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ABSTRACT

Temperature has been extensively explored as a trigger to control the delivery of a payload from
environment-sensitive polymers. The need for an external heat source only allows limited spatiotem-
poral control over the delivery process. We propose a new approach by using the dissipative properties of
a hydrogel matrix as an internal heat source when the material is mechanically loaded. The system is
comprised of a highly dissipative hydrogel matrix and thermo-sensitive nanoparticles that shrink upon
an increase in temperature. Exposing the hydrogel to a cyclic mechanical loading for a period of 5 min
leads to an increase of temperature of the nanoparticles. The concomitant decrease in the volume of the
nanoparticles increases the permeability of the hydrogel network facilitating the release of its payload.
As a proof-of-concept, we showed that the payload of the hydrogel is released after 5—8 min following
the initiation of the mechanical loading. This delivery method would be particularly suited for the release
of growth factor as it has been shown that cell receptor to growth factor is activated 5—20 min following

a mechanical loading.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the efforts in the field of drug delivery systems has
focused on the development of environment-sensitive polymers.
Temperature and pH are commonly used environmental variables
[1—4]. While pH can be coupled to variations within the body,
temperature sensitive polymers are designed to be altered either
externally [5—7] or are in off/on mode almost immediately after
being injected in the body [8—10].

Temperature-responsive drug delivery systems are usually
based on polymer hydrogels with a lower critical solution tem-
perature (LCST) of around 38 °C. The drug is released when the
tissue surrounding the hydrogel reaches a temperature slightly
above normal body temperature [4,11]. While these systems work
well for a number of applications, they also have some limitations.
The need for an external means to cool or heat in many applications
only allows limited spatiotemporal control over the delivery
process.
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As hydrogels have dissipative properties, their temperature may
also be altered internally by viscous dissipation during cyclic
loading, a process generally referred to as self-heating [12—14].
There are potentially several advantages of using the self-heating
property of materials for drug delivery.

First, the drug release is coupled to a mechanical loading. As
mechanical loading has been demonstrated to activate some
growth factor cell receptors involved in the healing process of
different tissues such as cartilage [15—18], the coupling of me-
chanical loading and drug release could induce some positive
synergetic effects. Drug delivery system coupled to mechanical
loading has already been developed, the drug being simultaneously
released during the mechanical loading [19—21].

However, it is important to realize that cell receptors are not
immediately activated following a mechanical loading. A delay of
5—20 min has been observed between the initiation of the me-
chanical loading and the activation of the cell receptor [22]. To
induce a maximum potency, the release of a drug following a me-
chanical loading should then also be delayed by several minutes.

As the self-heating property induces a local temperature in-
crease, which is related to the dissipative properties of the material
and to the number of loading cycles, a delay can be obtained be-
tween the initiation of the mechanical loading and the temperature
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increase triggering the drug release. The use of dissipative energy
generated in hydrogel could then offer a second advantage, which
is the unprecedented spatiotemporal control over the delivery
process. In particular, the use of self-heating property would be
particularly suited for the delivery of growth factors to induce
healing in a cartilage defect where the cells are naturally subjected
to mechanical loading.

In this study, we establish the proof-of-concept that dissipative
properties can be used as a new environmental variable to
spatiotemporally control the release of a drug.

2. Materials and methods
2.1. Principle of dissipation used as an environmental variable

To explore the feasibility of using dissipative properties to control delivery from
thermosensitive polymer based systems, we developed a unique hydrogel system
consisting of two components: i) poly(2-hydroxyethyl methacrylate) (PHEMA)-
based hydrogel matrix with highly dissipative properties and ii) poly(N-isopropyl
acrylamide) (PNIPAM)-based thermosensitive nanoparticles, which are entrapped
in the matrix hydrogel and shrink at temperatures above their LCST.
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The principle used to temporally control the delivery of a payload following a
mechanical loading is shown in Fig. 1A. Upon applying a mechanical load, a part of
the mechanical energy is transformed into heat due to the dissipative properties of
the hydrogel matrix. The heat produced by the hydrogel increases the temperature
of the nanoparticles above their LCST and induces their collapse, which subsequently
facilitates diffusion of the payload outside the hydrogel. The dissipative properties of
the hydrogel can be modulated to link the duration of the cyclic loading with a
targeted increase in temperature. Thus, a specific delay between the initiation of the
mechanical stimulation and the release of a payload can be obtained.

HEMA is a hydrogel-forming material that is widely used in the biomaterials
field [23,24]. Water content and crosslink density are the key parameters to control
the mechanical and dissipative properties of these hydrogels [25,26]. The hydrogels
can be obtained using different crosslinkers in a one-step photo-polymerization
process [27]. The PHEMA hydrogels investigated in this study were crosslinked with
ethylene glycol dimethacrylate (EGDMA) and contained 40% water.

2.2. Materials

2,2-dimethoxy-2-phenylacetophenone (Irgacure 651, 97%), ethylene glycol
dimethacrylate (EGDMA, 98%), TWEEN® 80, Span® 80, N,N,N’,N'-Tetramethylethy-
lenediamine (TMEDA, 99%), Ammonium persulfate (>98%) and Xylene Cyanole FF
were purchased from Aldrich and used as received. 2-Hydroxyethyl methacrylate
(HEMA, 97%) and poly(ethylene glycol) dimethacrylate (PEGDMA, average M, 550)
were purchased from Aldrich and purified by basic aluminum oxide column chro-
matography to remove inhibitor. N-isopropylacrylamide (Aldrich, 97%) was purified
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Fig.1. A) Release of a payload from a thermosensitive delivery system using dissipation as an internal heat source. Thermosensitive nanoparticles (blue dots) and payload (red dots)
are distributed randomly inside the hydrogel (gray). At temperatures below the LCST of the nanoparticles, only limited amount of payload can be released from the hydrogel. When
the hydrogel is under a mechanical loading of 5—10 min duration, its dissipative properties induce a temperature increase, a process called self-heating. If the temperature rises
above the LCST of the nanoparticles, they shrink, which increases the permeability of the hydrogel and facilitates the release of the payload. B) Synthesis of the composite hydrogel.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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by recrystallization from hexane. Spectra/Por 6 dialysis tubing, 10K MWCO was
purchased from Spectrum Labs Europe.

2.3. Preparation of the nanoparticles

The organic phase consisted of n-hexane (15 mL) and a mixture of surfactants
TWEENSO0 (75 mg) and SPAN8O (225 mg). The oxygen dissolved in the organic phase
was removed by evacuating the surfactant mixture for 5 min followed by purging
with nitrogen for short period (repeated 3 times). Hexane was purged with nitrogen
for 10 min. The aqueous phase was prepared as follows: 150 mg of NIPAM were
added to the flask along with 10 mg of poly(ethylene glycol)dimethacrylate
(PEGDMA). Solid monomer and cross-linker were dissolved in 0.4 mL PBS pH 7.4 and
sonicated. Organic phase was added to aqueous phase and the mixture was emul-
sified by sonicating 30 s. Polymerization was initiated by the addition of 2 drops of
tetramethylethylenediamine and 25 mg of ammonium persulfate in 0.1 mL PBS pH
7.4 during sonication. Additional drops of TMEDA were added 10 min after; the
miniemulsion was stirred for 4 h at room temperature. The reaction was stopped by
exposure to air. Hexane was removed on rotary evaporator at 30 °C and 5 mbar, wax-
like substance was redispersed in ethyl ether and precipitated. Supernatant was
removed, and particles were redispersed in ether two more times. After that, the
particles were redispersed in water, dialyzed against water for 3 days (MWCO 10,000
membrane, water was changed at least twice a day) and freeze-dried. Purified
particles were redispersed in water, and the diameter was analyzed by DLS as the
average of 10 measurements.

2.4. Preparation of the composite hydrogel

2-Hydroxyethyl methacrylate (HEMA) (880 pL), ethylene glycol dimethacrylate
(EGDMA) (84 pl, 6%mo1), and Xylene Cyanol FF aqueous solution (1 mg/ml, 590 L)
were mixed in a 5 mL Eppendorf tube. The Xylene Cyanol FF was used as drug model.
For hydrogels containing nanoparticles, the aqueous phase also contained 15 mg/mL
nanoparticles, which is equal to 5.5 mg/mL nanoparticles in total reaction mixture. A
solution of Irgacur-651 (photo initiator) in ethanol (36 pL of 57 mg/mL solution) was
then added to the polymer mixture. The mixture was stirred and sonicated for 1 min,
then transferred to the cylindrical wells (8 mm diameter and 4 mm depth), placed
under UV lamp (365 nm, 8 Watt) and irradiated for 15 min, whilst maintaining the
temperature below 25 °C (using a flow of compressed air). The samples were
washed and kept in 1 mL water for two days before mechanical tests (Fig. 1B).

2.5. Quantification of Xylene Cyanole FF release

After each test the supernatant water was collected from the test chamber and
the amount of released Xylene Cyanole FF was quantified spectrophotometrically at
590 nm. The release amount cq4(t) was reported as pg/mL using the normalized
curves we prepared by spectrophotometric analysis of solutions at different con-
centrations of Xylene Cyanol FF in water.

2.6. Mechanical loading

Mechanical compressive test was performed with an Instron E3000 linear me-
chanical testing machine (Norwood, MA, USA). To provide a heat-isolated environ-
ment, controlling the initial temperature and monitoring the temperature during
the test, a specifically designed thermally isolated system was installed on the
mechanical testing machine (Fig. 1S, Supplementary data). The temperature of the
test chamber was maintained by water circulation around the chamber either at
34 °C or at 36 °C for different experiments. The hydrogel immersed in 600 pL fresh
water was placed in the center of the chamber. The hydrogel temperature was
monitored with a thermistor positioned in the center of test chamber (Fig. 1S,
Supplementary data). Cyclic compression was applied at 1.5 Hz on displacement
control mode. Deformations of 15% amplitude following a 5% prestrain were applied
for 5 and 8 min. The temperature was recorded every 10 s during the test.

2.7. Effective diffusion coefficient measurement

To calculate the effective diffusion coefficient of the composite hydrogel, we
prepared samples in the form of microfilms by injecting the polymer mixture be-
tween two glass slides having a 150 pum gap and polymerized them under UV light.
After polymerization, films were punched with 8 mm punch and immersed in
600 pL water. Hydrogels with or without nanoparticles were placed either at 34 °C
or at 39 °C (6 samples per group). Xylene Cyanole FF release (cq(t)) was measured
every 2 h for 14 h from each of the 4 different hydrogel groups (with or without
nanoparticles, at 34 °C and 39 °C). The transient distribution of Xylene Cyanole FF in
a cylindrical sample is governed by the following equation [28]:
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where c is the Xylene Cyanole FF concentration within the sample, Des is the
effective diffusivity and ¢ is the hydrogel water content equal to 40% in our case.
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Fig. 2. The effect of temperature on the size of the PNIPAM nanoparticles. The tem-
perature leading to decrease in nanoparticle size is referred to as LCST and is
comprised between 36 and 37 °C. The diameter of the nanoparticles was analyzed by
DLS as the average of 10 measurements.

Considering the boundary condition c =0 atr =R, z= 0 and z = h (R and h: sample
diameter and height) and the initial condition ¢ = ¢y (initial Xylene Cyanole FF
concentration inside the hydrogel), we obtained the analytical solution for c. By
integrating c over the sample fluid volume and subtracting the result from the total
Xylene Cyanole FF release gives the following solution for the Xylene release in the
water bath cq(t):
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cq(t) is the Xylene Cyanole FF release, cmax is the total Xylene Cyanole FF release from
the sample in water if we assume all Xylene in the sample is released in 600 pL (for
microfilm samples ¢max = 2.83 pg/mL), qm is the m™ zero of zero-order Bessel
function (Jo) and
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All parameters in Equation (2) except Deff were known or measured indepen-

dently. Defr was calculated by fitting Equation (2) to the experimental data from

desorption bath (Fig. 2S, Supplementary data).

3. Results
3.1. Temperature response of nanoparticles

The nanoparticles had a diameter of 340 nm as determined by
dynamic light scattering (DLS) at room temperature and showed a
lower critical solution temperature of 37 °C (Fig. 2). At 37 °C, the
PNIPAM nanoparticles collapsed and had an average diameter of
255 nm. The resulting decrease in volume corresponds to about 50%.

3.2. Composite hydrogels

The final formulation of the composite hydrogel consists of an
EGMDA crosslinked PHEMA-based hydrogel containing 40%
aqueous phase with dispersed nanoparticles and Xylene Cyanole FF,
which was used as model drug. Fig. 3 shows the dispersion of
nanoparticles in hydrogels with different concentrations of nano-
particles. For the final formulation we had 5.5 mg nanoparticles per
1000 pL of reaction mixture.

3.3. Self-heating of hydrogels due to dissipation

The self-heating property of the composite hydrogels were
investigated using a custom-designed thermally isolated system,
which was coupled to a mechanical testing machine (Fig. 1S). To
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Fig. 3. Light microscopy images of PHEMA hydrogels with different concentrations of nanoparticles. The distribution of nanoparticles is shown for 0 mg/mL, 1.1 mg/mL, 5.5 mg/mL,
and 7.5 mg/mL of nanoparticles concentration in the reaction mixture before polymerization. The 5.5 mg/mL nanoparticles concentration was used for the experiments.

simulate human body environment, the initial temperature of the
thermally isolated system was set to 36 °C. It was verified that after
5 min of loading (5% of prestrain followed by a 15% deformation
amplitude at 1.5 Hz) the temperature of the hydrogel reached 37 °C
(Fig. 4A). In another experiment, we set the environment temper-
ature to 34 °C and after 5 min loading the temperature reached
34.7 °C (Fig. 4B).

3.4. Drug release due to dissipation

Under mechanical loading, when environmental temperature
was fixed to 36 °C, a statistically significant increase (133%) in
Xylene Cyanole FF release was observed between the 5 and 8 min
loading demonstrating the delayed release of the dye following a
mechanical loading (Fig. 5A). To rule out the possibility that the
mechanical loading directly induced the expulsion of the Xylene
Cyanole FF out of the hydrogel, we repeated the experiment but
setting the initial temperature of the thermally isolated system to
34 °C. In this test, the temperature of the hydrogel following the
mechanical stimulation stayed below the LCST of nanoparticles
(Fig. 4B). It can be observed from Fig. 5A, that when the hydrogel
temperature is below the LCST of nanoparticles, there was no sig-
nificant difference in Xylene release between 5 or 8 min loading.
Finally to confirm the role of the nanoparticles in the observed
phenomenon and to exclude that the observed effects were due to a
direct thermal effect on the hydrogel, the tests at 34 °C and 36 °C
were repeated with hydrogels that did not contain the thermo-
sensitive nanoparticles. Results in Fig. 5B showed that only the
combination of nanoparticles in hydrogels and mechanical loading
inducing a temperature increase of the hydrogel above 37 °C
allowed a statistically significant increase of the release of Xylene
Cyanole FF.

3.5. Effective diffusion coefficient

When nanoparticles are incorporated in the hydrogels and the
hydrogel temperature is above the LCST of the nanoparticles, the

effective diffusivity of the hydrogel increases by a factor 3 (Fig. 6).
When the hydrogel contained no nanoparticles, the effective
diffusivity of the hydrogel was not affected by the temperature
increase.
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Fig. 4. Self-heating of the hydrogel following cyclic compressive load. The initial
temperature was set in the test chamber (Fig. 1S) and increased due to the dissipated
heat. A: The initial temperature was set to 36 °C and increased to 37 °C after 5 min of
loading. B: The initial temperature was set to 34 °C and increased to 34.7 °C after 5 min
of loading.
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Fig. 5. A) Temporal control of Xylene Cyanole FF release triggered by dissipation
properties of the composite hydrogel. The release of the Xylene Cyanole FF from
hydrogels containing nanoparticles was quantified after 5 and 8 min of cyclic me-
chanical loading. When the initial temperature was set at 34 °C, no statistical differ-
ence was observed for the Xylene release between 5 or 8 min. When the initial
temperature was set to 36 °C, a statistically significant increase (133%) in Xylene
Cyanole FF release was measured between the 5 and 8 min loading (p = 0.026, T-test
type 1, 1 tailed). B) Effect of nanoparticles on Xylene Cyanole FF release during me-
chanical loading. Mechanical load was applied on hydrogels with and without nano-
particles for 8 min at the initial temperature of 34 °C and 36 °C. No statistically
significant increase in Xylene release was observed at 36 °C for hydrogels without
nanoparticles. A statistically significant increase (125%) of dye release was measured
when the load was applied on hydrogels containing nanoparticles and initially ther-
mostated to 36 °C (p = 0.031, T-test type 1, 1 tailed).

4. Discussion
Mechanical loading has been demonstrated to activate growth

factor receptors of cells involved in the healing process of different
tissues [15,16,18]. However, a delay is necessary for the activation of
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Fig. 6. Thin PHEMA hydrogel film effective diffusion coefficient (Deff). Degr Was calcu-
lated by curve fitting of the mathematical model for Xylene Cyanole FF release from
microfilm hydrogel with or without nanoparticles at temperature above and below the
LCST of the nanoparticles.
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cell receptors following the initiation of a mechanical stimulation
[22]. A synergetic effect combining the delivery of a drug and the
mechanically induced activation of the corresponding receptor
could be maximized if drug release is delayed by several minutes
following the initiation of the mechanical stimulation. In this study
we proposed to use the dissipative property of hydrogel as a new
environmental variable allowing to spatially and temporally control
the release of a drug. The proposed delivery system could then not
only provide unparalleled spatiotemporal control over the release
process, but also allow the delivery to be synchronized with the
mechanical stimulus favoring the healing of the damaged tissue.
The dissipative properties of the hydrogel can be modulated to link
the duration of the cyclic loading with a targeted increase in tem-
perature. Thus, a specific delay between the initiation of the me-
chanical stimulation and the release of a payload can be obtained.

The most probable effect which can explain the results pre-
sented in Fig. 5A and B is to consider that the temperature-induced
shrinkage of nanoparticles due to the dissipation properties of the
hydrogel changed the permeability of the hydrogel. To verify this
claim, the effective diffusion coefficient was calculated from Xylene
Cyanole FF release experiments performed on thin layer hydrogel
film. The obtained result confirmed that the augmentation of the
hydrogel temperature affects its permeability. By itself, the obser-
vation that a cyclic mechanical loading can affect hydrogel
permeability is an original result not previously reported. As the
change in permeability is obtained following the temperature in-
crease, which in turn is due to the mechanical loading, a time delay
is obtained between the initiation of the mechanical loading and
the release of the payload. The value of this time delay can be tuned
by varying the LCST of nanoparticles [4,29] and/or the dissipative
properties of the hydrogel as well as the loading amplitude and
frequency.

As previously mentioned, different systems have been devel-
oped to couple mechanical loading and drug release [19—21].
However, most of these systems could be considered as a sponge
containing a payload so that no specific correlation between me-
chanical loading and drug release could be controlled. Another
advantage of the proposed system is that it considerably reduced
undesirable passive drug release. If we measure the amount of
passive release over days from the composite hydrogel (Fig. 2S,
Supplementary data), we observe that after 5 days its value rep-
resents 9% of total loaded payload if the temperature is above the
LCST and less than 4% of total loaded Xylene if the temperature is
below the LCST. In comparison, the release due to mechanical load
was about 1.2% of total Xylene after 8 min. The reluctancy of the
system to passive release is most probably due to the hydrophobic
properties of PHEMA-based hydrogels. In spite of hydrophilic na-
ture of HEMA monomers, it is postulated that PHEMA hydrogel has,
in addition to its covalently linked network structure, a secondary
structure stabilized by hydrophobic bonding [30]. It has been
showed that for a hydrophobic porous material, because of an
defiltration (drainage) and infiltration pressure, force is required to
move liquid in and out of the material pores [31]. Without me-
chanical loading the structure is reluctant to exchange fluid and
facilitate the payload release. Therefore the amount of passive
release is highly decreased with the developed composite hydrogel.

High dissipation properties of PHEMA hydrogels also increase its
toughness, which is important if the composite hydrogel is used at
load-bearing sites like in cartilage. In general because hydrogels
have poor mechanical properties and are very brittle, their use is
limited for load-bearing applications. It has been shown that the
poor mechanical performance and fragility of hydrogels mainly
originate from their very low resistance to crack propagation due to
the lack of an efficient energy dissipation mechanism in the gel
network [32,33]. The high dissipation property of the developed
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composite hydrogel is then a particular advantage also for its me-
chanical behavior.

5. Conclusion

Temporal control over the delivery process induced by a me-
chanical loading is proposed in this study and is an innovative way
to deliver a payload. Dissipation properties of materials can be
considered as a new environmental variable to trigger the release
from thermosensitive, polymer-based delivery systems. A syner-
getic effect between loading and delayed payload delivery could be
obtained with the use of dissipative phenomenon, which is not
possible with other delivery systems.
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