’). The differential privacy technique [36] enhances both generalization

and suppression techniques by balancing between preserving the utility of attributes

and adding noises to protect them. Similar to most of the existing research, we adopt

the generalization technique (which does not add noises) to preserve the utility of at-

tributes shown to users. This utility is important in schema design since adding noisy

attributes could lead to data inconsistencies.

Quality Measures. Recent research has proposed various types of measures to cap-

ture the quality in data integration. Authors of [43, 44] dealt with the quality of data

source or querying results. While, the work in [45] concerned about the quality of the

mediated schema, which provides a unified querying interface of data sources. Similar

to [45], our work focuses on the quality of an anonymized schema that is also a unifi-

cation of original schemas. To quantify the quality of schema unification, researchers

have proposed different quantitative metrics, the most important ones among which are

completeness and minimality [46, 47]. While the former represents the percentage of

original attributes covered by the unified schema, the latter ensures that no redundant

attribute appears in the unified schema. Regarding the quality of a schema attribute,

[48] also proposed a metric to determine whether it should appear in schema unifica-

tion. Combining these works and applying their insights in the schema-reuse context,

this paper proposed a comprehensive notion of utility that measures the quality of an

anonymized schema by capturing how many important attributes it contains and how

well it covers a wide range of attribute variations.
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Conclusions

In this work, we addressed the challenge of preserving privacy when integrating and

reusing schemas in schema-reuse systems. To overcome this challenge, we introduced a

framework for enabling schema reuse with privacy constraints. Starting with a generic

model, we introduce the concepts of schema group, anonymized schema and privacy

constraint. Based on this model, we described utility function to measure the amount

of information of an anonymized schema. After that, we formulated privacy-preserving

schema reuse as a maximization problem and proposed a heuristic-based approach

to find the maximal anonymized schema efficiently. In that, we investigated various

heuristics (greedy repair, look-ahead, constraint decomposition) to improve the compu-

tation time of the proposed algorithm as well as the utility of the resulting anonymized

schema. Finally, we presented an empirical study that corroborates the efficiency of our

framework with main results: effects of heuristics, the correctness of utility function,

the guideline of computation time, and the trade-off between privacy and utility.

Our work opens up several future research directions. One pragmatic direction is

to support a “pay-as-you-use” fashion in schema-reuse systems. In that, reuse should

be defined at a level finer than complete schemas, as schemas are often composed of

meaningful building blocks. Moreover, our techniques can be applied to other domains

such as business process and component-based design.
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Appendix

A. Proof for Theorem 1

Given an anonymized schema, it it trivial to check whether it satisfies all constraints

Γ (eq. (3.2)) and whether its utility score (eq. (4.1)) is less than U . So the problem

clearly is in NP. Now to show it is NP-hard, consider the following simplified version

of our problem. Let us have only one schema s in the repository; i.e. S = {s}.
The constraint set Γ only contains one type of constraint which is defined on a pair

of attributes. This constraint compels that the two given attributes cannot appear

together; i.e. Pr({ai ∈ s, aj ∈ s}|Ŝ) = 0. Formally, Γ = {γ|γ = Pr({ai, ajs}|Ŝ) = 0},
for some pairs ai, aj ∈ s. This version can be transformed into the Independent Set

problem. In that, we can construct an undirected graph G = (V,E) where each vertex

v ∈ V is an attribute and each edge e = (vi, vj) ∈ E represents the constraint between

two attributes ai and aj . The utility function u(Ŝ) is proportional to the number

of attributes in Ŝ. Thus finding Ŝ with maximal utility is equivalent to finding an

independent subset of V with maximal cardinality. Therefore, our problem is NP-

complete, since its special case is Independence Set problem, which is known to be

NP-complete.

B. Hub-Authority Model for Measuring Schema Impor-
tance

As aforementioned in Section 4, we compute the importance of an anonymized schema

as σ(Ŝ) =
∑

a∈Ŝ t(a), where t(.) is the popularity of an attribute. We apply the hub-

authority model [20] to quantify the popularity of original attributes t(.) as well as the

importance of their schemas, denoted as a function I : S→ R. The main idea is that a

schema is important than another schema if it contains more popular attributes, and

an attribute is more popular than another attribute if it belongs to more significant

schemas.

Technically, this model represents the relationship between attributes and schemas

in a bipartite graph, as illustrated in Figure 8.1. A schema (hub) is connected to

its attributes (authorities). An attribute is connected to all schemas that have any

attribute corresponding to it. On top of this representation, a mutual recursion is
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a1 a2 a3 a4

S1Schemas

Attributes

S2 S3

Figure 8.1: Hub-Authority Model. Authority Update Rule: t(a) =
∑

s∈{s∈S|a↔s} I(s).

Hub Update Rule: I(s) =
∑

a↔s t(a).

performed through a series of iterations until convergence, including the authority-

update rule and the hub-update rule. For example, if we initialize hub values as 1 and

authority values as 1, after the first iteration we have (without normalization) t(a1)←
I(s1) + I(s2) = 2, t(a2)← I(s2) = 1, t(a3)← I(s1) + I(s3) = 2, t(a4)← I(s3) = 1 and

I(s1) ← t(a1) + t(a3) = 2, I(s2) ← t(a2) = 1, I(s3) ← t(a3) + t(a4) = 2. And so on,

these computations are repeated until convergence.

C. SQL Injection

SQL injection is a code injection technique, used to attack SQL databases, in which

malicious SQL statements are inserted into an entry field for accessing the database

contents without sufficient privileges (e.g. through the login form of a website) [17]. It

is more dangerous if the attacker knows the meta-data (i.e. schemas), such as attribute

names. For example, an attacker can inject the statement ‘UNION SELECT cardNum,

sCode, cardExp from creditCards – ’ into the login field, which produces the following

query:

SELECT ∗ FROM use r s WHERE userID=’ ’ UNION
SELECT cardNum , sCode , cardExp from c red i tCards −− AND pass=’ ’

Assuming that there is no userID equal to ” in the database, the first query (before

the UNION term) returns the null set, whereas the second query (after the UNION

term) returns data from the creditCards table. In this query, the database would return

the attributes, including card number (cardNum), security code (sCode), expiration

date (cardExp), which in turn are sensitive information the attacker wants. In our

schema reuse system, without linking sensitive attributes back to original schemas,

a brute-force attack might be the only way to determine the names of schemas and

attributes.
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