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ABSTRACT 

The computational complexity of disparity estimation algorithms 

and the need of large size and bandwidth for the external and 

internal memory make the real-time processing of disparity 

estimation challenging, especially for High Resolution (HR) 

images. This paper proposes a hardware-oriented adaptive 

window size disparity estimation (AWDE) algorithm and its real-

time reconfigurable hardware implementation that targets HR 

video with high quality disparity results. The proposed algorithm 

is a hybrid solution involving the Sum of Absolute Differences 

and the Census cost computation methods to vote and select the 

best suitable disparity candidates. It utilizes a pixel intensity based 

refinement step to remove faulty disparity computations. The 

AWDE algorithm dynamically adapts the window size 

considering the local texture of the image to increase the disparity 

estimation quality. The proposed reconfigurable hardware of the 

AWDE algorithm enables handling 60 frames per second on 

Virtex-5 FPGA at a 1024×768 XGA video resolution for a 120 

pixel disparity range.1  

Categories and Subject Descriptors 

C.3 [Special-Purpose and Application Based Systems]: Real-

time and embedded systems, signal processing systems 

General Terms 

Algorithms, Design.  

Keywords 

Disparity Estimation, Census Transform, Sum of Absolute 

Differences, High Resolution, Real-Time Implementation, FPGA. 

1. INTRODUCTION 
Depth estimation is an algorithmic step in a variety of applications 

such as autonomous navigation, robot and driving systems, 3D 

geographic information systems, object detection and tracking, 

medical imaging, computer games, 3D television, stereoscopic 

video compression, and disparity-based rendering. 

                                                                 
1
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Many Disparity Estimation (DE) algorithms have been developed 

with the goal to provide high-quality depth map results. These are 

ranked with respect to their performance in the evaluation tool for 

the Middlebury benchmarks [1]. Although top performer 

algorithms provide impressive visual and quantitative results 

[2-3], their implementations in real-time High Resolution (HR) 

stereo video are challenging due to their complex multi-step 

refinement processes or their global processing requirements that 

demand huge memory size and bandwidth. 

Various hardware architectures that are presented in literature 

provide real-time DE [4-9]. Some implemented hardware 

architectures only target CIF or VGA video [4-6]. The hardware 

proposed in [4] only claims real time for CIF video. It uses the 

Census transform [10] and currently provides the highest quality 

disparity results compared to real time hardware implementations 

in ASICs and FPGAs. The hardware presented in [4] uses low 

complexity Mini Census method to determine the matching cost, 

and aggregates the Hamming costs following the method in [2]. 

Due to high complexity cost aggregation, the hardware proposed 

in [4] requires high memory bandwidth and intense hardware 

resource utilization, even for Low Resolution (LR) video.  

Real-time DE for HR images offers some crucial advantages 

compared to low resolution DE. Processing HR stereo images 

increases the disparity map resolution which improves the quality 

of the object definition. In addition, DE for HR stereo images is 

able to define the disparity with sub-pixel efficiency compared to 

the DE for LR image. Therefore, the DE for HR provides more 

precise depth measurement than the DE for LR. However, the use 

of HR stereo images brings some challenges. Pixel-wise stereo 

matching operations cause a sharp increase in computational 

complexity when DE for HR is targeted. Moreover, DE for HR 

stereo images requires stereo matching checks with larger number 

of candidate pixels than the disparity estimation for LR images.   

The systems proposed in [7-9] claim to reach real time for HR 

video. Still, their quality results in terms of the HR benchmarks 

given in [1] are not provided.  [7] claims to reach 550 fps for 80 

pixel disparity range at a 800×600 video resolution, but it requires 

extremely large hardware resources. A simple edge-directed 

method presented in [8] reaches 50 fps at a 1280×1024 video 

resolution and 120 pixel disparity range, but does not provide 

satisfactory DE results due to a low-complexity architecture. In 

[9], a hierarchical structure with respect to image resolution is 

presented to reach 30 fps at a 1920×1080 video resolution and 256 

pixel disparity range, but it does not provide high quality DE for 

HR.   

In this paper, we present a hardware-oriented adaptive window 

size disparity estimation (AWDE) algorithm and its real-time 

reconfigurable hardware implementation to process HR stereo 

video with high-quality disparity estimation results. The proposed 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

GLVLSI’13, May 2–3, 2013, Paris, France. 

Copyright © 2013 978-1-4503-1902-7/13/05...$15.00. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147998622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


algorithm combines the strengths of the Binary Window SAD 

(BW-SAD) [11] and Census Transform methods thus enables an 

efficient hybrid solution for the hardware implementation.  

The benefit of using different window sizes for different texture 

features on the image is observed from the DE results in [11]. The 

hardware presented in [11] is not able to dynamically change the 

window size, since it requires to re-synthesize the hardware for 

using different window sizes. The hardware presented in this 

paper provides dynamic configurability to have satisfactory 

disparity estimation quality for the images with different contents. 

It provides dynamic reconfigurability to switch between window 

sizes of 7×7, 13×13 and 25×25 pixels in run-time to adapt to the 

texture of the image. 

The proposed dynamic reconfigurability provides better DE 

results than existing real-time DE hardware implementations for 

HR images [7-9] for the tested HR benchmarks. The proposed 

hardware can reach 60 frames per second on Virtex-5 FPGA at a 

1024×768 XGA video resolution and 120 pixel disparity range. 

2. HARDWARE-ORIENTED AWDE 

ALGORITHM 
The main focus of the AWDE algorithm is its compatibility with 

real-time hardware implementation while providing high quality 

DE results for HR. The algorithm consists of three main parts: 

window size determination, disparity voting, and disparity 

refinement. 

As a terminology, we use the term “block” to define the 49 pixels 

in the left image that are processed in parallel. The term 

“window” is used to define the 49 sampled neighboring pixels of 

any pixel in the right or left images with variable sizes of 7×7, 

13×13 or 25×25. The pixels in the window are used to calculate 

the Census and BW-SAD cost metrics during the search process. 

The parameters that are used in the AWDE algorithm are given in 

Section 4.   

2.1 Window Size Determination 
The window size of the 49 pixels in each block is adaptively 

determined according to the Mean Absolute Deviation (MAD) of 

the pixel in the center of the block with its neighbors. The formula 

of the MAD is presented in (1), where c is the center pixel of the 

block and q is the pixel in the neighborhood, Nc, of c. The center 

of the block is the pixel located at block(4, 4) in Fig. 1. (a). Three 

different window sizes are used. As expressed in (2), a 7×7 

window is used if the MAD of the center pixel is high. A very 

small deviation is the sign of a region with low texture content, 

and a 25×25 window is used for these regions of the image.   
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As a general rule, increasing the window size increases the 

algorithm and hardware complexity [11]. As shown in Fig. 1. (b), 

in our proposed algorithm, in order to provide constant hardware 

complexity over the three different window sizes, 49 neighbors 

are constantly sampled for different window sizes. “1”, “2” and 

“3” indicate the 49 pixels used for the different window sizes 7×7, 

13×13 and 25×25, respectively. 

2.2 Disparity voting 
In this work, the BW-SAD is used as cost metrics instead of SAD. 

The use of BW-SAD provides better results than using the SAD 

when there is disparity discontinuity since it combines shape 

information with the SAD [11]. However, the computational 

complexity of the BW-SAD is high, thus result of this metric is 

provided for nine of the 49 pixels in a block and they are linearly 

interpolated to find the BW-SAD values for the remaining 40 

pixels in a block. The selected nine pixels for the computation of 

BW-SAD are shown in Fig. 1 (a).  The low complexity Census 

metric is computed for all of the 49 pixels of a block. 

The formula expressing the BW-SAD for a pixel p is shown in (3) 

and (4). The BW-SAD is calculated over all pixels q of a 

neighborhood Np, where the notation d is used to denote the 

disparity. The binary window, w, is used to accumulate absolute 

differences of the pixels, if they have an intensity value which is 

similar to the intensity value of the center of the window. The 

multiplication with w in (4) is implemented as reset signal for the 

resulting absolute differences (AD). In the rest of the paper, the 

term, “Shape” is indicated by w. 

Depending on the texture of the image, a hybrid selection method 

is used to combine Census and the BW-SAD. As shown in (5) and 

(6), an adaptive penalty (ap) that depends on the texture observed 

in the image is applied to the cost of the Hamming differences 

between the Census values. Subsequently, the disparity with the 

minimum Hybrid Cost (HC) is selected as the disparity of a 

searched pixel. 2’s order penalty values are used to turn the 

multiplication operation into a shift operation. If there is a texture 

on the block, the BW-SAD difference between the candidate 

disparities needs to be more convincing to change the decision of 

Census, thus a higher penalty value is applied. If there is no 

texture on the block, a small penalty value is applied since the 

BW-SAD metric is more reliable than the decision of Census. 

     

Figure 1. (a) 9 selected pixels in a block for BW-SAD 

calculation. (b) 49 selected pixels of adaptive windows (yellow 

(1): 7×7, green (2): 13×13 and blue (3):25×25).  
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2.3 Disparity Refinement 
The proposed Disparity Refinement (DR) process assumes that 

neighboring pixels within the same Shape needs to have an 

identical disparity value, since they may belong to one unique 

object. In order to remove the faulty computations, the most 

frequent disparity value within the Shape is used.  

The DR process of each pixel is complemented with the 

disparities of 16 neighbor pixels and its own disparity value. 

Finally, the most frequent disparity in the selected 17 contributors 

is replaced with the disparity of that pixel. The disparity of the 

processed pixel and the disparity of its four adjacent pixels always 

contribute to the selection of the most frequent disparity. 

In Fig. 2, examples of the selection of contributing pixel locations 

are shown for three different window sizes. Since the proposed 

hardware processes seven rows in parallel during the search 

process of a block, the DR process only takes the disparity of 

pixels in the processed seven rows. Considering the proposed 

contributor selection scheme, the pixels in the same row with the 

same window size have identical masks. The masks for the seven 

rows of a block and three window sizes are different. Therefore, 

21 different masks are applied in the refinement process. These 

masks turn out to simple wiring in hardware. 

 

Figure 2.  Examples for selecting 17 contributing pixels for 

7×7, 13×13 and 25×25 window sizes during the disparity 

refinement process (yellow (1): 7×7, green (2): 13×13 and 

blue (3): 25×25). 

3. HARDWARE IMPLEMENTATION 

3.1 System Overview 
The top-level block diagram of the proposed reconfigurable 

disparity estimation hardware and the required embedded system 

components for the realization of the full system are shown in 

Fig. 3. Since the main improvement of the proposed system 

relates to the Reconfigurable Disparity Map Estimation module, it 

is further explained in detail. 

The Reconfigurable Disparity Map Estimation module involves 5 

sub-modules and 62 dual port BRAMs. These five sub-modules 

are the Control Unit, Reconfigurable Data Allocation, 

Reconfigurable Computation of Metrics (RCM), Adaptive 

Disparity Selection (ADS) and Disparity Refinement. 31 of the 62 

BRAMs are used to store 31 consecutive rows of the right image, 

and the remaining 31 BRAMs are used to store 31 rows of the left 

image. 

External memory bandwidth is an important limitation for 

disparity estimation of HR images. Our proposed memory 

organization and data allocation scheme require reading each 

pixel only one time from the external memory during the search 

process. 

3.2 Data Allocation and Disparity Voting 
The block diagram of the Reconfigurable Data Allocation module 

is shown in Fig. 4. The data allocation module reads pixels from 

BRAMs, and depending on the processed rows, it rotates the rows 

using the Vertical Rotator to maintain the consecutive order. 

The search process starts with reading the 31×31 size window of 

searched block from the BRAMs of the left image. Therefore, the 

Control Unit sends the image select signal to the multiplexers that 

are shown in Fig. 4 to select the BRAMs of the left image. While 

the window of searched block are loaded to the D flip flop (DFF) 

Array, the RCM computes and stores the 49 Census transforms, 

49 Shapes and 9 windows pertaining to the pixels in the block for 

the computation of BW-SAD.  

The Census transforms and windows of the candidate pixels in the 

right image are also needed for the matching process. After the 

computation of metrics for the 7×7 block, the Control Unit selects 

the pixels in the right image by changing the image select signal, 

and starts to read the pixels in the right image from the highest 

level of disparity by sending the address signals of the candidate 

pixels to the BRAMs. The disparity range can be configured by 

the user depending on the expected distance to the objects.  

The detailed block diagram of the DFF Array and the Weaver are 

shown in Fig. 5. They are the units of the system that provide the 

configurability of the adaptive window size. As a terminology, we 

used the term “weaving” to mean “selecting 49 contributor pixels 

in different window sizes 7×7, 13×13 and 25×25 by skipping 1, 2 

and 4 pixels respectively”. Seven rows and one column are 

processed in parallel, and the processed pixels flow inside the 

DFF Array from the left to the right. Additionally, the weaving 

process is applied to the location (15, 8) of the DFF Array at the 

beginning of the search process only, to select the window size by 

computing the deviation of the center of the block from its 

neighbors for 7×7 and 13×13 windows.  

 

Figure 3. Top-Level Block Diagram of the System 

Architecture. 

 

Figure 4. Reconfigurable Data Allocation Module. 



 

Figure 5. DFF Array and the Weaver (yellow: 7×7, green: 

13×13 and blue: 25×25). 

The DFF Array is a 31×25 array of 8-bit registers as shown in 

Fig. 5. While the pixels are shifting to the right, the Weaver is 

able to select the 49 components of the 7×7, 13×13 and 25×25 

window sizes from the DFF Array with simple wiring and 

multiplexing architecture. Some of the contributor pixels of the 

windows for different window sizes are shown in Fig. 5 in 

different colors. The Weaver sends seven windows to be 

processed by RCM as process row 1 – process row 7, and each 

process row consists of 49 selected pixels.  

A large window size normally involves high amount of pixels and 

thus requires more hardware resource and computational cost to 

support the matching process [11]. By using the proposed 

weaving architecture, even if the window size is changed, always 

49 pixels are selected for the window. Therefore, the proposed 

hardware architecture is able to reach the largest window size 

(25×25) among the hardware architectures implemented for DE 

[4-9].  

During the weaving process of the 49 pixels in the block and the 

candidate pixels in the right image, the RCM computes the 

Census and Shape of these pixels in a pipeline architecture.  The 

block diagram of the RCM is shown in Fig. 6. In Fig. 6, the 

registers are named as “Shape row_column” and “Census row_column”. 

Since the BW-SAD is only applied for 9 of the 49 pixels, the BW-

SAD computation sub-modules are only implemented in process 

rows 2, 4 and 6. The computation of the Hamming distance 

requires significantly less hardware area than the BW-SAD. 

Therefore, the Hamming computation is used for all of the 49 

pixels in a block. 

As shown in Fig. 7, the proposed hardware searches 49 pixels in a 

block in parallel. While the proposed architecture computes the 

Hamming distance for the left-most pixels of the block, the 

Hamming for disparity d, rightmost pixels of the block computes 

their Hamming for disparity d+6. Therefore, the resulting 

Hamming costs are delayed in the ADS to synchronize the costs. 

This delay is also an issue of the BW-SAD results and they are 

also synchronized in the ADS.  

The ADS module shifts the Hamming results of the candidate 

pixels depending on the 2’s order adaptive penalty for the 

multiplication process as shown in formula (5). The ADS module 

adds the resulting Hamming penalty on the BW-SADs to compute 

Hybrid Costs. 49 comparators are used to select 49 disparity 

results that point minimum Hybrid Costs. 

 

Figure 6. Reconfigurable Computation of Metrics. 

 

Figure 7. Processing Scheme (“x” indicates 9 selected pixels in 

a block for BW-SAD calculations). 

3.3 Disparity Refinement 
The DR module receives the 49 disparity results from the ADS 

and the Shapes of the 49 pixels of a block from the RCM and 

determines the final refined disparity values.  

As presented in Fig. 8, after the ADS module has computed 49 

disparity values in parallel, it loads this data with the respective 

Shape information in to the DFF Array of DR module 

(DR-Array). The DR-Array has a size of five blocks for the 

refinement process. DR-Array is designed to shift the disparity 

and Shape values from right to left to allocate data for the 

refinement processes. 

The DR module involves seven identical Processing Elements 

(DR-PE). As presented in Fig. 8, DR-PEs are positioned to refine 

seven disparities in 15th column of DR Array in parallel while the 

disparity and shape values shift through the DR-Array. The 

hardware architecture of a single DR-PE is presented in Fig. 9. 

 

Figure 8. DR-Array of the Disparity Refinement Module 

(yellow (1): 7×7, green (2): 13×13 and blue (3):25×25). 



 

Figure 9. Processing Element of the Disparity Refinement 

Module. 

In Fig. 8, while 17 disparity values are selected by the 

multiplexers, the Shape information corresponding to the four 

corners are also selected from the 48-bit shape information of the 

processed pixel. The selected 4-bits inform the DR-PE which of 

these 17 disparity values will be used while computing the highest 

frequency disparity. These 4 bits of the Shape are called 

activation bits in Fig. 9. Each activation bit activates itself 

together with its two adjacent disparities. The DR-PE uses shift 

arrays, 17 Compare and Accumulate (C&A) and 17 Compare and 

Select (C&S) sub-modules to select the disparity with the highest 

frequency as refined disparity. 

4. IMPLEMENTATION RESULTS 
The reconfigurable hardware architecture of the proposed AWDE 

algorithm is implemented using Verilog HDL, verified using 

Modelsim 6.6c. The Verilog RTL models are mapped to a 

Virtex-5 XCUVP-110T FPGA comprising 69k Look-Up Tables 

(LUT), 69k DFFs and 144 Block RAMs (BRAM). The proposed 

hardware consumes 59% of the LUTs, 51% of the DFF resources 

and 42% of the BRAM resources of the Virtex-5 FPGA. The 

proposed hardware operates at 190 MHz after place & route and 

computes the disparities of 49 pixels in 195 clock cycles for 120 

pixel disparity range. Therefore, it can process 60 fps at a 

768×1024 XGA video resolution. 

The parameters of the AWDE algorithm are shown in Table 1. 

Parameters are selected by sweeping to obtain high quality DE of 

HR images considering different features. 

Table 2 and Table 3 compare the disparity estimation performance 

and hardware implementation results of the AWDE architecture 

with other existing hardware implementations that targets HR 

[7-9] and currently the highest quality DE hardware that targets 

LR [4]. These papers do not provide the disparity estimation 

quality results for the HR benchmarks of the Middlebury data-set. 

Thus, we implemented [4], [7], and [9] in software, and the 

software implementation of [8] is obtained from the authors. The 

DE results for the Census and the BW-SAD metrics for different 

window sizes are also presented in Table 2. The comparisons of 

the resulting disparities with the ground-truths are done as 

prescribed by the Middlebury evaluation module. If the estimated 

disparity value is not within a  1 range of the ground truth, the 

disparity estimation of the respective pixel is considered as 

erroneous. 18 pixels located on the borders are neglected in the 

evaluation of LR benchmarks, and a disparity range of 30 is 

applied for all algorithms. 30 pixels located on the borders are 

neglected in the evaluation of HR benchmarks, and a disparity 

range of 120 is applied for all algorithms. 

The Census and BW-SAD results that are shown in Table 2 are 

provided by sampling 49 pixels in a window. Although the 

Census and the BW-SAD algorithms do not provide individually 

very efficient results, the combination of these algorithms into a 

reconfigurable hardware provides an efficient hybrid solution, as 

demonstrated from the AWDE results. If the sampling is not 

applied and all the pixels in a window are used during the 

matching process, the complexity of the AWDE algorithm 

increases by 12 times. The result of the high complexity version 

of the AWDE algorithm (AWDE-HC) is also provided in Table 2 

for comparison. The AWDE-HC provides almost same quality 

results as the AWDE. Considering the hardware overhead, the low 

complexity version of the algorithm, AWDE, is selected for 

hardware implementation, and its efficient reconfigurable 

hardware is presented. 
 

Table 1. Parameters of the AWDE 

tr7x7 tr13x13 ap7x7 ap13x13 ap25x25 thresholdw 

5 2 32 16 4 8 
 

Table 2. Disparity estimation performance comparisons 

  Algorithm 

Error Rate (%) 

Tsukuba 

     288 

x384 

Venus 

383 

x484 

Aloe 

1110 

x1282 

Art 

1110 

x1390 

Clothes 

1110 

x1300 

Chang [4]   4.15   0.56   3.75 12.80   2.97 

Ttofis [8] 13.21   4.56   8.88 32.18   7.67 

Greisen [9] 12.42   4.14   8.65 23.46   5.30 

Georgoulas [7] 12.38 15.20   6.97 23.75   9.15 

Census7 26.05 30.80 20.36 45.39 21.80 

Census13 18.19 18.83 11.21 31.65   9.36 

Census25 15.94 15.38 10.41 29.66   7.16 

BWSAD7 12.19 19.45   8.31 34.03 13.33 

BWSAD13 11.23 15.16   7.13 28.57   9.27 

BWSAD25 10.43 11.12   6.74 24.74   6.28 

AWDE   7.64   5.33   4.94 16.33   2.89 

AWDE-HC   7.47   4.73   4.92 16.17   2.95 
 

Table 3. Hardware performance comparisons 

Hardware Technology 
Image  

Resolution 

Disparity 

Range 
fps 

Clock 

Speed 

(MHz) 

Chang[4] ASIC-90nm 352×288 64 42 95 

Ttofis[8] Virtex-5 1280×1024 120 50 100 

Greis.[9] Stratix-III  1920×1080 256 30 130 

Geor.[7] Stratix-IV  800×600 80 550 511 

Proposed 

(AWDE) 
Virtex-5 

1024×768 120 60 

190 640×480 60 224 

352×288 60 680 

  

The algorithm presented in [4] uses the Census algorithm with the 

cost aggregation method, and provides the best results for both LR 

and HR stereo images except the HR benchmark Clothes. As 

shown in Table 3, due to the high-complexity of cost aggregation, 

it only reaches 42 fps for CIF images, thereby consuming a large 

amount of hardware resource. If the performance of [4] is scaled 

to 1024×768 for disparity range of 120, less than 3 fps can be 

achieved.  

None of the compared algorithms that have a real-time HR 

hardware implementation [7-9] is able to exceed the DE quality of 

AWDE for HR images. The overall best results following the 

results of AWDE are obtained from [9]. The hardware presented 

in [9] consumes 20% of the 270k Adaptive LUT (ALUT) 

resources of a Stratix-III. It provides high disparity range due to 

its hierarchical structure. However, this structure easily causes 

faulty computations when the disparity selection finds wrong 

matches in low resolution. 



The hardware implementation of [7] provides the highest speed 

performance in our comparison. However this hardware applies 

480 SAD computations for a 7×7 window in parallel. The 

hardware presented in [7] consumes %60 of the 244k ALUT 

resources of a Stratix-IV FPGA. In our hardware implementation 

we only use 9 SAD computations in parallel for the same size 

window and this module consumes 16% of the resources of 

Virtex-5 FPGA on its own. Therefore, the hardware proposed in 

[7] may not fit in to 3 Virtex-5 FPGAs. 

The visual results of the AWDE algorithm for the HR benchmarks 

Clothes, Art and Aloe are shown in Fig. 10 (a-f). The 1024×768 

resolution disparity map result of the AWDE algorithm for the 

pictures taken by our stereo camera system is shown in Fig. 10 

(g-h). Our hardware architecture provides both quantitative and 

visual satisfactory results and reaches real-time for HR. 
 

   

                      (a)                                                         (b) 

   

                      (c)                                                         (d) 

   

                      (e)                                                         (f) 

  

                      (g)                                                         (h)  

Figure 10. Visual disparity estimation results of AWDE 

algorithm for HR benchmarks (a-b) Clothes, (c-d) Art, (e-f) 

Aloe, and (g-h) LSM lab. 

5. CONCLUSION  
In this paper, a hardware-oriented adaptive window size disparity 

estimation algorithm and its real-time reconfigurable hardware 

implementation are presented. The proposed AWDE algorithm 

dynamically adapts the window size considering the local texture 

of the image to increase the disparity estimation quality. 

Currently, the AWDE algorithm and its real-time hardware 

implementation reach the highest DE quality compared to existing 

real-time DE hardware implementations for HR images. The 

proposed reconfigurable hardware can process 60 fps on Virtex-5 

FPGA at a 1024×768 XGA video resolution for 120 pixel 

disparity range. The AWDE algorithm and its reconfigurable 

hardware can be used in consumer electronic products where 

high-quality real-time disparity estimation is needed for HR 

video. 
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