
Input-Aware Equivocable Commitments
and

UC-secure Commitments With Atomic Exchanges
Ioana Boureanu and Serge Vaudenay

{ioana.boureanu,serge.vaudenay}@epfl.ch

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Abstract. We define a new primitive, input-aware equivocable commitment, bar-
ing similar hardness assumptions as plaintext-aware encryption and featuring
equivocability. We construct an actual input-aware equivocable commitment pro-
tocol, based on a flavor of Diffie-Hellman assumptions allowing adversarially
chosen domain parameters. On a parallel front, and since our commitment is
extractable and equivocable in a straight-line way, we show that our commitment
enjoys UC-security, when atomic exchanges are available as a UC setup. We
further compare our protocol and our UC setup with similar, existing ones (i.e., in
terms of efficiency, assumptions needed, etc.). Finally, we show that cryptography
becomes UC-realizable in a natural way when participants are able to have “close
encounters” or when atomic exchanges can be enforced onto the communication.

1 Introduction

An attractive, neat way to prove security of a protocol is to show that it realizes
an ideal functionality [26,1,3,19] modelling a primitive. In this sense, a normal
starting point is the well-known framework of Canetti’s, i.e., the universal com-
posability (UC) [7]. There are several versions of the UC framework (from [7]
to [8]); slight differences are operated in the communication model, the order
of quantifiers in the UC proofs, etc. In this paper, we will follow the original
universal composability model, i.e., the one in [7], summarised below.

At a high level, a UC proof that a protocol is secure (in the bare UC model)
means to show that no environment machine, Z, can distinguish between the
execution in the “real world” from the execution in the “ideal world”. The
“ideal world” contains “dummy” parties, the “target” ideal functionality (that
the protocol is emulating) and the “ideal” adversary, I . These “dummy” parties
simply send their inputs to the ideal functionality and wait for the response which
they write on their output tapes. The environment Z gives the inputs to the parties
and reads their local outputs and can communicate with I . The “real world”
contains actual protocol participants, the environment Z, the “real adversary” A .
The “ideal” adversary I or the “real” adversary A can corrupt protocol-parties,
in which case the adversary will see the input of such a party, all communication
sent to it, and A can decide its output. The communication channels between
participants is assumed to be secure. So far, this perfectly describes the bare
UC model which is often referred to as the UC plain model. In the UC plain

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147998616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

model, several essential cryptographic protocols (e.g., commitments) are not
realizable. Thus, the formalism is enhanced with some extra functionality, i.e., a
setup functionality. Such an “empowering” add-on to the UC plain models yields
the so-called UC hybrid models.

UC Plain Models & Commitments. In the context of UC, we recall that if multiple
commitments are UC-realized, then any multiparty computation can be UC-
realized [11]. The UC functionality for single commitment is normally referred
to as FCOM and can be assimilated to an ideal safe where to store the commitment.
Another common functionality FMCOM can deal with multiple commitments.
Note that the general impossibility result of realizing UC commitment in the
plain UC model is strongly linked to the notion of relay attacks.

UC Hybrid Models & Commitments. To achieve UC-secure (multiple) com-
mitments, different UC setups have been used. We recall that UC-secure multi-
commitment are generally realizable as follows: with a common reference string
(CRS) setup [11], or with a public-key infrastructure (PKI) using a trusted party
to manage the correct knowledge of respective public/secret keys [2], or with
Katz’s tamper-resistant hardware token [23] (under the computational Diffie-
Hellman assumption and a static adversarial model), or with similar tokens
to Katz’s but susceptible to more powerful attacks [12], or with hardware to-
kens similar to those in [23], but used in a “receiver-empowering” fashion to
minimize the computational assumptions. More recently, Damgård et al. [15]
UC-realized multiple commitments by using a setup assumption that relaxes
the tamper-resistant hardware token to a functionality that models the partial
isolation and limited communication-power of a party. Unlike previous protocols,
the protocol of Damgård’s et al. [15] is in fact a general construction, relying on
the following fact: if a functionality of isolated parties is available, then witness
indistinguishable proofs of knowledge (WI PoK) can be realized, which further
provide a PKI and make UC multiple commitments possible. In this setting, the
UC-realization relies on the existence of one-way permutations and dense public
key, IND-CPA secure encryption schemes with pseudorandom ciphertexts, but
the adversarial model is strong (i.e., active and adaptive). In their paper, Damgård
et al. [15] fully compare their functionality with that of tamper-evident hardware
devices; we refer the reader to [15] for this comparison.

UC Augmented Models & Commitments. In fact, a UC-like scenario that made
commitment possible is that of a communication augmented with pre-specified
delays: i.e., the timing model of Kalai’s et al. [22]. The assumptions under which
multi-party computation becomes possible in this model are similar to some
of the aforementioned assumptions for UC commitments with setups, i.e., the
existence of enhanced trapdoor permutations and dense cryptosystems. However,

2

whilst commitment in itself is not an issue anymore (i.e., the relay is prevented),
Kalai’s et al. [22] state that their model has the drawback of not being usable with
protocols that employ time themselves (e.g., distance-bounding protocols [6]).
But this may be unfortunate: as we will see further (i.e., in Section 3.2), time-
sensitive protocols can in fact be themselves tightly linked to UC-secure protocols
and their realization.

Our Justification for UC Hybrid Models with Atomic Exchanges. Summing
up the above paragraphs, we can see that the `-isolated parties of Damgård’s
et al. [15] can clearly be viewed as a restriction of the UC communication,
as much as Kalai’s et al. [22] model can. Thus, the former can also prevent
relay attacks; moreover, `-isolated parties do allow (and, in fact, facilitate) the
composition of/with protocols that involve time themselves. And, as we envisage
the usage of timed protocols (e.g., distance-bounding protocols [6]), thus setting
à la Kalai with delayed messages would be difficult to handle in our context.
So, we embark on the approach of using UC setups, rather than augmentation of
models with time/delays. In order to realize UC (multiple) commitments (and
thus all multi-party computation as per [11]), we will invoke a UC-setup similar
to the recent `-isolated parties of Damgård’s et al. To this end, we put forward
a UC setup called Fatomic. By atomic exchanges we mean the communication
between protocol parties produced via their interaction with Fatomic.

Our functionality Fatomic is similar to the “`-isolated parties” setup of Damgård
et al. [15]. The intuition behind is that the Fatomic functionality allows two parties
to have an elementary, “fully isolated” exchange of just one message each. This
can be viewed as a specialization of the F`-isolated functionality of Damgård’s
et al. [15] (namely, with ` = 0 and an exchanges limited to two messages in
“one-round”). On the one hand, it is not clear how to realize F0-isolate using
Fatomic. Intuitively, we need several instances of Fatomic and it would mean to
pass information from one to the other using non-malleable encryption. So,
Fatomic may be weaker than F0-isolate. On the other hand, Fatomic may be simpler
to implement. For instance, the responder may be subject to several constraints
such as time-bound to respond (like in NFC tags in distance-bounding [6]), or
may be in a tamper proof token (such as the one by Katz [23]), or may result
from a “close encounter”.

Extrapolating PAW. In parallel, in this paper, we will define input-aware equivo-
cable commitments (outside the UC model), a scheme akin in its characteristics
to plaintext-aware encryption [14,21,31]. Our definition also includes equivo-
cability, which is crucial for UC-security. We propose a specific protocol that
implements this scheme under special types Diffie-Hellman assumptions. I.e.,
one such assumption is an extension of the DH regular knowledge assumption to
be required to hold in any group [17]. In our case, the DH knowledge assumption

3

needed is supposed to hold further in any adversarially chosen group (which is a
weaker assumption than assuming it holds in any group). Also, in our UC setting,
such a scheme can be employed in, e.g., concurrent RFID/NFC-based contactless
payment protocols [25] where some computation is to be done atomically (i.e.,
by the RFID/NFC tag alone) and the final result needs to be “independent” for
other simultaneous such computations.

UC Commitments and Their Assumptions. UC multiple commitments are pos-
sible under the different UC-setups. A short list of such setups is as follows:
1. Katz’s tamper-resistant hardware tokens [23] (where under the computational
Diffie-Hellman assumption and a static adversarial model); 2. similar tokens to
Katz’s but susceptible to more powerful attacks [12]; 3. hardware tokens similar
to those in [23], but used in an asymmetric fashion to minimize the computa-
tional assumptions [28]; 4. the more recent [15] relaxation of the tamper-resistant
hardware tokens to a functionality modelling the partial isolation and limited
communication power of a party (under the assumptions of one-way permutations
and dense public key, IND-CPA secure encryption schemes with pseudorandom
ciphertexts, but the adversarial model is strong (i.e., active and adaptive).

There are some UC lines [10,16] in which the ideas underlying the ideal-
world simulation of (multiple) commitment can be loosely linked to the one that
we are going to put forward. Firstly, in [10], Canetti et al. achieve a FMCOM-
realization with non-erasing parties, in the CRS-hybrid model using an encryption
scheme obviously samplable [14]. In this case, the trick that allows I to run its
simulations (i.e., that gives I the oblivious-sampling coins for its ciphertext) is
to sample ciphertexts without running the encryption algorithm. Note that an
encryption obviously samplable (with respect to chosen-ciphertext attacks) [14]
is possible under the Decisional Diffie-Hellman (DDH) assumption. Similarly,
our protocol is possible if some special Diffie-Hellman assumptions are used.

Using several instances of FCOM, ZK is UC-realized in the FCOM-hybrid
model [10] by mainstream ideas: by repeating t times, in parallel, Blum’s protocol
for Hamiltonian-Cycles (HC) [4], where the commitments of the provers are
calls to FCOM. Damgård and Nielsen [16] construct ZK more efficiently, but
in a similar way, using the SAT protocol which proves satisfiability of boolean
circuits. Along similar lines, our one-bit commitment can be used to Fatomic-UC
realize ZK in the same complexity as the Canetti’s et al. [10]. In Appendix A we
included a discussion about some further, “unconventional” commitments.

Our Contribution. In this paper, we introduce the notion of input-aware equivo-
cable commitment, i.e., commitments that include both extractability and equiv-
ocability. We further propose some extensions of the Diffie-Hellman hardness
assumptions or of the discrete logarithm hardness assumption, for the case
where the adversary can maliciously select the group structure. We call it an

4

adversarially-chosen group extension of the DH assumption. We propose the
Fatomic functionality as a new setup assumption. This is a new, easy to implement
UC setup, drawing upon un-aided local computation. Finally, we propose an
input-aware equivocable commitment in the plain model, which we then prove
to UC-realize FCOM in presence of the Fatomic setup.

2 Input-Aware Commitments in Classical Cryptography

In this section, we formalize the notion of input-aware equivocable commitments
and present one protocol. On our way to doing so, we specify different flavors of
Diffie-Hellman (DH) assumptions.

2.1 Commitment Scheme

The following definition reiterates the usual meaning of a commitment scheme
in conformity with traditional (i.e., non-composable) cryptography.

Definition 1 (Commitment Scheme). A bit-commitment scheme in terms of a
security parameter λ is a pair of polynomially bounded protocols
((SCOM,RCOM),(SOPEN ,ROPEN)) where SCOM has an input bit b, and ROPEN has
an output bit b̄. The protocols may abort. The

SCOM(1λ,b;rS)↔ RCOM(1λ;rR)

execution1 is called the commitment phase. For simplicity, 1λ is omitted from the
notation. Let ViewS, respectively ViewR, denote the view of SCOM, respectively
the view of RCOM. The

SOPEN(ViewS;r′S)↔ ROPEN(ViewR;r′R)

execution is called the opening phase. It produces the final output from R, i.e., b̄.
A commitment scheme is expected to be correct: i.e., when correctly executed, no
protocol aborts and b̄ = b.

The following definition completes the above by formalizing the usual re-
quirements of a commitment scheme in conformity with traditional (i.e., non-
composable) cryptography.

Definition 2 (The Hiding Property). A commitment scheme is said to be hiding
if the following holds. For any polynomially bounded R∗COM, if SCOM(b;rS)↔
R∗COM(rR) ends up with the final view ViewR for R∗COM, then ViewR|b = 0 and
ViewR|b = 1 are computationally indistinguishable.

1 This execution is understood as any standard interactive system [20].

5

In the above, ViewR|b = x (with x ∈ {0,1}) denotes the marginal distribution
(over all random coins and inputs) of ViewR as a random variable, conditioned to
the event b = x. Note that we can assume without loss of generality that R∗COM is
deterministic (since rR could be hard-coded in it).

Definition 3 (The Binding Property). A commitment scheme is said to be bind-
ing if the following holds. For any polynomially bounded S∗COM and S∗OPEN , if
the S∗COM(rS)↔ RCOM(rR) and then the S∗OPEN(ViewS;r′S)↔ ROPEN(ViewR;r′R)
experiment occur, then min(Pr[b = 0|rS,rR],Pr[b = 1|rS,rR]) = negl(λ), where
this probability is taken in the random choices of S∗OPEN and ROPEN .

This means that once the commitment is made (i.e., rS and rR are fixed), S∗OPEN
cannot open to both b̄ = 0 and b̄ = 1. We recall that f (λ) = negl(λ) means that
for all c > 0, we have f (λ) = O(λ−c).

2.2 Diffie-Hellman Assumptions

In this subsection, we specify several Diffie-Hellman assumptions.

Definition 4 (DH Key Generator). A DH key is a tuple K = (G,q,g) such that
G is a group, q is a prime dividing the order of G, g is an element of G of
order q. A DH key-generator is a ppt. algorithm Gen producing DH keys K such
that |K|= Poly(logq) and the operations (i.e., multiplication, comparison, and
membership checking in the group 〈g〉 generated by g) over their domain can
be computed in time Poly(logq). We say that (S,S′) is a valid K-DH pair for gσ

if S ∈ 〈g〉 and S′ = Sσ, where σ ∈ Zq. Given K = (G,q,g), we define a function
DHK with a variable number of inputs from G by DHK(gx1 , . . . ,gxn) = gx1···xn .

An example of a DH key is (Z∗p,q,g) where p and q are primes and p = 2q+1,
g ∈ QR(p), g 6= 1.

We now strengthen the Decisional Diffie-Hellman (DDH) assumption. Below,
we use an arbitrary ppt. algorithm B generating some coins ρ and a state state.
Such coins ρ and/or state state will be sometimes used as auxiliary inputs to
some ITMs in the security games formalized below.

Definition 5 (DDH Asmpt. in an Adversarially-Chosen Group (ag-DDHGen)).
The ag-DDHGen assumption over a domain of DH keys K states that for any ppt.
algorithms A and B in the next game, Pr[b= b]− 1

2 = negl(λ):

1: (ρ,state) := B(1λ;rB)
2: K := Gen(1λ;ρ)
3: define (G,q,g) from K
4: pick α,β,γ ∈U Zq

6

5: A := gα; B := gβ; C0 := gγ; C1 := gαβ

6: pick b ∈U {0,1}
7: b := A(1λ,state,A,B,Cb;r)

The probability stands over the random coins rB , r, b∈U {0,1} and α,β,γ∈U Zq

and is negligible in terms of logq. A (and B) run in ppt. in terms of logq.

It should be clear that ag-CDHGen, the computational version of this problem
can be defined as well.

Definition 6 (CDHn Asmpt. in an Adversarially-Chosen Group (ag-CDHn
Gen)).

The ag-CDHn
Gen assumption over a domain of DH keys K states that for any ppt.

algorithms A and B in the next game, the probability that S0 =DHK(A,B,S1, . . . ,Sn)
and that Si 6= 1 for i = 1, . . . ,n is negligible:

1: (ρ,state) := B(1λ;rB)
2: K := Gen(1λ;ρ)
3: define (G,q,g) from K
4: pick α,β ∈U Zq

5: A := gα; B := gβ

6: (S0,S1, . . . ,Sn) := A(1λ,state,A,B;r)
The probability stands over the random coins rB , r, and α,β ∈U Zq. The proba-
bility is negligible in terms of logq. A (and B) run in ppt. in terms of logq.

The standard Diffie-Hellman computational problem corresponds to the CDH0

problem. Clearly, the CDHn assumption implies the CDHn−1 assumption for all
n > 0, but the opposite implication is an open problem. In what follows, we will
use the CDH1 assumption.

We now similarly strengthen the Diffie-Hellman knowledge (DHK0) assump-
tion (for a summary the latter, refer to [17]).

Definition 7 (DHK0 Asmpt. in an Adversarially-Chosen Group (ag-DHK0Gen)).
The ag-DHK0Gen assumption over a domain of DH keys K states that for any
ppt. algorithm A and B in the next game, there is a polynomially bounded
algorithm E such that the probability of the below experiment outputting 1 is neg-
ligible:

1: (ρ,state) := B(1λ;rB)
2: K := Gen(1λ;ρλ)
3: define (G,q,g) from K
4: pick σ ∈U Zq

5: (S,S′) := A(1λ,state,gσ;r)
6: if (S,S′) is not a valid K-DH pair for gσ, then return 0
7: s := E(1λ,state,gσ,r)

7

8: if S = gs, then return 0
9: return 1

The probability stands over the random coins rB , r and σ ∈U Zq and is negligible
in terms of logq. The running time of E (and B) is ppt. in terms of logq.

This assumption means that whatever the algorithm producing valid DH pairs for
a random gσ with σ unknown, this algorithm must know the discrete logarithm
of their components except for some negligible cases.

The algorithm B used in the games above is denoted as the biotope algorithm.
What distinguishes these assumptions from the mainstream DDH and DHK0

assumptions [17] is that these should hold for all K selected by a ppt. biotope
algorithm (even by a malicious one) and not only for some K which is randomly
selected by an honest participant. In fact, when selecting a DH key without a
CRS in a two party protocol, the above assumption must hold for any maliciously
selected K (since we ignore a priori which party is honest). Hence, the name
we use: DH assumptions in an adversarially-chosen group. As we mentioned in
the introduction, the latter assumption is a special case of the DH knowledge
assumption required to hold in any group, or, equivalently, for any B and rB .
Such assumptions were originally introduced by Dent in [17]. Here, we do not
require the assumption to hold in any group, but rather in those groups G for
which we can produce a seed for Gen to use in generating G, or equivalently, for
any, B on average over rB .

In the next, for readability purposes, we will omit the additional-input 1λ

from the inputs of the machines that take it, its presence being implicit.

2.3 Input-Aware Equivocable Bit-Commitment

Definition 8 (Input-Aware Equivocable Commitment Scheme). An input-aware
equivocable bit-commitment (IAEC) scheme is a commitment scheme
((SCOM,RCOM),(SOPEN ,ROPEN)) as per Def. 1, with the following additional
properties. Let b denote the input of SCOM, b̄ be the output of ROPEN or R∗OPEN ,
and ViewS, respectively ViewR, be the view of SCOM or S∗COM and, respectively,
of RCOM or R∗COM in the commitment phase.

– (sender input-awareness aka extractability) For any polynomially bounded
algorithms S∗COM and S∗OPEN , there is a polynomially bounded algorithm
Extract such that the following holds. When running the commitment phase

S∗COM(rS)↔ RCOM(rR),

followed by the opening phase

S∗OPEN(ViewS;r′S)↔ ROPEN(ViewR;r′R),

8

the next holds with probability 1−negl(λ), taken over the random rS,r′S,rR,r′R:
– b̄ = Extract(ViewS) and no protocol aborts,
– or Extract(ViewS) aborts and the commitment phase as well,
– or the opening phase aborts.

– (receiver self-equivocability) For any polynomially bounded algorithm R∗COM
and R∗OPEN , there is a polynomially bounded algorithm Equiv such that the
following holds. When running the commitment phase

SCOM(b;rS)↔ R∗COM(rR),

followed by the flipping a coin b′ to run the opening phase{
SOPEN(ViewS;r′S)↔ R∗OPEN(ViewR;r′R), if b′ = b
Equiv(b′,ViewR;r′S)↔ R∗OPEN(ViewR;r′R), if b′ = 1−b,

it all results in a final view View′R of R∗OPEN and this is such that View′R|b = 0
and View′R|b = 1 are computationally indistinguishable over the random rS,
rR, r′R, r′S and b′.

The above definition implies the classical notions of security (i.e., notions of
hiding and binding commitments as per Defs. 2, 3). Equivocability already says
that ViewR|b = 0 and ViewR|b = 1 are indistinguishable since ViewR is included
in View′R; so the commitment is hiding. Furthermore, a malicious sender who
could open a commitment to both b = 0 and b = 1 with a probability which is
negligible would contradict b̄ = Extract(ViewS); so, the commitment is binding.

We will now construct an IAEC based on the ag-DHK0Gen, the ag-DDHGen

and the ag-CDH1
Gen assumptions. We denote it as protocol ΠGen (see Fig. 1). As

per Section 3.2, the label “atomic” in Fig. 1, applies only in the context of the
use of a UC functionality for atomic exchanges when building the protocol to be
UC-secure. It shall be ignored in the current section.

Protocol ΠGen

The commitment phase (i.e., to be described by the SCOM and RCOM protocols)
works as follows.

1. S generates ρ for Gen, i.e., it does K := Gen(ρ), and S sends ρ to R.
2. Then, R also computed K := Gen(ρ) and R selects2 some α ∈ Z∗q and sends

X0 := gα to S.
3. S verifies3 that X0 ∈ 〈g〉, selects x ∈ Z∗q, calculates X := gx and X ′ := Xx

0 , and
sends X ,X ′ to R. S picks β ∈ Z∗q and calculates Y0 := gβ. S sends Y0 to R.

2 All occurrences of “selects” in this description denote “picks uniformly”.
3 If a verification fails, then the party running it aborts.

9

Sender Receiver

commitment phase
input: b

pick ρ and set K := Gen(1λ,ρ)
ρ−−−−−−−−−−−−−−−−→ set K := Gen(1λ,ρ)

X0
?
∈ 〈g〉 atomic: X0←−−−−−−−−−−−−−−−− α ∈U Z∗q, X0 := gα

x ∈U Z∗q, X := gx, X ′ := Xx
0

X ,X ′−−−−−−−−−−−−−−−−→ X
?
∈ 〈g〉, X ′ ?

= Xα

β ∈U Z∗q, Y0 := gβ atomic: Y0−−−−−−−−−−−−−−−−→ Y0
?
∈ 〈g〉

Y
?
∈ 〈g〉, Y ′ ?

= Y β, X0
?
= gα Y,Y ′,α←−−−−−−−−−−−−−−−− y ∈U Z∗q, Y := gy, Y ′ := Y y

0

Z0,Z1
?
∈ 〈g〉 Z0,Z1←−−−−−−−−−−−−−−−− z0,z1 ∈U Z∗q, Z0 := gz0 , Z1 := gz1

r ∈U Zq, U := gr, V := ZbX r U,V,β−−−−−−−−−−−−−−−−→ U,V
?
∈ 〈g〉,Y0

?
= gβ

opening phase

set b′ := b b′−−−−−−−−−−−−−−−−→
γ ∈U Z∗q

U ′,V ′←−−−−−−−−−−−−−−−− s ∈U Zq, U ′ :=Uygs, V ′ :=V yX s

W := gγ, W ′ :=
(

V ′U ′−x
)γ W,W ′
−−−−−−−−−−−−−−−−→

U ′ ?
= Y rgs,

(
V ′Y−xrX−s)γ ?

=W ′ s←−−−−−−−−−−−−−−−−
γ−−−−−−−−−−−−−−−−→ W ?

= gγ, W ′ ?
= Zyγ

b′

Fig. 1. Input-aware Equivocable Commitment Protocol ΠGen

4. R verifies that X ∈ 〈g〉, X ′ = Xα, and that Y0 ∈ 〈g〉. Then, R selects y ∈ Z∗q
and calculates Y := gy and Y ′ := Y y

0 . Then, R sends Y , Y ′, and α to S. Then,
R selects some z0,z1 ∈ Z∗q and calculates Z0 and Z1 as follows: Zi := gzi , for
i ∈ {0,1}. The R party sends Z0 and Z1 to S.

5. The party S verifies that Y,Z0,Z1 ∈ 〈g〉, that Y ′ = Y β, and that X0 = gα. S
further selects r ∈ Zq and sends U := gr, V := ZbX r and β to R, where b is
the bit that S is in the process of committing to.

6. R verifies that U,V ∈ 〈g〉 and that Y0 = gβ.

The opening phase (i.e., to be described by the SOPEN and ROPEN protocols)
works as follows.

1. S sends a bit b′ with b′ = b.
2. Then, R selects s ∈ Zq and calculates U ′ := Uygs and V ′ := V yxs. Then, R

sends U ′ and V ′ to S.
3. S selects γ ∈ Z∗q and calculates W := gγ and W ′ := (V ′U ′−x)γ. Then, S sends

W,W ′ to R.
4. R sends s to S.
5. S verifies that U ′ = Y rgs and (V ′Y−xrX−s)

γ
=W ′. Then, R sends γ to S.

6. S verifies that W = gγ, W ′ = Zyγ

b′ and outputs b̄ := b′.

The commitment is an ElGamal encryption (U,V) of Zb with a self-made
public key X . The opening uses the homomorphic properties of the encryption
to transform (U,V) into an encryption of Zy

b such that the following holds: if

10

Zb′ were not the correct decryption of (U,V), then decrypting Zy
b′ would require

to know y or zb′ (since Zy
b′ = (gzb′)y is equal to the “public” W ′

1
γ). The trick is

that keys X and Y are declared in such a way that the DHK0 assumption would
make the corresponding secret-keys x and y extractable by using input-aware
equivocable techniques when given the appropriate coins. Indeed, x would allow
to extract b from the commitment and y would allow to equivocate.

Theorem 9. Under the ag-CDH1
Gen, DDHGen, and ag-DHK0Gen assumptions,

the protocol ΠGen above is an input-aware equivocable bit-commitment.

Proof (space-constrained sketch). Since the polynomial-time bound and the
correctness are trivial, we only have to construct Extract and Equiv.

Sender Input-Awareness. Let S∗COM and S∗OPEN be some malicious commitment
and opening algorithms, respectively. We define two algorithms A and B as
follows. The algorithm B simulates the experiment S∗COM(rS)↔ RCOM(rR) up
to the moment before S∗COM receives X0, when B stops. Then, as per dictated
by the ag-DHK0Gen game, B sets ρ and state according to the experiment he
just took part in. That is ρ would be as generated in S∗COM(rS)↔ RCOM(rr) and
state would be the current view of S∗COM with its coins limited to its run so far,
i.e., limited to a prefix rs of the whole set of coins rs (rs := rs||rs). Then the
output (X ,X ′) of S∗COM with input state, augmented with the message X0 and
the coins rs defines A(state,X0;rs). By the ag-DHK0Gen assumption, there must
exist some algorithm E(state,X0;rs) such that —except for negligible cases—
E(state,X0;rs) outputs x satisfying that X = gx, or RCOM rejects (X ,X ′).

Now, let rs = rs||rs be the coins in ViewS and state,X0,Z0,Z1 as above be
in ViewS. We now define Extract(ViewS) as follows. Let ρ := S∗COM(rS) and
(X ,X ′) := S∗COM(X0;rS). Except in negligible cases, x = E(1λ,state,X0;rS) is
such that X = gx. If (U,V) is valid, Extract can compute Z =VU−x and compare
Z to Z0 and to Z1. If there is no match, then we return ⊥. Otherwise, we return b
as per the match Zb = Z. Note that Pr[Z0 = Z1] is negligible, so there is a unique
match.

Now, we need to show the soundness of this procedure, i.e., S∗OPEN cannot
open to something different from b = Extract(ViewS). For this, we show that
S∗COM and S∗OPEN could define an adversary for ag-CDH1

Gen. We will use a rewind-
ing technique to define this adversary. (Note that extraction is straight-line. It is
only the adversary showing that extraction is sound which is using rewinding.)

To define the adversary (using the created ρ) receiving A and B from outside,
we first simulate the experiment until we get β. Then, we rewind it but inject
Y = A instead of some Y with a known discrete logarithm. We can also compute
Y ′ = Y β thanks to getting β. Similarly, we flip a coin b̃ and inject Zb̃ = gzb̃

11

with zb̃ random and Z1−b̃ = B. Clearly, β is bound to be unchanged. Since
ViewS has a correct distribution, we can still run b = Extract(ViewS) and x =
E(1λ,state,X0,rS). If b 6= b̃, this is bad luck and we restart. Since S∗COM sees no
information about b̃, bad luck happens with probability 1

2 and we do not have to
restart too much until we are in the lucky b = b̃ case.

Then, the adversary continues to simulate the opening. If b′= b, the adversary
aborts. Otherwise, the adversary must simulate some genuine (U ′,V ′). We know
that V = gzbUx. The regular receiver would send a random U ′ =Uygs and some
V ′ = Y yX s connected to U ′ with the relation V ′ = Y zb(U ′)x. So, the simulator
could just pick U ′ at random and compute V ′ = Y zb(U ′)x since he knows zb = zb̃
and x. He then obtains from S∗OPEN some (W,W ′). With a genuine receiver
sending s, we obtain γ such that

DH(A,B,W) = DH(Y,Z1−b,gγ) = Zyγ

1−b

So, to make the receiver accept, the (W,W ′) pair we must satisfy DH(A,B,W) =
W ′ even before providing s. Due to the ag-CDH1

Gen assumption, this happens
with negligible probability. So, in the genuine experiment, either the experiment
aborts, or b′ = Extract(ViewS), or W ′ 6= DHK(Y,Z1−b′ ,W), thus making ROPEN

aborts.

Receiver Self-Equivocability. Let R∗COM and R∗OPEN be some malicious commit-
ment and opening algorithms. We define two algorithms A and B as follows. The
algorithm B simulates the experiment SCOM(rS)↔ R∗COM(rR) until the moment
before R∗COM receives Y0 and then B stops. As before, B will produce his needed
ρ as in the experiment SCOM(rS)↔ R∗COM(rR) and state as the current view of
R∗COM, limiting his coins rR to rR, i.e., to those used so far, where rR := rR||rR.
Then the output (Y,Y ′) of R∗COM with input state, augmented with the message
Y0 and the coins rR defines A(state,Y0;rR). Due to the ag-DHK0Gen assump-
tion, there must exist some algorithm E such that, except for negligible cases,
E(state,Y0;rR) produces y satisfying Y = gy, or SCOM rejects (Y,Y ′).

We define all messages as in the SCOM(b;rS)↔ R∗COM(rR) experiment from
the view ViewS. Note that running SCOM(b;rS) also defines ρ.

We define Equiv(b′,ViewR;r′S) by sending out b′, receiving U ′,V ′, computing
y = E(state,Y0;rR) constructed like above, computing Zy

b′ and producing the
pair (W,W ′) such that W ′ = DHK(Y,Zb′ ,W), by W = gγ and W ′ =

(
Zy

b′
)γ.

The view of R includes ρ, X ,X ′, Y0, U,V,β, b′, W,W ′, γ. In all cases,
W,W ′,γ can be simulated by R with the same distribution, as well as Y0,β. Since
α is produced by R, X ′ can be simulated as well. Finally, the view reduces to
(ρ,X ,U,V,b′). Indeed, distinguishing b = 0 from b = 1 with b′ random reduces
to the semantic security of the ElGamal cryptosystem. As proven in [5], this
reduces to the Decisional Diffie-Hellman (DDH) problem. ut

12

3 UC-Secure (Input-Aware Equivocable) Commitment with a
“Mild” Setup

In Subsection 3.1, we introduce the UC functionality called Fatomic, which is
needed as UC setup for the UC-realization of our (IAEC) commitment. The actual
UC-realization of commitment is shown in Subsection 3.2; some discussions
about this realization and its relationships with existing lines of UC-realization
of commitment are also included.

3.1 UC Setup Functionality for Atomic Exchanges

We will now present a UC functionality that models one exchange of messages
between two parties, one of which is in complete isolation; hence, the name
atomic exchange. The restriction to one exchange makes this functionality a spe-
cialization of the F`−isolate of Damgård’s et al. [15]. Also, differently from [15],
the functionality below draws strictly upon the user on which the limited commu-
nication is enforced; in that sense, in the functionality below, this user can update
its algorithm sent to the functionality several times before the actual computation
is made.

The Fatomic Functionality of Atomic Exchanges. Let poly be a polynomial.
Assume two parties A and B that would like to have an atomic exchange, i.e., A
would normally send m to B and, without outside help, B would have to respond
with m′. Mainly, this lack of outside help and the one exchange are the core of
the Fatomic functionality.

Request for Atomicity. The participant B sends a message (atomic,A,B,M)
to Fatomic, where M denotes description of the Turing machine4 run by B. The
functionality Fatomic parses the message and stores (A,B,M). Any other tuple
including the same (A,B) is erased.5 A special case is where the participant B
sends the message (atomic,A,B,⊥), which counts for an abortion of the atomic
session.

Challenge an Atomic Response. The participant A can send the command
(challenge,A,B,m) to Fatomic. In this case, the functionality verifies the existence
of a tuple (A,B,M). If the corresponding register is empty or if M =⊥, then the
functionality sends a reject message to A and to the ideal adversary. Otherwise,
the machine proceeds as follows. It runs M(m) for no more than poly(|m|) steps,
finally storing the result in m′. Then, it sends (challenge-issued,A,B,m) to B
and (response,A,B,m′) to A. The (A,B,M) tuple is then erased.

4 We assume that this machine is deterministic.
5 Note that –by the above– B can resend this command to Fatomic, possibly with a different

machine-description M.

13

Again, this functionality models the fact that B does not communicate with
another participant in between receiving m and producing his response m′, that
before “being asked” to compute m in isolation the participant can update his
machine and that this computation/communication is supposed to capture one
exchange only. As we said in the introduction and in the related-work, this func-
tionality is a specialization of the F`−isolated in [15], where `= 0, the exchange
is reduced to one message per each of the two parties involved and where the
machine of the “computing-party” can be updated before the need for the com-
putation is imminent. In that sense, one cannot say clearly if our functionality is
weaker or stronger than the F`−isolated functionality in [15].

Further, we note that this sort of setup is sufficient for bypassing a relay
attack of the sort that lead to the impossibility of UC-commitments in the plain
model. In the same time, especially for the cases where only two parties are
involved (e.g., the aforementioned mutually independent commitments [24]),
this sort of setup is suitable to bypass the known malleability problems.

In practice, a possible way to implement such an atomic-exchange func-
tionality is given by distance-bounding protocols [6]. This is one of the actual
methods implemented to prevent relay attacks [18]. Namely, to achieve the
atomic-exchange, the two concerned parties can use –in an initial/certain part
of the communication– a distance-bounding protocol (or a slight modification
of such a protocol, which still considers the time-of-flight of the messages in
accepting/rejecting them). I.e., the correct answer could have been produced
only and solely by the close-by partner, otherwise the distance-bound would be
broken.

To easily specify protocols using atomic exchanges, the (challenge,A,B,m)
query by A it simply denoted “atomic: m”. It is followed by the message
answering M(m) by B, due to an abuse of notation. This implicitly means that B
must have committed M to Fatomic before.

3.2 UC-realization of Commitment in the Fatomic-hybrid model

It is easy to see that any input-aware equivocable commitment UC-realizes
commitment using F0-isolate: we just have to run S and R in isolation. Here, we
strengthen the result by relying on Fatomic only. The ΠGen protocol, presented in
Fig. 1 also requires some messages to be exchanged atomically, i.e., using the
Fatomic functionality. This means that if R wants S to compute X ,X ′ on his own
based upon S’s view and the fresh receipt of X0, then they establish an atomic
exchange: S cooperates in this and sends (several) (atomic,R,S,algo_of_S) to
Fatomic, where algo_of_S computes (X ,X ′) from the (hard-coded) partial view of
S and the input X0. We consider only the last deposited algo_of_S. Then, R sends
(challenge,R,S,X0) to Fatomic, which will eventually send X0 to S and X ,X ′ to R,

14

with (X ,X ′) := algo_of_S(X0) with algo_of_S running up to poly(|X0|) in time.
The same goes for the Y0 7→ (Y,Y ′) atomic exchange.

We are now going to prove that the ΠGen protocol UC-realizes commitment.

Theorem 10. Under the ag-CDH1
Gen, DDHGen, and ag-DHK0Gen assumptions,

in the Fatomic-hybrid UC model in the presence of static, non-adaptive adver-
saries, the protocol ΠGen UC-realizes FCOM.

The proof is very similar to the one of Th. 9. We construct an ideal adversary I
by using the straight-line extraction of b (when the sender is corrupted) or the
straight-line equivocation (when the receiver is corrupted). In the first case, we
use the extracted b to commit to it. In the latter case, I simulates the commitment
to a dummy bit b to R∗COM, then we use the equivocation once b′ is opened by
the functionality to simulate the opening to b′.

We note that the constructed I does not require rewinding. However, to prove
that I works well, we do rewind algorithms, but this is allowed. The (sketch of)
proof is given in Appendix B.

Discussions about the UC-realization of FCOM by ΠGen. We underline that,
as per Fig. 1, after the initialization phase, the two parties involved are in the
position where they share (amongst other things) the tuple (X ,Y). This part can
be separated and viewed realizing itself a particular key-sharing functionality
(call it G) in a Fatomic-hybrid UC model. Then, the UC-realization in Th. 10
can be cast as follows: “in the G-hybrid UC model in the presence of static,
non-adaptive adversaries, the protocol Π′Gen (i.e., ΠGen without its init phase
exchanging X and Y) UC-realizes FCOM (if the ag-DHK0Gen assumption, the
ag-DDHGen and the ag-CDH1

Gen assumption hold).”
The formulation above renders our result visibly closer to the result in [15].

Namely, if a setup functionality restricting the communication is available, then
this leads to some key-establishment, which then leads to the UC-realization of
commitment. However, the difference between our approach here and the one
in [15] is that secret extraction is integrated based on input-awareness, and we do
not need to run a multi-round protocol in isolation: only an elementary challenge-
response one. Finally, this indicates that cryptography becomes UC-realizable in
a natural way when participants are able to have “close encounters” to exchange
public-key material.

ZK is UC-realized in the FCOM-hybrid model [10] by mainstream ideas: by
repeating t times, in parallel, Blum’s protocol for Hamiltonian-Cycles (HC) [4],
where the commitments of the provers are calls to FCOM. Thus, our one-time
one-bit-commitment can be used to UC realize ZK in the same complexity as the
Canetti’s et al.

15

Damgård and Nielsen UC-realize a commitment UC-functionality called
FHCOM [16], for homomorphic commitment. This functionality is slightly dif-
ferent from the original FMCOM; there the difference stems from the increased
efficiency sought and, most importantly, from the way to achieve equivocability
and extractability for the ideal adversary I . In the introduction, we recalled
the so-called UC-“mixed commitments” [16] by Damgård and Nielsen, which
achieve their equivocability and extractability for the ideal adversary I by basing
their commitment on two, disjoint sets of keys: the E-keys (for the perfectly
hiding property and equivocability by I), and on the X-keys (for the perfectly
binding property and extractability by I). For the simulation to work, only a part
of the key (formed of E-keys [16], used for the perfectly hiding property and
equivocability by I) is placed in the reference string. The Damgård and Nielsen
commitments are inherently based on non-erasure Σ-protocols and their security
against lunchtime opening [16], i.e., roughly, an adversary is unable to produce
an arbitrary opening for a commitment, even if he sees several fake commitments
under E-keys and can adaptively specify how these ones should be opened. One
such commitment protocol is based on the p-subgroup assumption [29] and
another assumes hardness of the decisional composite residuosity problem [30]
used in Paillier’s cryptosystem. We believe that our construction can be extended
also exploiting the Paillier encryption, to commit to more than one bit. Damgård
and Nielsen [16] construct ZK efficiently using their commitments on top of the
SAT protocol which proves satisfiability of boolean circuits.

Using our approach, we can further realize a PKI in a natural way. What
we need is to establish a link between each participant and a central authority,
then UC-realize key registration based on commitment using standard proof-of-
knowledge techniques. Based on the PKI, we can realize multiparty computation.
Our technique also makes it easier to realize 2-party computation is a light way.

4 Conclusions
In this paper, we formalized two special kinds of Diffie-Hellman assumptions,
formalized an input-aware equivocable scheme and exhibits a protocol ΠGen

that provably implements the scheme under the aforementioned assumptions.
These objects and proofs have been done along traditional lines, i.e., outside of a
particular framework like Canetti’s UC model.

We presented a UC (setup) functionality called Fatomic (which allows two
parties to have a short, “fully isolated” exchange of just one message each). We
gave the necessary proofs to show that a slight modification of our protocol ΠGen

UC-realizes commitments. This is possible without the need of a PKI, i.e., with
the mere separation of an initialization phase (using just 2 atomic exchanges)
and allows the two parties involved to establish two private, public key-pairs.

Finally, we also herein discussed the relevance and efficiency of our protocol,
on a stand-alone basis as well as a protocol realizing other primitives, e.g., ZK.

16

References

1. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure
reactive systems. In Theory of Cryptography, First Theory of Cryptography Conf., TCC 2004,
Cambridge, MA, USA, February 19-21,, pages 336–354, 2004.

2. B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable protocols with
relaxed set-up assumptions. In Proc. of the 45th Annual IEEE Symposium on Foundations of
Computer Science, FOCS ’04, pages 186–195, Washington, DC, USA, 2004. IEEE Computer
Society.

3. D. Beaver. Foundations of secure interactive computing. In Proc. of the 11th Annual Int.
Cryptology Conf. on Advances in Cryptology, CRYPTO ’91, pages 377–391, London, UK,
1992. Springer-Verlag.

4. M. Blum. How to prove a theorem so no one else can claim it, August 1986. In an address to
the Int. Congress of Mathematicians, 1986.

5. D. Boneh. The Decision Diffie-Hellman Problem. In Proc. of the Third Algorithmic Number
Theory Symposium, pages 48–63. Springer-Verlag, 1998.

6. S. Brands and D. Chaum. Distance-Bounding Protocols (Extended Abstract). In EUROCRYPT,
pages 344–359, 1993.

7. R. Canetti. A Unified Framework for Analyzing Security of Protocols. Electronic Colloquium
on Computational Complexity (ECCC), 8(16), 2001.

8. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2005. http://eprint.iacr.org/.

9. R. Canetti and R. R. Dakdouk. Towards a theory of extractable functions. In Proc. of the 6th
Theory of Cryptography Conf. on Theory of Cryptography, TCC ’09, pages 595–613, Berlin,
Heidelberg, 2009. Springer-Verlag.

10. R. Canetti and M. Fischlin. Universally Composable Commitments. In J. Kilian, editor,
CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 19–41. Springer, 2001.

11. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-Party
and Multi-Party Secure Computation. In The 34th Annual ACM Symposium on Theory of
Computing (STOC 2002), pages 494–503, 2002.

12. N. Chandran, V. Goyal, and A. Sahai. New Constructions for UC Secure Computation Using
Tamper-Proof Hardware. In Advances in Cryptology, Proc. of the 27th Annual Int. Conf. on
Theory and Application of Cryptographic Techniques – EUROCRYPT, pages 545–562, 2008.

13. S. Cimato, C. Galdi, and G. Persiano, editors. Security in Communication Networks, Third
Int. Conf., SCN 2002, Amalfi, Italy, September 11-13, 2002. Revised Papers, volume 2576 of
Lecture Notes in Computer Science. Springer, 2003.

14. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In H. Krawczyk, editor, Advances in Cryptology (CRYPTO’98), vol-
ume 1462 of Lecture Notes in Computer Science, pages 13–25. Springer Berlin / Heidelberg,
1998.

15. I. Damgård, J. Nielsen, and D. Wichs. Universally composable multiparty computation with
partially isolated parties. In O. Reingold, editor, Theory of Cryptography, volume 5444 of
Lecture Notes in Computer Science, pages 315–331. Springer Berlin / Heidelberg, 2009.

16. I. Damgård and J. B. Nielsen. Perfect hiding and perfect binding universally composable
commitment schemes with constant expansion factor. In Proc. of the 22nd Annual Int.
Cryptology Conf. on Advances in Cryptology, CRYPTO ’02, pages 581–596, London, UK,
UK, 2002. Springer-Verlag.

17. A. W. Dent. The hardness of the DHK problem in the generic group model, 2006.
a.dent@rhul.ac.uk 13277 received 24 Apr 2006, last revised 9 May 2006.

17

http://eprint.iacr.org/

18. S. Drimer and S. J. Murdoch. Keep your enemies close: distance bounding against smartcard
relay attacks. In Proc. of 16th USENIX Security Symposium on USENIX Security Symposium,
SS’07, pages 7:1–7:16, Berkeley, CA, USA, 2007. USENIX Association.

19. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity and a
methodology of cryptographic protocol design. In Foundations of Computer Science, 1986.,
27th Annual Symposium on, pages 174–187, oct. 1986.

20. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-
systems. In Proc. of the seventeenth annual ACM symposium on Theory of computing, STOC
’85, pages 291–304, New York, NY, USA, 1985. ACM.

21. J. Herzog, M. Liskov, and S. Micali. Plaintext awareness via key registration. In D. Boneh,
editor, Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer
Science, pages 548–564. Springer-Verlag, August 2003.

22. Y. T. Kalai, Y. Lindell, and M. Prabhakaran. Concurrent general composition of secure
protocols in the timing model. In Proc. of the thirty-seventh annual ACM symposium on
Theory of computing, STOC ’05, pages 644–653, New York, NY, USA, 2005. ACM.

23. J. Katz. Universally Composable Multi-party Computation Using Tamper-Proof Hardware.
In Theory and Application of Cryptographic Techniques, pages 115–128, 2007.

24. M. Liskov, A. Lysyanskaya, S. Micali, L. Reyzin, and A. Smith. Mutually independent
commitments. In Lecture Notes in Computer Science, page 2001. Springer-Verlag, 2001.

25. K. Mayes, S. Cobourne, and K. Markantonakis. Near field technology in challenging environ-
ments. Smart Card Technology Int., NFC and Contactless:65–69, 2011.

26. S. Micali and P. Rogaway. Secure computation (abstract). In Proc. of the 11th Annual Int.
Cryptology Conf. on Advances in Cryptology, CRYPTO ’91, pages 392–404, London, UK,
1992. Springer-Verlag.

27. U. Montanari, J. D. P. Rolim, and E. Welzl, editors. Automata, Languages and Programming,
27th Int. Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15, 2000, Proc., volume
1853 of Lecture Notes in Computer Science. Springer, 2000.

28. T. Moran and G. Segev. David and Goliath Commitments: UC Computation for Asymmet-
ric Parties Using Tamper-Proof Hardware. In Theory and Application of Cryptographic
Techniques, pages 527–544, 2008.

29. T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In
Advances in Cryptology - EUROCRYPT ’98, Int. Conf. on the Theory and Application of
Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, pages 308–
318, 1998.

30. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proc.
of the 17th international conference on Theory and application of cryptographic techniques,
EUROCRYPT’99, pages 223–238, Berlin, Heidelberg, 1999. Springer-Verlag.

31. I. Teranishi and W. Ogata. Relationship between standard model plaintext awareness and
message hiding. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E91-A:244–261,
January 2008.

32. C. Ventre and I. Visconti. Message-aware commitment schemes. Unpublished manuscript,
2008.

A “Unconventional” Commitments: A Comparison

The notion of input-aware commitments (IAC) was studied before under the
name of extractable commitments [13]. This was carried mainly in the CRS
model, in [27,13], as part of zero-knowledge proofs. Unlike the scheme to follow,
these commitments did not contain an explicit notion of equivocability, in the

18

standard lines, i.e., outside the UC framework. Thus, we sometimes refer to them
as IAC (input-aware commitments) as opposed to IAEC (input-aware equivocable
commitments).

Canetti et al. [9] applied known commitment-constructions from injective
one-way functions and from pseudorandom generators to get extractable com-
mitments (i.e., IAC) when the underlying primitives used are extractable. We
dissociate ourselves from this method and rely instead on hardness assumptions6.

In the above sense, we use a stronger knowledge guarantee, which brings
us closer to an (unpublished) result by Ventre and Visconti [32] in which they
construct extractable commitments (i.e., IAC) from plaintext-aware encryption
schemes, using certain hardness assumptions. However, our construction is not
from PAW encryption directly, yet it bears similar assumptions to such encryption
schemes [14], but it is also equivocable, i.e., it is an IAEC.

Further, we mention that primitives similar to input-aware equivocable com-
mitments have been explored before by Damgård and Nielsen (i.e., mixed com-
mitments) inside the UC framework, UC-realizing an ideal functionality FHCOM

of homomorphic commitment [16] in the CRS-hybrid UC model. Here, the for-
malization is different, the protocol more specific, the scheme is initially cast
upon traditional lines. We only eventually show that we UC-realize the normal,
ideal functionality of commitment, i.e., not the homomorphic version, using not
a CRS, but a different setup. Namely, we show that our specialized commitment
protocol is UC-realizable in the UC hybrid model with the Fatomic setup. More
precisely, we will show that the thus-wise realized protocol UC-emulates the ideal
functionality of commitment FCOM (not FHCOM). The protocol from Damgård
and Nielsen [16] is sometimes extractable, sometimes equivocable, but not both.
This depends on what the simulator needs in UC-security. (See more technical
details on page 16.) In the plain model, Damgård and Nielsen’s commitment
is therefore not extractable nor equivocable. This is essentially different from
the protocol advanced herein. Indeed, one of the ideas in this paper also lies in
introducing new techniques of extractability of the “real” committed bit by the
ideal adversary. Our protocol enjoys both extractability and equivocability, at the
same time, even outside of the UC framework.

When compared to constructions from Damgård et al. [15], one advantage
of our input-aware equivocable commitment is that it integrates the secret key
extraction and becomes feasible with Fatomic efficiently. (In [15], the entire prover
protocol of a WI `-PoK scheme must be run in isolation.)

Another notion to thwart relay attack in commitment protocols is the notion
of mutually independent commitments [24].

6 Extractable functions abstract away from specific e.g., number-theoretic assumptions like the
knowledge of exponents and are cast in a complexity-theoretic setting.

19

B Proof of Th. 10
Proof (sketch). Given a real-world adversary A in the UC model with atomic-
exchange setup, we construct a UC ideal adversary I as follows.

A. We first treat the case where only S is corrupted by A and it is denoted
as S∗. I simulates S∗, Fatomic and RCOM internally, and I lets S∗ interact with Z
externally (so that Z cannot distinguish I ’s run from the real-world experiment).

The simulation by I together with Z defines an algorithm B , which stops
before Fatomic receives X0 from RCOM (as per the games defining the DDH and
DHK0 assumptions). The algorithm B defines ρ and state, the latter being the
current view of S∗. Like before, in state, we restrict to the coins rA that S∗

has used so far. Let the unused coins by S∗ be denoted rA . The next step of the
simulation defines from state the last algorithm that S∗ would have sent to Fatomic

such that A(state,X0;rA) would produce (X ,X ′), using solely on the view of A
since in fact X ,X ′ should be the output m′ of Fatomic. By the assumptions we use,
we now have another algorithm E(state,X0;rA) that yields x such that X = gx

or RCOM aborts7. Thus, our constructed I can simply run E(state,X0;rA) by
using the view of S∗. As I goes on in the simulation of RCOM, it can extract the
committed bit b from (U,V) thanks to x and send this bit to FCOM. As in Th. 9,
we can show that the opening to 1−b would contradict the assumptions.

B. When R is corrupted by A , we denote it as R∗. The simulation works as
follows. I simulates R∗, Fatomic and SCOM(b0) (for an arbitrary bit b0) internally,
and I lets R∗ interact with Z externally (so that Z cannot distinguish I ’s run
from the real-world experiment).

The simulation by I together with Z defines an algorithm B , which runs until
the moment before Fatomic receives Y0 from SCOM and then B stops. As before,
B will produce ρ and state as the current view of R∗, limiting his coins rA to rA ,
i.e., to those used so far, where rA := rA ||rA . Then the output (Y,Y ′) of Fatomic

(on the algorithm sent to it by R∗) can be seen as the output of A with input state.
Augmented with the message Y0 and the coins rA , it defines A(state,Y0;rA).
Due to the ag-DHK0Gen assumption, there must exist some algorithm E such
that, except for negligible cases, E(state,Y0;rA) produces y satisfying Y = gy,
or SCOM rejects (Y,Y ′). Note that as before, the pair (Y,Y ′) is produced by using
solely on the view of R∗ (since the message Y0 is tagged as atomic). So, our
constructed I can again simply run E(state,Y0;rA). Then, the adversary I can
either simulate SOPEN (if b=b0) or, otherwise, simulate Equiv using y.

The argument of the indistinguishability between the two worlds (the real
one and the simulated one by I) follows the exact same arguments as those in
the proof of Th. 9.

ut
7 If M aborts in real life, we assume it outputs a special value such that the protocol itself finishes.

20

	Input-Aware Equivocable Commitments and UC-secure Commitments With Atomic Exchanges -0.5cm

