
Chapter 9

Keypoint Recognition using Random Forests

and Random Ferns

⇤

V. Lepetit and P. Fua

Abstract In many 3-D object-detection and pose-estimation problems, run-time
performance is of critical importance. However, there usually is time to train the
system. We introduce an approach that takes advantage of this fact by formulating
wide-baseline matching of keypoints extracted from the input images to those found
in the model images as a classification problem. This shifts much of the computa-
tional burden to a training phase and eliminates the need for expensive patch pre-
processing, without sacrificing recognition performance. This makes our approach
highly suitable for real-time operations on low-powered devices.
To this end, we developed two related methods. The first uses Random Forests that
rely on simple binary tests on image intensities surrounding the keypoints. In the
second, we flatten the trees to turn them into simple bit strings, which we will re-
fer to as Ferns, and combine their output in a Naive Bayesian manner. Surprisingly,
the Ferns, while simpler, actually perform better than the trees. This is because the
Naive Bayesian approach benefits more from the thousands of synthetic training
examples we can generate than output averaging as usually performed by Random
Forests. Furthermore, the more general partition the trees allow does not appear to
be of great use for our problem.

9.1 Introduction

In many 3–D object-detection and pose estimation problems ranging from Aug-
mented Reality to Visual Servoing, run-time performance is of critical importance.
However, there usually is time to train the system before actually using it. Further-
more 3–D models, or multiple images from which such models can be built, tend to

V. Lepetit, P. Fua
Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

⇤ This work was supported in part by the Swiss National Science Foundation

17

18 Lepetit et al.

be available. As shown in Figure 9.1, we describe here a technique designed to op-
erate effectively in this context by shifting much of the computational burden to the
training phase so that run-time detection becomes both fast and reliable. Our gen-
eral approach, like many others, relies on matching interest points extracted from
training images and those extracted from input images acquired at run-time under
potentially large perspective and scale variations. It turns out to be very simple to
implement, and to perform as well as SIFT [18] while being faster.

Interest points are usually matched by building affine-invariant descriptors of
the surrounding image patches and to compare them across images. This typically
involves fine scale selection, rotation correction, and intensity normalization [20,
18]. It results in a high computational overhead and often requires handcrafting the
descriptors to achieve insensitivity to specific kinds of distortion.

Instead, we turn this problem into a classification one. More specifically, we con-
sider the set of all possible appearances of each individual object keypoint as a class,
which we refer to as a view set. During training, given at least one image of the tar-
get object, we extract interest points and generate numerous synthetic views of their
possible appearance under perspective distortion, which are then used to train a clas-
sifier. It is used at run-time to recognize the keypoints under perspective and scale
variations by deciding to which view set, if any, their appearance belongs.

We first consider using Classification Forests [2], as described in Chapter ??,
as the classification technique, because they naturally handle multi-class problems.
Furthermore, they are robust and fast, while remaining reasonably easy to train. We
then show that the trees can be profitably replaced by non-hierarchical structures
that we refer to as Ferns to classify the patches. Each one consists of a small set
of binary tests and returns the probability that a patch belongs to any one of the
classes that have been learned during training. These responses are then combined
in a Naive Bayesian way. As before, we train our classifier by synthesizing many
views of the keypoints extracted from a training image as they would appear under
different perspective or scale. Thanks to the Naive Baysian approach, the Ferns are
more reliable than the trees, while being much faster and simpler to implement.
They do not require ad hoc patch normalization, and allow for fast and incremental
training.

9.2 Wide Baseline Point Matching as a Classification Problem

Our approach to object detection and pose estimation relies on matching keypoints
found in an input image against those on a target object O. Once potential cor-
respondences have been established, we apply standard techniques to estimate the
3–D pose. Therefore, the critical step in achieving results such as those depicted in
Figure 9.1 is the fast and robust wide-baseline matching that handling large perspec-
tive and scale changes implies, which we formulate below in terms of a classification
problem.

9 Keypoint Recognition 19

a b c

Fig. 9.1 Matching a mouse pad in a 1074-frame sequence against a reference image. (a, b) Matches
obtained using ferns in a few frames. The reference image appears at the top and the input image
from the video sequence at the bottom. (c) Scatter plot showing the number of inliers for each
frame. The values on the x- and y- axes give the number of inliers for the Ferns and SIFT, respec-
tively. Most of the time, the Ferns match at least as many points as SIFT and often even more, as
can be seen from the fact that most of the points lay below the diagonal.

During training, we first select a set K of K prominent keypoints lying on the
object model. At runtime, given an input patch v centered at a keypoint extracted
from the input image, we want to decide whether or not its appearance matches that
one of the K keypoints in K. In other words, we want to find for v its class label
c(v) 2 C = {�1,1,2, . . . ,K}, where the �1 label denotes all the points that do not
belong to K.

In other tasks such as face detection or character recognition, large training sets of
labeled data are usually available. However, for automated pose estimation, it would
be impractical to require a very large number of sample images. Instead, to achieve
robustness with respect to pose and complex illumination changes, we use a small
number of reference images and synthesize many new views of the object using
simple rendering techniques. For each keypoint, this gives us a sampling of its view
set, the set of all its possible appearances under different viewing conditions. These
samplings are virtually infinite training sets. Figure 9.2 depicts such a sampling for
several keypoints.

9.3 Keypoint Recognition with Classification Forests

Several classification algorithms, such as K-Nearest Neighbor, Support Vector Ma-
chines or neural networks could have been chosen to implement the classifier Y
introduced in Section 9.2. Among those, we have found Random Forests, also re-

20 Lepetit et al.

a b

Fig. 9.2 (a) One of our reference images used in the evaluations. (b) Warped patches obtained by
applying affine deformations to this image. In each line, the left most patch is the original one and
the others are deformed versions of it. They are used to train our algorithms after noise addition.

ferred to as Randomized Trees [2] or Classification Forests, to be eminently suitable
because they naturally handle multi-class problems and are robust and fast, while
remaining reasonably easy to train. We describe in this section their application to
our specific problem. In the next section, we will show how they can be further
simplified into another classifier we call Ferns, while improving the performances.

9.3.1 Random Classification Forests

We briefly recall here how Random Forests can be used for classification. Each
internal node of a tree contains a simple test that splits the space of data to be
classified, in our case the space of image patches. Each leaf contains an estimate
based on training data of the posterior distribution over the classes. A new patch is
classified by dropping it down the tree and performing an elementary test at each
node that sends it to one side or the other. When it reaches a leaf, it is assigned
probabilities of belonging to a class depending on the distribution stored in the leaf.
Since the numbers of classes, training examples and possible tests are large in our
case, building the optimal tree quickly becomes intractable. Instead, multiple trees
are grown so that each tree yields a different partition of the space of image patches.

Once the trees T1, . . . ,TT are built, their responses are combined during classi-
fication to achieve a better recognition rate that a single tree could. More formally,
the tree leaves store posterior probabilities p(c | Lt = l(t,v)) = pt(c | v), where c is
a label in C, t is the index of the tree, and Lt = l(t,v) is the leaf of tree Tt reached by
patch v. Such probabilities are evaluted during training as the ratio of the number
of patches of class c in the training set that reach l and the total number of patches
that reach l. Patch v is classified by considering the average of the probabilities
p(c | Lt = l(t,v)):

Ŷ (v) = argmax
c

Â
t=1...T

p(c | Lt = l(t,v)) . (9.1)

9 Keypoint Recognition 21

The drawback of classification forests is their greedy use of memory. Their size in
memory increases exponentially with the depth, and linearly with the number of
trees. For example, a single tree of depth 15 uses about 32 Mb for a 200 classes
problem. Therefore, the chosen number of trees and their depth are a trade-off be-
tween the computer memory dedicated to store them and the recognition rate. In
Section 9.5, we study the influence of these parameters on the recognition rate.

9.3.2 Node Tests

In our implementation, the tests performed at the nodes are simple binary tests based
on the difference of intensities of two pixels p1 and p2 taken in the neighborhood of
the keypoint. We write these tests as

hi(v,(p
i
1,p

i
2)) = [J (v,pi

1) J (v,pi
2)]

where J (v,p) is the intensity of patch v at pixel location p, after Gaussian smooth-
ing to reduce influence of noise. Such a test can be seen as a test on the polarity
between the two locations p

i
1 and p

i
2. In all our experiments, the patches are of size

32 ⇥ 32, so that the total number of possible h tests is 219. Fortunately, since real-
world images exhibit spatial coherence, only a very small subset is required to yield
good recognition rates.

As shown below, a few hundreds of these simple tests are usually enough to clas-
sify a patch. This involves only a few hundreds intensity comparisons and additions
per patch, and is therefore very fast. Furthermore, because they only depend on the
order of the pixel intensities between neighbors, they tend to be fairly insensitive to
illumination changes other than those caused by a moving shadow. In other words,
to achieve the robustness to illumination effects demonstrated in Figure 9.1, our
technique, unlike many others, does not require us to normalize the pixel intensities,
for example by setting the L2 norm of the intensities to one.

9.3.3 Building the Trees

To improve the recognition rate, we use multiple trees that should partition the
patches space in different manners. We experimented with two different methods
for building such trees.

The first method is the one described in Chapter ??: The trees are constructed in
the classical, top-down manner, where the tests are chosen by a greedy algorithm
to best separate the given examples. The expected gain in information is used to
evaluate the separation efficiency.

The second method is much faster and simpler: Instead of picking questions ac-
cording to a criterion, we simply pick a random set, as also done in the Extremely

22 Lepetit et al.

(a) (b)

Fig. 9.3 Comparing the classification rates obtained using trees grown in two different manners,
as a function of the number of trees. (a) Without and (b) with patch orientation normalization. The
thick lines depict results obtained by selecting tests that maximize the information gain. The thin
lines depict results obtained by randomly chosen tests, which result in a small loss of reliability
but considerably reduces the training time. Note that in all cases the normalization lets us achieve
better results with fewer trees. However when enough trees are used, it does not improve the rates
anymore.

Randomized Trees [10] approach discussed in the next chapter. This can be seen as
an extreme simplification of the first method. The two locations p

i
1 and p

i
2 for each

node are picked at random within the patch, independently of the training samples
that fall into the node and of the tests performed further up in the tree.

To compare the two tree-building methods we have introduced, we used them
both on a set of 200 keypoints. This resulted in two sets of trees whose depth was
limited to the same value.

When using the entropy minimizing approach, we first synthesized 100 new
views different for each tree to grow. We then recursively built the trees by trying
n different tests at each node and keeping the best one according to the information
gain. For the root node, we chose n = 10, a very small number, to reduce the corre-
lation between the resulting trees. For all other nodes, we used n = 100d, where d
is the depth of the node. Note that this heuristic involves randomizing on both tests
and training data. We do the latter mostly to make our greedy algorithm tractable.

In the case of the completely random approach to building trees, p

i
1 and p

i
2 were

simply chosen at random. For the two sets, the tree depth is limited to a given max-
imal depth, and the posterior probabilities are estimated from 1000 new random
views per keypoint.

For this experiment, we used trees with a depth limited to 12, which was found
to be a good trade-off between the memory requirements and recognition rate. After
having grown the trees, the posterior probabilities in the terminal nodes were esti-
mated using 5000 new training images. We then measured the recognition rate R
of the two sets of trees by generating new images under random poses, as the ratio
of the number of correctly recognized patches and the total number of generated
patches. The evolution of R for the two sets of trees with respect to the number of

9 Keypoint Recognition 23

trees is depicted Figure 9.3(a). Taking the tests at random usually results in a small
loss of reliability at least when the number of trees is not large enough but consider-
ably reduces the learning time. The time dedicated to growing the trees drops from
tens of minutes to a few seconds on a 2.8 GHz machine.

We also experimented with normalizing the v patches’ orientations both during
training and at run-time to achieve higher recognition rates for a given number of
trees. As in [18] we attribute a 2–D orientation to the keypoints that is estimated
from the histogram of gradient directions in a patch centered at the keypoint. Note
that by contrast with [18], we do not require a particularly repeatable method. We
just want it to be reliable enough to reduce variation within classes. Once the orienta-
tion of an extracted keypoint is estimated, its neighborhood is rectified. Figure 9.3(b)
compares the recognition rates with this normalization step for the two different
methods of selecting the tests. Taking the tests at random results in a slightly larger
but still small loss of reliability. More importantly, the normalization gives us sig-
nificantly improved rates when using only a small number of trees. However, when
using a large number of trees, the recognition rates are similar with and without the
normalization.

We draw two practical conclusions from these experiments. First, using random
tests is sufficient and keeps the learning time reasonable for practical applications.
Second, the orientation normalization step is not required, but lets us reduce the
number of trees. Therefore the choice of using such a normalization becomes a
trade-off between the amount of time required to normalize and to classify, which
is proportional to the number of trees. However, in the next section, we discuss an
approach closely related to trees that reaches, without normalization, performances
similar to the trees when normalization is used, for an equal amount of computa-
tions.

9.4 Keypoint Recognition with Random Ferns

In this section, we will argue that, when the tests are chosen randomly, the power of
our general approach derives not from the tree structure itself but from the fact that
combining groups of binary tests yields improved classification rates. To this end,
we drop the hierarchical structure of the trees and group the tests into a flat one we
call Fern. We first show that our Ferns fit nicely into a Naive Bayesian framework
and yield better results and scalability in terms of number of classes. As a result, we
can combine many more features, which is key to increasing performance.

9.4.1 Random Ferns

Our general approach is still similar to the one taken with the Randomized Trees in
the previous section: Given the patch surrounding a keypoint detected in an image,

24 Lepetit et al.

our task is to assign it to the most likely class. Let h j = h j(v,(p
j
1,p

j
2)), j = 1, . . . ,N

be the set of binary features that will be calculated over the patch v we are trying to
classify. Formally, we are looking for

Ŷ (v) = argmax
c

p(c | h1,h2, . . . ,hN) ,

where C is a random variable that represents the class. Bayes’ Formula yields

p(c | h1,h2, . . . ,hN) =
p(h1,h2, . . . ,hN | c)p(c)

p(h1,h2, . . . ,hN)
.

Assuming a uniform prior p(C), since the denominator is simply a scaling factor
that it is independent from the class, our problem reduces to finding

argmax
c

p(h1,h2, . . . ,hN | c) . (9.2)

Since the h j features are very simple, we require many (N ⇡ 300) for accurate clas-
sification. Therefore a complete representation of the joint probability in Eq. (9.2) is
not feasible since it would require estimating and storing 2N entries for each class.
One way to compress the representation is to assume independence between fea-
tures. An extreme version is to assume complete independence, that is,

p(h1,h2, . . . ,hN | c) =
N

’
j=1

p(h j | c) .

However this completely ignores the correlation between features. To make the
problem tractable while accounting for these dependencies, a good compromise is
to partition our features into F groups of size S = N

F . These groups are what we
define as Ferns and we compute the joint probability for features in each Fern. The
conditional probability becomes

p(h1,h2, . . . ,hN | c) =
F

’
f=1

p(Fk | c) , (9.3)

where F f = {hs(f ,1),hs(f ,2), . . . ,hs(f ,S)}, f = 1, . . . ,F represents the f th fern and
s(f , j) is a random permutation function with range 1, . . . ,N. Hence, we follow a
Semi-Naive Bayesian [30] approach by modelling only some of the dependencies
between features. The viability of such an approach has been shown by [16] in the
context of image retrieval applications. In this new method, patch v is therefore
classified using:

Ŷ (v) = argmax
c

F

’
f=1

p(F f | c) . (9.4)

This formulation yields a tractable problem that involves F ⇥2S parameters, with
F between 30-50. In practice, as will be shown in Section 9.5, S = 11 yields good re-

9 Keypoint Recognition 25

sults. F ⇥2S is therefore in the order of 80,000, which is much smaller than 2N with
N ⇡ 450 that the full joint probability representation would require. Our formulation
is also flexible since performance/memory trade-offs can be made by changing the
number of Ferns and their sizes.

Note that we use randomization in feature selection but also in grouping. An
alternative approach would involve selecting feature groups to be as independent
from each other as possible. This is routinely done by Semi-Naive Bayesian classi-
fiers based on a criteria such as the mutual information between features. However,
in practice, we have not found this to be necessary to achieve good performance.
We have therefore chosen not to use such a strategy to preserve the simplicity and
efficiency of our training scheme and to allow for incremental training.

9.4.2 Training the Ferns

The training phase estimates the class conditional probabilities p(F f | c) for each
Fern F f and class c, as described in Eq. (9.3). For each Fern F f we write these terms
as:

pk,c = p(F f = k | c) , (9.5)

where we simplify our notations by considering F f to be equal to k if the base 2
number formed by the binary features of F f taken in sequence is equal to k. With
this convention, each Fern can take K = 2S values and we need to estimate the
pk,c,k = 1,2, . . . ,K under the constraint that their sums over k should be equal to
1. The simplest approach would be to assign the maximum likelihood estimate to
these parameters from the training samples. For parameter pk,c it is

pk,c =
Nk,c

Nc
,

where Nk,c is the number of training samples of class c that evaluates to Fern value
k and Nc is the total number of samples for class c. These parameters can therefore
be estimated for each Fern independently.

In practice however, this simple scheme yields poor results because if no training
sample for class c evaluates to k, which can easily happen when the number of
samples is not infinitely large, both Nk,c and pk,c will be zero. Since we multiply the
pk,c for all Ferns, it implies that, if the Fern evaluates to k, the corresponding patch
can never be associated to class c, no matter the response of the other Ferns. This
would make the Ferns far too selective because the fact that pk,c = 0 may simply
be an artifact of the necessarily limited size of the training set. To overcome this
problem we take pk,c to be

pk,c =
Nk,c +Nr

Nc +K ⇥Nr
,

26 Lepetit et al.

Fig. 9.4 Ferns vs Trees. A tree can be transformed into a Fern by performing the following steps.
First, we constrain the tree to systematically perform the same test across any given hierarchy
level, which results in the same feature being evaluated independently of the path taken to get to
a particular node. Second, we do away with the hiearchical structure and simply store the feature
values at each level. This means applying a sequence of tests to the patch, which is what Ferns do.

where Nr represents a regularization term, which behaves as a uniform Dirichlet
prior [4] over feature values. If a sample with a specific Fern value is not encountered
during training, this scheme will still assign a non-zero value to the corresponding
probability. We have found our estimator to be insensitive to the exact value of Nr
and we use Nr = 1 in all our experiments. However, having Nr be strictly greater
than zero is essential. This tallies with the observation that combining classifiers in
a Naive Bayesian fashion can be unreliable if improperly done.

In effect, our training scheme marginalizes over the pose space since the class
conditional probabilities P(F f | c) depend on the camera poses relative to the object.
By densely sampling the pose space and summing over all samples, we marginalize
over these pose parameters. Hence at run-time, the statistics can be used in a pose
independent manner, which is key to real-time performance. Furthermore, the train-
ing algorithm itself is very efficient since it only requires storing the Nk,c counts for
each fern while discarding the training samples immediately after use, which means
that we can use arbitrarily many if need be.

9.5 Comparing Random Forests, Random Ferns, and SIFT

9.5.1 Empirical Comparisons of Trees and Ferns

Ferns differ from trees in two important respects: As shown in Figure 9.4, Ferns
can be considered as simplified trees. Also, as can be easily seen by comparing
Eqs. (9.1) and (9.4), the trees average posteriors while the ferns rely on products of
conditional probabilities. Whether or not the differences degrade the classification
performance hinges on whether our randomly chosen binary features are still ap-
propriate in this context. In this section, we will show that they are indeed. In fact,
because our Naive Bayesian scheme outperforms the averaging of posteriors, the
Ferns are both simpler and more powerful.

9 Keypoint Recognition 27

a b

Fig. 9.5 Average percentage of correctly classified image patches over many trials (recognition
rate) for Randomized Trees of depth 11 and Random Ferns with 11 features each. (a) Recognition
rate as a function of the the number of Trees or Ferns. Using the Naive Bayesian assumption gives
much better rates at reduced number of structures, while the Fern and tree structures are inter-
changeable. (b) Recognition rate as a function of the number of classes. While the naive combi-
nation produces a very slow decrease in performance, posterior averaging exhibits a much sharper
drop.

To compare RTs and Ferns, we experiment with three reference images including
the one shown in Figure 9.2. We extracted stable keypoints from these images and
assigned a unique class id to each of them. The classification is done using patches
that are 32⇥ 32 pixels in size. To disentangle the influence of the differences be-
tween trees and ferns, we consider four different scenarios:

• Using Randomized Trees and averaging of class posterior distributions,
• Using Randomized Trees and combining class conditional distributions in a

Naive-Bayesian way,
• Using Ferns and averaging of class posterior distributions,
• Using Ferns and combining class conditional distributions in a Naive-Bayesian

way.

Also the number of features evaluated per patch by the two classifiers is equal in all
cases. As explained in Section 9.2, the training and testing sets are obtained from
the reference images. We randomly deform these images with affine deformations
that can arbitrarily rotate the images, skew and scale them over a large range, and
add Gaussian noise. More details on this experimental setup can be found in [21].

In Figure 9.5a, we plot the results as a function of the number of trees or Ferns
being used. We first note that using either flat Fern or hierarchical tree structures
does not affect the recognition rate, which was to be expected as the features are
taken completely at random. By contrast the Naive-Bayesian combination strategy
outperforms the averaging of posteriors and achieves a higher recognition rate even
when using relatively few structures.

Figure 9.5b shows that the performance of the Naive-Bayesian combination does
not degrade rapidly with the number of classes and scales much better than averag-
ing posteriors. For both methods, the required amounts of memory and computation
times increase linearly with the number of classes, since we assign a separate class
for each keypoint.

28 Lepetit et al.

(a) (b)

Fig. 9.6 Recognition rate (a) and computation time in seconds (b) as a function of the amount of
memory available and the size of the Ferns being used. The number of Ferns used is indicated on
the top of each bar and the y-axis shows the Fern size. The color of the bar represents the required
memory amount, when using single precision floating numbers. Note that while using many small
ferns achieves higher recognition rates, it also entails a higher computational cost.

Increasing the Fern size by one doubles the number of parameters hence the
memory required to store the distributions. It also implies that more training sam-
ples should be used to estimate the increased number of parameters. It has however
negligible effect on the run-time speed and larger Ferns can therefore handle more
variation at the cost of training time and memory but without much of a slow-down.

By contrast adding more Ferns to the classifier requires only a linear increase in
memory but also in computation time. Since the training samples for other Ferns can
be reused it only has a negligible effect on training time. As shown in Figure 9.6, for
a given amount of memory the best recognition rate is obtained by using many rela-
tively small Ferns. However this comes at the expense of run-time speed and when
sufficient memory is available, a Fern size of 11 represents a good compromise,
which is why we have used this value in the experiments.

9.5.2 Empirical Comparisons between SIFT and Ferns

We used the 1074-frame video depicted by Figure 9.1 to compare Ferns against
SIFT for planar object detection. It shows a mouse pad undergoing motions in-
volving a large range of rotations, scalings, and perspective deformations against
a cluttered background. The graph on the right shows that the Ferns can match as
many points as SIFT and sometimes even more.

It is difficult to perform a completely fair speed comparison between our Ferns
and SIFT for several reasons. SIFT reuses intermediate data from the keypoint ex-
traction to compute canonical scale and orientations and the descriptors, while ferns
can rely on a low-cost keypoint extraction. On the other hand, the distributed SIFT

9 Keypoint Recognition 29

C code is not optimized, and the Best-Bin-First KD-tree of [3] is not used to speed
up the nearest-neighbor search. However, it is relatively easy to see that performing
the individual tests of Section 9.3.2 requires very little time and most of the time
is spent computing the sums of the posterior probabilities. Computing the SIFT de-
scriptors, which is the most difficult part to optimize, takes about 1ms on a MacBook
Pro laptop without including the time required to convolve the image. By contrast,
Ferns take 13.5 10�3 milliseconds to classify one keypoint into 200 classes on the
same machine. Of course, the ability to classify keypoints fast comes at the cost of
requiring a training stage, which is usually off-line. By contrast, SIFT does not re-
quire training and for some applications such as matching of arbitrary images, this
is still clearly an advantage.

9.6 Discussion

The key conclusion of our work is that, in our specific context, the Naive-Bayesian
combination of classifiers as done by the Ferns clearly outperforms the averaging
of probabilities, as in the case of Random Forests. While we do not know of a
clear theoretical argument explaining the superiority of Naive-Bayesian techniques
for our purposes, there are pragmatic reasons for choosing them. First, the product
models can represent much sharper distributions [13] (see also Chapter 1). Indeed,
when averaging is used to combine distributions, the resulting mixture has higher
variance than the individual components. More intuitively, if a single Fern strongly
rejects a keypoint class, it can counter the combined effect of all the other Ferns that
gives a weak positive response. This increases the necessity of larger amounts of
training data and the help of a prior regularization term as discussed in Section 9.2.
Second, the classification task, which just picks a single class, will not be adversely
affected by the approximation errors in the joint distribution as long as the maximum
probability is assigned to the correct class [9, 8]. We have shown that such a naive
combination strategy is a worthwhile alternative when the specific problem is not
overly sensitive to the implied independence assumptions.

9.7 Application Example

We present in this section an application of our approach to real-time image annota-
tion. With the recent proliferation of ultra mobile platforms with higher processing
power, there has been a surge of interest in building real-world applications that
can automatically annotate the photos and provide useful information about places
of interest. These applications test keypoint matching algorithms to their limits un-
der constantly changing lighting conditions and with changes in the scene texture
that reduces the amount of reliable keypoints. We have tested the Ferns on such an

30 Lepetit et al.

Fig. 9.7 Annotation of a cathedral door using a 3–D model. The first two images also show the
3–D model that is used to estimate the camera position which allows us to reproject the annotation
correctly.

application that annotates parts of a historical building with 3–D structure. It runs
smoothly at frame rate using a standard laptop and an of the shelf web camera.

Annotating a 3–D object requires training using multiple images from different
viewpoints. Thanks to the Ferns approach, we can easily integrate the information
from several images. We then obtain a 3–D model for the object using standard
structure from motion algorithms to register the training images followed by dense
reconstruction [26]. The resulting fine mesh was too detailed and we approximated
it by a coarser one. Despite its rough structure, this 3–D model allows annotation
of important parts of the object and the correct reprojection of this information onto
the image plane under change in viewpoint as depicted by Figure 9.7.

9.8 Conclusion

We have presented a simple yet powerful approach for image patch recognition that
performs well even in the presence of severe perspective distortion. The Ferns prove
to be particularly adapted, as their “semi-naive” approach yields a scalable, simple,
fast, and powerful implementation.

References

1. Y. Amit and D. Geman. Randomized inquiries about shape; an application to handwritten digit
recognition. Technical Report 401, Dept. of Statistics, University of Chicago, IL, Nov 1994.

2. Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural
Computation, 9(7):1545–1588, 1997.

3. J. Beis and D.G. Lowe. Shape Indexing Using Approximate Nearest-Neighbour Search in
High-Dimensional Spaces. In Proc. IEEE Conf. Computer Vision and Pattern Recognition,
pages 1000–1006, 1997.

4. C.M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc.,
2006.

5. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
6. L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression Trees.

Chapman and Hall/CRC, 1984.
7. A. Criminisi, J. Shotton, D. Robertson, and E. Konukoglu. Regression forests for efficient

anatomy detection and localization in CT studies. In MICCAI workshop on Medical Computer
Vision: Recognition Techniques and Applications in Medical Imaging, Beijing, 2010. Springer.

8. P. Domingos, M. Pazzani, and G. Provan. On the Optimality of the Simple Bayesian Classifier
under Zero-One Loss. In Machine Learning, pages 103–130, 1997.

9. J. H. Friedman and U. Fayyad. On Bias, Variance, 0/1-loss, and the Curse-of-Dimensionality.
Data Mining and Knowledge Discovery, 1:55–77, 1997.

10. P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning,
63(1):3–42, 2006.

11. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
2001.

12. D. Heath, S. Kasif, and S. Salzberg. Induction of oblique decision trees. Journal of Artificial
Intelligence Research, 2(2):1–32, 1993.

13. G. E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence. Neural
Computation, 14:1771–1800, 2002.

14. T. K. Ho. Random decision forests. In Proc. Intl. Conf. on Document Analysis and Recogni-
tion, pages 278–282, 1995.

15. T. K. Ho. The random subspace method for constructing decision forests. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

16. D. Hoiem, R. Sukthankar, H. Schneiderman, and L. Huston. Object-Based Image Retrieval
Using the Statistical Structure of Images. Journal of Machine Learning Research, 02:490–
497, 2004.

17. Y. Lin and Y. Jeon. Random forests and adaptive nearest neighbors. Journal of the American
Statistical Association, 2002.

18. D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. Journal on Com-
puter Vision, 60(2):91–110, November 2004.

31

32 References

19. B. Menze, B.M. Kelm, D.N. Splitthoff, U. Koethe, and F. A. Hamprecht. On oblique random
forests. In Proc. European Conf. on Machine Learning (ECML/PKDD), 2011.

20. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir,
and L. van Gool. A Comparison of Affine Region Detectors. Int. Journal on Computer Vision,
65(1/2):43–72, 2005.

21. M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint recognition using random
ferns. IEEE Trans. on Pattern Analysis and Machine Intelligence, 32(3), 201.

22. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.
23. T. Sharp. Implementing decision trees and forests on a GPU. In Proc. European Conf. on

Computer Vision, 2008.
24. J. Shotton, A.W. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and

A. Blake. Real-time human pose recognition in parts from a single depth image. In Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2011.

25. J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and
segmentation. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 1–8,
2008.

26. C. Strecha, R. Fransens, and L. van Gool. Combined Depth and Outlier Estimation in Multi-
View Stereo. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2006.

27. Z. Tu. Probabilistic boosting-tree: Learning discriminative models for classification, recog-
nition, and clustering. In Proc. Intl. Conf. on Computer Vision, volume 2, pages 1589–1596,
Beijing, China, October 2005.

28. P. Viola and M. J. Jones. Robust real-time face detection. Int. Journal on Computer Vision,
2004.

29. P. Yin, A. Criminisi, J. Winn, and I. Essa. Tree based classifiers for bilayer video segmentation.
In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2007.

30. F. Zheng and G.I. Webb. A Comparative Study of Semi-Naive Bayes Methods in Classification
Learning. In Australasian Data Mining Conference, pages 141–156, 2005.

