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Abstract—This paper introduces a novel batch optimization
based calibration framework for legged robots. Given a non-
degenerate calibration dataset and considering the stochastic
models of the sensors, the task is formulated as a maximum
likelihood problem. In order to facilitate the derivation of
consistent measurement equations, the trajectory of the robot
and other auxiliary variables are included into the optimization
problem. This formulation can be transformed into a nonlinear
least squares problem which can be readily solved. Applied to
our legged robot StarlETH, the framework estimates kinematic
parameters (segment lengths, body dimensions, angular offsets),
accelerometer and gyroscope biases, as well as full inter-sensor
calibrations. The generic structure easily allows the inclusion
of additional sensor modalities. Based on datasets obtained on
the real robot the consistency and performance of the presented
approach are successfully evaluated.

I. INTRODUCTION

While the current progress in actuation schemes, sensor se-
tups, and mechanical design allows the construction of increas-
ingly performing legged robots, motion planing, control, and
state estimation of such systems still pose a very challenging
problem. The present work contributes to the ongoing research
by focusing on the calibration of the kinematics and the sensor
setup of a legged platform.

Most real robotic devices face the problem of calibration
and many different research communities have studied the
issue. The simplest approach for calibration is to measure
the calibration parameters by hand or with the help of some
external tools. However, this is not always possible, can be
a very tedious work, and might lack the desired precision.
Nowadays, calibration is often done by using sensor models
and fitting the model parameters by minimizing the measure-
ment errors for a given dataset. In some cases this can be done
without explicitly evaluating the state of the robot (e.g., if one
of the sensor models is invertible). Many hand-eye or head-eye
calibration problems can be solved explicitly [11, 16]. They
are often solved by looking at kinematic chains, where the
camera images are transformed into kinematic quantities.

The kinematic chain method is the most common approach
in kinematic calibration. For the well-studied hand-eye or
head-eye calibration problems the kinematic chains are closed
through the visual measurements. For setups without cameras,
different means have been used, e.g., Baser et al. [1] measured
the distance of the end-effector to a fixed point and used a
standard nonlinear least squares solver to find the kinematic
calibration parameters. An extensive analysis of the existing
methods is given by Khalil et al. [9].
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Often the error equations and corresponding noise specifi-
cation can be more accurately formulated if the state of the
robot is included into the calibration process. This means that
not only the calibration parameters need to be estimated but
the states of the robot too. This increases the dimension of
the problem and makes the computations more expensive.
Still, with the emergence of more elaborate filtering and
optimization techniques as well as with the increase in compu-
tational power of modern hardware, this approach has become
more and more common. Two classes of approaches can be
distinguished here. Online approaches which filter and refine
the estimated parameters at runtime and batch approaches
which use a prerecorded dataset over a given time period.

Online approaches have the advantage that the setup can be
used at startup and that they can handle parameters that might
potentially change, e.g., bias values of an inertial measurement
unit (IMU). Mirzaei et al. [12] implemented one of the first
online approach for extrinsic IMU-camera calibration and IMU
bias estimation. It relied on an external calibration target
for easy feature detection and matching. Using nonlinear
observability analysis they show that the desired quantities
are observable if the platform is rotated about at least two
different axes. Scandaroli et al. [14] tackle the same task by
implementing a nonlinear observer and proving its conver-
gence. They avoid any calibration pattern by producing camera
pose estimates directly based on the pixel intensities. Kelly
et al. [8] presented a simultaneous localization and mapping
(SLAM) framework which performs IMU-camera calibration
(extrinsic and bias) at runtime.

In contrast to the above online calibration frameworks, batch
approaches solve the full nonlinear optimization problem and
thus yield a higher level of accuracy. In the case of slowly
drifting calibration parameters the batch calibration can be
performed repeatedly. Pradeep et al. [13] presented a general
calibration framework for sensors which were able to mea-
sure 3D point targets (kinematic, camera, laser rangefinder).
They solve the corresponding nonlinear least squares problem
over robot states and calibration parameters by using the
Levenberg-Marquardt algorithm. Based on the incremental
pose estimates of two 6 DoF pose sensors, Brookshire et
al. [4] determined the corresponding extrinsic calibration by
solving the maximum likelihood problem within the special
euclidean group SE(3) using unit dual quaternions. The batch
optimization problems that arise here can also be solved in
continuous time. To this end, Fleps, Mair, and Ruepp et al.
[5] proposed a framework where the continuous trajectory is
parameterized using B-splines and thus could easily handle
asynchronous measurements from IMU and camera. Similarly
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to the approach in the present paper, Birbach et al. [2] imple-
mented a calibration routine for a multi-sensorial humanoids
upper body. Based on the general calibration framework of
Wagner et al. [18] they solve the corresponding nonlinear
least squares problem while elegantly handling the fact that 3D
rotations are members of the special orthogonal group SO(3).

The proper handling of 3D rotations has troubled robotic
researchers for a long time. Consistent approaches emerged
with the method of perturbing 3D rotations by local error
rotation vectors [17, 12, 8]. This was formalized by using Lie
group/algebra theory: Rotations are members of the special
orthogonal group (Lie group) and can be locally mapped to
the tangential vector space (Lie algebra) where operations
required for optimizations and filtering can be applied [15, 4].
Further in this context, Hertzberg et al. [6] introduced the
boxplus (�) and boxminus (�) operators which are getting
increasingly used when working with 3D rotations. In the
past two years, very efficient and convenient nonlinear least
squares optimization methods have been made available which
implement the above findings [10, 18].

The present work employs a key idea of our earlier work on
state estimation for legged robots [3]. The foothold locations
are co-estimated with the rest of the robot states. This builds
a link to computer vision research where the footholds are
interpreted as world-fixed features and where the leg kine-
matics measurements represent range-bearing measurements
between robot body and footholds. In this paper, however,
we use this idea to present a calibration framework which
estimates the kinematic parameters of the legged platform as
well as calibration parameters of the robot’s sensor setup.
The problem is formulated as a maximum likelihood problem,
where the corresponding nonlinear least squares problem can
be readily solved.

The approach is evaluated on a dataset collected on our
legged robot platform StarlETH [7] including kinematic mea-
surements, inertial measurements, and 6 DoF pose measure-
ments from a motion capture system. For this setup, the
calibration framework is motivated by the unknown mounting
of the pose sensor, by the joint angle offsets, by the bias
affected IMU measurements, as well as by the complex effects
of the ball-shaped compliant foot which shall be captured by
a simple and more convenient model. The results show that,
the trajectory of the robot as well as the set of calibration
parameters can be accurately estimated.

The structure of the paper is as follows. In Section II
the notation, the handling of rotational quantities, and the
general methodology are introduced. Subsequently, Section III
discusses the more specific problem of calibrating a legged
robot and takes a look at the sensor modalities. Experimental
setup and obtained results are presented in Section IV.

II. METHODOLOGY

A. Notation

Given a coordinate frame A and two points P and Q, ArPQ
stands for the coordinates of the vector from P to Q expressed
in frame A. If B is a second coordinate frame, then CBA

is the rotation matrix which transforms the coordinates of a
vector expressed in A to the corresponding coordinates in B.
The same rotation can also be represented by using the unit
quaternion qBA. For the sake of readability, A can also stand
for the point associated with the coordinate frame A, e.g.,
we will use WrWI in order to represents the coordinates,
expressed in W , of a vector between world coordinate frame
W and IMU-fixed coordinate frame I . Throughout the paper,
we always add a subscript k to a quantity v, if we are talking
about its value at a time tk, i.e., vk = v(tk).

B. Handling the Special Orthogonal Group
The representation and handling of 3D rotations is still a

very common source of confusion. In order to avoid this we
give a brief overview on the convention employed in this paper.
In order to represent 3D rotations, which are members of the
special orthogonal group SO(3), we employ unit quaternions.
This choice is mainly motivated by numerical reasons. The
set of unit quaternions is a 3D manifold and thus is locally
homeomorphic to a 3D vector space. This can be exploited by
looking at the exponential mapping between a 3D rotation
vector, θ ∈ R3, which lies in the tangential space at the
identity q0, and the corresponding quaternion q ∈ SO(3):

q = exp(θ). (1)

This mapping is surjective and thus an inverse exists, which
is called the logarithm:

θ = log(q). (2)

Both mappings have relative simple analytical representations.
Analogously to Hetzberg et al. [6], the boxplus and boxmi-

nus operators are introduced as follows:

� :SO(3)× R3 → SO(3), (3)
q,θ 7→ exp(θ)⊗ q,

and

� :SO(3)× SO(3)→ R3, (4)

q1, q2 7→ log(q1 ⊗ q−12 ).

In short, the boxminus operator expresses the difference be-
tween two quaternions by returning the error rotation vector
between both. On the other hand, the boxplus operator applies
a small rotation, expressed by a rotation vector, onto a unit
quaternion.

In a very informal and engineering like manner we introduce
special differentials on unit quaternions. Given a function
q : x 7→ q(x) which maps from some real vector space RN
to the set of unit quaternions, we define the differential(

∂q

∂x

)
i

:= lim
ε→0

q(x+ εei) � q(x)

ε
, i = 1, . . . , N, (5)

and if f : q 7→ f(q) is a function which maps from the set
of unit quaternions to some real vector space (or to the set of
unit quaternions) we define the special differential(

∂f

∂q

)
i

:= lim
ε→0

f(q � εei)− f(q)

ε
, i = 1, . . . , 3. (6)
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Let C(·) be the mapping between unit quaternions and corre-
sponding rotation matrices, then following identities hold:

∂

∂q
(C(q)v) = − (C(q)v)

×
, (7)

∂

∂q

(
q−1

)
= −CT (q), (8)

∂

∂q1
(q1 ⊗ q2) = I, (9)

∂

∂q2
(q1 ⊗ q2) = C(q1), (10)

∂

∂q
log(q) = A(q), (11)

where the subscript × is used to denote the skew-symmetric
matrix of a vector and where, similarly to Rodrigues’ formula
for rotation matrices, there exists a simple expression for
A(·). The above identities strongly simplify the evaluation of
analytical Jacobians. It can be proved that the chain rule is
valid. Please note that the precise formulation of the identities
can vary slightly depending on the employed conventions.

C. Formulation of the Problem

The proposed calibration approach is based on batch op-
timization. In this sense, model fitting is performed over a
dataset of all sensor readings for a given time period. We
search the set of model parameters that best explains the
observed sensor outputs by stating a maximum likelihood
problem. By assuming independent discrete Gaussian noise
this is equivalent to a nonlinear least squares problem. In
order to allow for general sensor measurement equations we
include the trajectory of the robot’s states into the optimization
problem. This is done by introducing NS discrete states
{x̂1, . . . , x̂NS

} at times {t1, . . . , tNS
} distributed over the

length of the dataset.
Based on the model of each sensor, a corresponding mea-

surement equation can be defined. It is a function of the robot’s
states and of the sensor’s calibration parameters. In some
cases, additional quantities will be co-estimated (see Section
III-B). For the sake of readability, quantities that are included
as variable into the optimization problem are denoted with a
hat, and measurement quantities with a tilde. Also, we stack
all optimization variables (robot states, calibration parameters,
and others) into one element X̂ ∈ X , where X is the Cartesian
product of unit quaternion sets and real vector spaces of the
corresponding variables. The NM measurement equations are
now formulated explicitly for the measurement noise, i.e., for
the jth measurement we model

nj = εj(X̂, z̃j), (12)
nj ∼ N (0,Rj), (13)

with the measurement z̃j and the symmetric positive definite
covariance matrix Rj . In most cases, the later can be obtained
from the sensors’ specification. This represents a more general
form of the common additive noise model

z̃j = f j(X̂) + nj , (14)

and allows a direct formulation of the corresponding nonlinear
least squares problem resulting from the likelihood maximiza-
tion:

X̂
∗

= arg min
X̂∈X

NM∑
j=1

εTj (X̂, z̃j)R
−1
j εj(X̂, z̃j). (15)

If we stack all measurements z̃j into one quantity Z̃ and de-
compose the symmetric positive definite matrixR−1j = QT

j Qj

we can write

E(X̂, Z̃) :=

 Q1ε1(X̂, z̃1)
...

QNM
εNM

(X̂, z̃NM
)

 . (16)

With this the Levenberg-Marquardt algorithm can be applied
directly on E(X̂, Z̃). If considering the special differentials of
Section II-B and using the boxplus operator (3) for the iterative
updates, no further care needs to be taken for calculating the
Jacobians and solving the optimization problem.

III. CALIBRATION OF A LEGGED ROBOT

A. Overview of the Legged Robot

In this section we take a closer look at the different sensor
modalities which are integrated in the calibration process.
While different legged platforms may have differing sen-
sor setups, we will present the methodology based on the
quadruped robot StarlETH [7] and pay special attention to
the formulation of the error function for the kinematics of the
leg. Many existing legged platforms are equipped with IMU
and kinematic sensors and thus the presented approach should
be directly applicable. In addition to this, we include a 6 DoF
pose sensor into the calibration process (referred to as pose
sensor). This could be data from some vision or laser setup,
or, like in our case, the measurements of an external motion
capture system. Exactly the same procedure could be applied
on a platform with an on-board camera tracking some visual
target.

In Fig. 1, the employed coordinate frames are illustrated.
Each state x̂k at time tk is composed of the IMU’s position
W r̂WI(tk) and attitude q̂IW (tk). Shorter we define

x̂k = (r̂k, q̂k) := (W r̂WI(tk), q̂IW (tk)). (17)

B. Kinematic Measurements

A special aspect of legged robots is that they interact with
their surrounding through intermittent ground contacts. This is
exploited for the robot’s locomotion and represents a valuable
source of information for state estimation [3]. However, this
relies on a precise calibration of the kinematic model of the
robotic platform.

For a given robot with NL legs, we assume that all internal
kinematic variables α can be measured and that we can write
the forward kinematics of the ith leg in the following form:

BrBFi
= f i(α̃, p̂kin) + ns,i, (18)

ns,i ∼ N (0,Rs), (19)
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Fig. 1. Overview of coordinate frames. W : World fixed coordinate frame,
I: IMU fixed coordinate frame, B: Coordinate frame fixed to the center of
the body, C: Coordinate frame fixed to the pose sensor, V : Inertial coordinate
frame of pose sensor

where Fi is the contact point of the ith leg. The covariance
matrix Rs models the noise on the kinematic measurements
α̃ as well as from other inaccuracies like slippage or unknown
exact contact point. Its value cannot be directly obtained
from the sensors’ specifications and represent the main tuning
parameter of the calibration process. The vector p̂kin is the
stacked vector of kinematic calibration parameters. By intro-
ducing p̂i = W r̂WFi

as an additional optimization variable,
we can formulate the kinematic error equation as follows:

εs,i,k = C(q̂BI)(C(q̂k)(p̂i − r̂k)− I r̂IB) (20)
− f i(α̃k, p̂kin),

where I r̂IB and q̂BI parametrize the transformation between
IMU frame and body frame.

It is important to note that the contact point of the ith leg p̂i
is introduced as an optimization variable and assumed to be
stationary with respect to the world frame. The leg kinematics
measurements represent range-bearing measurements between
the contact point and the robot’s main body. If the robot is
stepping during the calibration procedure, a new contact point
is introduced for every new foothold. Additional optimization
variables are the calibration parameters I r̂IB , q̂BI , and p̂kin,
whereby the later includes most design parameters of a four
legged robot with 3 DoF per leg and specified rotational joint
sequence. If considering the symmetries of the robot, the
parametrized forward kinematics of the X-Y-Y sequence of
rotational angles (hip abduction, hip flexion, knee flexion) can
be written as follows:

f i(α̃, p̂kin) =

 ci b̂x + l1
di b̂y + l2 sin(α̃i + ∆α̂i)

l2 cos(α̃i + ∆α̂i)

 , (21)

with

l1 = l̂T sin(β̃i + ∆β̂i) + l̂S sin(β̃i + ∆β̂i + γ̃i + ∆γ̂i),

l2 = l̂H + l̂T cos(β̃i + ∆β̂i) + l̂S cos(β̃i + ∆β̂i + γ̃i + ∆γ̂i).

In the above equations, l̂H , l̂T , l̂S , are the lengths of the hip,
thigh and shank segments, b̂x, b̂y are half the length and width

of the main body, ∆α̂i, ∆β̂i, ∆γ̂i are the offset on the angular
measurements of hip abduction, hip flexion and knee flexion,
and ci, di ∈ {1,−1} are constants. We have

pkin = [l̂H , l̂T , l̂S , b̂x, b̂y,∆α̂1, . . . ,∆α̂NL
, (22)

∆β̂1, . . . ,∆β̂NL
,∆γ̂1, . . . ,∆γ̂NL

]T . (23)

C. Inertial Measurements
The mounted IMU contains an accelerometer and a gyro-

scope. The delivered measurements, f̃k (proper acceleration)
and ω̃k (rotational rate), are assumed to be affected by constant
biases, b̂f and b̂ω (calibration parameters), and some additive
discrete Gaussian noise. Using simple finite differences the
corresponding error equations can be written as

εf,k =
2r̂k−1

∆tk(∆tk + ∆tk+1)
+

2r̂k+1

∆tk+1(∆tk + ∆tk+1)

− 2r̂k
∆tk∆tk+1

−CT (q̂k)(f̃k − b̂f )− g, (24)

εω,k =
(
q̂k � q̂k−1

)
/∆tk + ω̃k − b̂ω, (25)

with ∆tk = tk − tk−1 and

εf,k ∼ N (0,Rf ), (26)
εω,k ∼ N (0,Rω). (27)

The convenience of the special derivatives introduced in
section II-B can be illustrated here. For example the Jacobian
of the error εω,k w.r.t. the unit quaternion q̂k−1 can be
evaluated by using equations (8), (10), and (11) together with
the chain rule:

∂εω,k
∂q̂k−1

=
1

∆tk

∂

∂q̂k−1
log(q̂k ⊗ q̂

−1
k−1), (28)

=
−1

∆tk
A(q̂k ⊗ q̂

−1
k−1)C(q̂k)CT (q̂k−1). (29)

D. Pose Measurements
The pose measurements can be obtained from different kind

of sensors, whereas the approach could also be extended to
include other type of measurements. Here the pose sensor
is measuring the translation and rotation between an inertial
frame V (which in general is different from W ) and the
sensor coordinate frame C. Looking at the closed sequence of
coordinate frame transformations W -I-C-V -W , we can derive
the following error equations:

εq,k = (q̂CI ⊗ q̂k ⊗ q̂WV ) � q̃CV,k, (30)

εr,k = C(q̂WV )V r̃V C,k + W r̂WV − r̂k (31)

−CT (q̂k)I r̂IC .

Based on the sensor’s specifications we have:

εq,k ∼ N (0,Rq), (32)
εr,k ∼ N (0,Rr). (33)

The calibration quantities are the transformations between the
IMU coordinate frame I and the pose sensor coordinate frame
C, as well as between the world coordinate frame W and the
pose sensors’ reference inertial frame V . This is parametrized
with the calibration parameters W r̂WV , I r̂IC , q̂WV , and q̂CI .
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IV. RESULTS AND DISCUSSION

The presented approach is evaluated on real datasets ob-
tained on the quadruped robot StarlETH [7]. The motion of
the robot during the recording is chosen heuristically: the robot
is alternatively rolling and pitching it’s main body (see Fig. 3).
This is mainly motivated by the experimental observation that
large magnitudes of rolling and pitching make the accelerom-
eter bias more accurate, as well as by the statement that the
IMU to pose sensor calibration is only observable if the robot
is rotated about at least two different axes [12]. The length
of the sequences (30 s) is a compromise between accuracy
of the estimates and computational costs. Potential time delay
between the sensor modalities is estimated by cross-correlating
rough estimates of the angular rate norms.

For the corresponding batch optimization, the Levenberg-
Marquardt algorithm exhibits a good rate of convergence
and a very high robustness against bad initial guesses. For
example, the sequence of state estimates depicted in Fig.
2 and Fig. 3 was obtained starting with all optimization
variables set to zero (or the unit quaternion). Starting with
some other initial guess does in general not affect the final
result. Further, if starting with a proper initial guess, which can
be obtained from the robot’s on-board state estimation [3], the
algorithm converges in 3–4 iterations. Using covariance back-
propagation an estimate of the covariances of the optimization
variables can be obtained. For the robot’s states the 3σ bounds
are plotted in both figures. The estimated standard deviations
for the calibration parameters are listed in table I.

In Fig. 4 the error residuals of the forward kinematics
of one leg are displayed. While the overall error remains
small, some strong autocorrelation can be observed, which
violates the independent discrete Gaussian noise assumption.
This originates from the compliance and the rolling of the ball-
shaped foot. So far, this is handled by choosing a conservative
covariance matrix Rs for the kinematic measurements.

In table I the estimated parameters for two datasets based on
the same calibration motion are listed (DS1 and DS2). For the
calibration parameters, which could be measured or estimated
by some other means (e.g. CAD drawing), the corresponding
reference values are given in the last column (values with a ∗
are only rough estimates and less accurate than the calibration
results). The kinematic calibration accuracy is in the range
of 1 cm for translation, 0.005 rad for 3D rotations, and about
0.02 rad for the angular calibration of the joints. If comparing
both datasets with the reference values it can be observed that
some estimates are biased. In particular, the parameter I r̂IB,x
exhibits a constant offset of roughly 3 cm. This is probably
caused by the violation of the independent Gaussian noise
assumption and inaccuracies of the forward kinematics. The
shank length, l̂S , is also of interest: while the reference value
0.235 is measured to the center of the ball-shaped foot, the
estimated value is constantly longer by about 1 cm, which
could include the rolling effects of the foot. The remaining
IMU and pose sensor calibration parameters all exhibit a very
good level of precision.
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Fig. 2. From light gray to black: sequence of estimated robot positions,
whereas the initial guess (all zeros) is not plotted. Dotted red: 3σ bounds of
the final estimate.
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Fig. 3. From light gray to black: sequence of estimated robot attitudes
(transformed to Euler angles), whereas the initial guess (all zeros) is not
plotted. Dotted red: 3σ bounds of the final estimate. The alternating rolling
and pitching motion can be nicely perceived.

V. CONCLUSION AND FUTURE WORK

This paper presents a framework for calibrating the different
sensor modalities of a legged robot. By solving the batch
optimization problem resulting from the maximum likelihood
formulation, the approach yields accurate estimates for most
of the calibration parameters. Notably, the framework is able
to estimate many of the model parameters of the robot’s
forward kinematics. While additional sensors could be easily
included, this procedure represents a fast and convenient
way of getting a legged robot’s calibration parameters. In a
reduced implementation the batch optimization could also be
solved repeatedly for bias estimation and thereby contribute to
the performance of online state estimation. Future work will
include the investigation of different kinematic models in order
to more accurately capture the effects of the ball-shaped and
compliant foot.
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Fig. 4. Error residuals of the forward kinematics of one leg (expressed in
the body frame). The RMS values for the different coordinates are: 0.0017 m,
0.0029 m, 0.0011 m. Strong autocorrelation can be observed.

TABLE I
ESTIMATED CALIBRATION PARAMETERS

Par. DS1 DS2 Std Ref.
Kinematic calibration

Body
translation (m)

I r̂IB,x -0.2675 -0.2673 0.0040 -0.2334
I r̂IB,y -0.0111 -0.0108 0.0035 0.0060
I r̂IB,z -0.0941 -0.0938 0.0032 -0.0905

Body rotation
(rad)

q̂BI,x 0.0025 0.0001 0.0104 0*
q̂BI,y 0.0060 0.0066 0.0077 0*
q̂BI,z 0.0216 0.0241 0.0041 0*

Segment
lengths (m)

l̂H -0.0644 -0.0687 0.0037 -0.0685
l̂T -0.1995 -0.2025 0.0057 -0.2
l̂S -0.2450 -0.2469 0.0054 -0.235*

Body
dimensions (m)

b̂x 0.2455 0.2481 0.0078 0.2525
b̂y 0.1811 0.1827 0.0061 0.185

Angular offsets
(rad)

∆α̂1 -0.0432 -0.0428 0.0147 0*
∆α̂2 0.0358 0.0381 0.0147 0*
∆α̂3 -0.0236 -0.0208 0.0135 0*
∆α̂4 0.0312 0.0298 0.0144 0*
∆β̂1 0.0521 0.0691 0.0275 0*
∆β̂2 0.0157 0.0198 0.0273 0*
∆β̂3 -0.0381 -0.0429 0.0286 0*
∆β̂4 -0.0597 -0.0710 0.0292 0*
∆γ̂1 -0.0490 -0.0537 0.0326 0*
∆γ̂2 -0.0016 -0.0009 0.0307 0*
∆γ̂3 0.0124 0.0096 0.0330 0*
∆γ̂4 0.0155 0.0140 0.0339 0*

IMU calibration

Accelerometer
bias (m/s2)

b̂f,x 0.045 0.0492 0.0100 n/a
b̂f,y -0.0357 -0.0311 0.0103 n/a
b̂f,z 0.0019 0.0018 0.0012 n/a

Gyroscope bias
(rad/s)

b̂ω,x -0.0010 -0.0010 0.0005 n/a
b̂ω,y 0.0045 0.0044 0.0005 n/a
b̂ω,z 0.0032 0.0030 0.0005 n/a

Pose sensor calibration

Sensor
translation (m)

I r̂IC,x -0.3435 -0.3443 0.0030 n/a
I r̂IC,y -0.0141 -0.0136 0.0029 n/a
I r̂IC,z -0.0066 -0.0074 0.0021 n/a

Sensor rotation
(rad)

q̂CI,x -0.0085 -0.0085 0.0029 n/a
q̂CI,y -0.0075 -0.0052 0.0029 n/a
q̂CI,z -0.0371 -0.0360 0.0013 n/a
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