View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Dataflow Program Analysis and Refactoring
Techniques for Design Space Exploration: MPEG-4
AVC/H.264 Decoder Implementation Case Study

Ab Al-Hadi Ab Rahman, Simone Casale Brunet, Claudio Alberti, Marco Mattavelli
{alhadi.abrahman, simone.casalebrunet, claudio.alberti, marco.mattavelli} @epfl.ch

SCI-STI-MM, Ecole Polytechnique Fédérale de Lausanne, Switzerland

Abstract—This paper presents a methodology to perform
design space exploration of complex signal processing systems
implemented using the CAL dataflow language. In the course
of space exploration, critical path in dataflow programs is
first presented, and then analyzed using a new strategy for
computational load reduction. These techniques, together with de-
tecting design bottlenecks, point to the most efficient optimization
directions in a complex network. Following these analysis, several
new refactoring techniques are introduced and applied on the
dataflow program in order to obtain feasible design points in the
exploration space. For a MPEG-4 AVC/H.264 decoder software
and hardware implementation, the multi-dimensional space can
be explored effectively for throughput, resource, and frequency,
with real-time decoding range from QCIF to HD resolutions.

I. INTRODUCTION

High level dataflow representations have proven to be good
candidates for the design and implementation of heterogeneous
stream applications. Their main properties are: 1) highly
analyzable 2) platform independent 3) explicitly expose the
potential algorithmic parallelism. Among several approaches
to dataflow representations are based on the concept of actors
[1]. In this work, a formal language called RVC-CAL is used
that is based on such concept. The Model of Computation
(MoC) follows the so-called Dataflow Process Network (DPN)
[2], where actors contain states, execute atomic actions, and
communicate to each other by sending data tokens through
unidirectional FIFO channels. Using the ORCC framework
[3], designs using the RVC-CAL language can be simulated
at high-level, and synthesized to low-level C and HDL code
for implementation [4], [5]. Moreover within ORCC, it is
also possible to perform software/hardware (SW/HW) design
space co-exploration and optimization. This is performed by
the TURNUS framework [6].

One of the key features of TURNUS is the ability to
perform dataflow program analysis to detect system bottleneck.
Using this information, optimizations on the dataflow program
can be performed in order to improve system performance; this
is termed refactoring of RVC-CAL programs. Essentially, it
consists of a methodology aiming at modifying the architecture
of actors or actions such that an improvement versus an objec-
tive function is achieved. For example, replicating an action to
a new actor allows a higher degree of data parallelism, whereas
partitioning an action presenting the longest combinatorial
path enables a design to operate at a higher frequency. For
programs with memory access, changing the way by which
read or write access are made in the dataflow program such

that less bandwidth is required is also considered refactoring.
The appropriate combinations of the refactoring techniques
enable effective design space exploration, such as described
in [7]. In addition to such already explored possibilities, this
work presents several new approaches to refactoring using an
extended dataflow program analysis based on computational
load reduction strategy. Moreover, the design space of the
most complex signal processing systems developed so far,
the MPEG-4 AVC/H.264 decoder, can be explored effectively
and systematically, whereby as shown in this work, an overall
throughput of up to real-time HD720p can be achieved by
appropriate SW and HW partitioning.

II. DATAFLOW PROGRAMMING AND
CoO-DESIGN WITH RVC-CAL

A dataflow program in this work is defined as a directed
graph in which nodes represent computational units (called
actors), while edges represent connections between actors used
to communicate sequences of data packets (tokens). Individual
actors encapsulate their own state, and thus do not share
memory with one another. Instead, actors communicate with
each other exclusively by sending and receiving tokens along
the channels connecting them. The execution of actors is
performed by a sequence of discrete computational steps,
called firings. In each such step, an actor may consume a
finite number of input tokens, produce a finite number of
output tokens, and modify its internal state, if it has any. The
behavior of a DPN actor is specified as a pair of firing rule
and firing function. The firing rule determines when the actor
may fire, by describing the input sequences and actor state
that need to be present for the actor to be able to make a
step, i.e. for it to be enabled. The firing function determines
for each input a sequence/state combination for which the
actor is enabled according to the firing rule, the output tokens
produced in that step and, if applicable, the new actor state.
The formal language that directly captures the description of
DPN actors is called the CAL actor language [8]. Within
the MPEG Reconfigurable Media Coding (RMC) standards
ISO/IEC 23001-4 and 23002-4, a subset of the more general
CAL language, called RVC-CAL, has been standardized by
ISO/IEC MPEG [9].

The work in [10] presents a methodology and associated
design flow for performing SW/HW co-design, with the steps
shown in Fig. 1. In the first stage, the application and its archi-
tecture are defined using the platform-agnostic CAL dataflow
language. The implementation is then functionally verified,

https://core.ac.uk/display/147998482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1-Application Applicati .
and architecture Mc?c‘iJellc (aclzt) Architecture
model
. . Yy
2-Simulation, co- . I
verification and Slmula_i_lon &
profiling Profiling
Mapping

3-Space
exploration

CAL

Partitioning

]
4-Code i
generation CAL to C/C++ CAL to HDL
5-Compilation HDL
and synthesis Compiler Synthesizer

l‘ - -
6-Co-design or / \ /
individual | EXE j«—» Interface >«—={ BIN |
execution \ y \ y

Y L |
stages
Fig. 1. Overview of the CAL dataflow design steps from application

and architecture specification with CAL to SW/HW implementation. The
implementation performance can be improved by iterative refinement of stages
1 and 2.

and program profiling can also be performed to discover
bottlenecks early in the design process (i.e. by TURNUS). In
stage 3, the design can be mapped and explored for various
SW/HW platform partitioning, while in stage 4, the relevant
system partitioning can be synthesized to C/C++ and/or HDL
for implementation. Using the associated compilers to generate
executable code for SW, and binary bitstream code for HW
in the final step, the heterogeneous platforms can then be
interconnected with the relevant interfaces. Note that the
final implementation performance can be further improved
by dataflow program refactoring and optimizations in the
application and architecture definition in stage 1.

III. THE MPEG-4 AVC/H.264 DECODER

The MPEG-4 AVC/H.264 codec is a video compression
technology, jointly developed by the ITU-T Video Coding
Experts Group (VCEG) and the ISO Motion Picture Experts
Group (MPEG). It is currently the most commonly used
format for recoding, compression, and distribution of HD
video. The standard has been around since 2003, but will
soon be succeeded by the High Efficiency Video Coding
(HEVC) standard. Compared to the previous MPEG-4 Part 2
Visual standard, it provides a significantly better compression
at the cost of nearly 2x higher complexity. In large part,
this is due to the adoption of many new technologies such
as variable block size motion estimation and compensation,
intra-frame prediction, integer transforms, etc. Meanwhile, in
order to promote design flexibility, reusability, and modularity,
the Reconfigurable Video Coding (RVC) standard [11] was
developed within the ISO/MPEG. The standard, which uses the
RVC-CAL dataflow language, enables specifying new codecs
by assembling blocks from a standard Video Tool Library
(VTL), and then allows automatic synthesis of the codecs to
various implementation languages.

The MPEG-4 AVC/H.264 Constrained Baseline Profile

Decoder_ Y

] |
Parser Decoder U Merger
— e
N » » »
Bit- Decoded
stream I ™ video
Decoder_V
Lyl -

Fig. 2. Simplified top-level view of the RVC MPEG-4 AVC/H.264 decoder.
It consists of three complex and major components: the Parser, Decoder_Y
and Decoder_U/V. The fully synthesizable design consists of more than 90
actors, 950 actions, and 280 FIFO interconnections.

(CBP) decoder for the RVC standard was proposed in [12]
with the simplified view of the top level network given in
Fig. 2. The design however, was only verified for functional
simulation. In the present work, this version of the decoder
has been modified to be fully synthesizable to both software
(SW) and hardware (HW). With this, a throughput of 48 QCIF
fps @28.7MHz on Xilinx Virtex-5 FPGA and 59 QCIF fps
on a general purpose computer with Intel i7 2.3 GHz CPU
are obtained, as illustrated in Table 1. The throughput of the
parser implemented on SW, measured for the output rate of the
y-branch residual output, shows that it can already achieve real-
time HD throughput requirement. However, the main decoding
parts (Decoder_Y and Decoder_U/V) need to be optimized
further in order to reach the frame rate requirement. These
two components will be implemented on HW due to its high
potential for parallelism.

IV. DATAFLOW PROGRAM ANALYSIS

The following presents the methodology adopted by TUR-
NUS to analyze dataflow programs, and the profiling results
for the MPEG-4 AVC/H.264 decoder case study.

A. Functional simulation and profiling

The very first step in dataflow program analysis is to
perform a functional simulation of the high-level dataflow
application. At this level, a functional application validation
is performed in a completely architecture independent envi-
ronment. Moreover, an exhaustive analysis of the design is
performed leading to defining its basic structure and com-
plexity [13]. This initial analysis allows the evaluation of
system bottlenecks and the outlining of potential unexploited
parallelism [14]. In literature, several different ways have been
proposed to measure the complexity of the building blocks
of an algorithm and of their execution. Two main axes are
typically used: a) the computational load b) the data-transfers
and storage load. This analysis can be thoroughly performed
in the context of the CAL dataflow language due to its
fundamental properties illustrated in Section II. The result from
measuring algorithm/application complexity is the construction
of the execution trace, which is explained in the following.

1) Execution trace: All the executed actions with their
dependencies need to be stored during functional simulation.
Such data set fully describes the program behavior. As given
in [13], the causation trace (or simply trace) is a multi directed

TABLE 1.

PERFORMANCE SUMMARY OF THE initial DESIGN OF THE MPEG-4 AVC/H.264 DECODER, IMPLEMENTED ON XILINX VIRTEX-5 FPGA,

AND EXECUTED ON A GENERAL PURPOSE COMPUTER WITH INTEL 17 2.3 GHz CPU.

Fraz Throughput Mean BRAM DSP48
Platform Component (MHz) (QCIF fps) Slice
Hardware/ Full decoder 28.7 44 446835 189 64
FPGA Decoder_Y 56.1 87 71097 77 62
Decoder_U/V 79.2 911 31205 79 62
Parser 28.7 214 71046 0 25
Software/ Full decoder 2300 59 - - -
CPU Parser 2300 2327 - - -

acyclic graph G(V, E). Each single firing of an action 7 € T
is represented by a node v; € V. Thus, the set VT C V
contains all the firings of the action 7. Moreover, each single
dependence between two fired actions is represented by a di-
rected arc e}’ ; = (vi, vj)n € E. The latter defines an execution
order v; < v;, meaning that the execution of v; depends on
the execution of v;. It follows that V can be considered as a
partially ordered set of executed actions. Indeed constructing a
consistent dependencies set E is fundamental in order to define
constraints on the execution order between any couple of fired
actions describing a platform-independent design behavior.

2) Weighted execution trace: The trace can be extended to
a weighted execution trace, where the weights w,,, and we,
are defined to each executed action u; € V and dependence
e;,; € F according to the architecture model where each actor
is supposed to be mapped. Weights can be estimated with
two different levels of abstraction and accuracy: a) abstract
profiling counts how often a set of basic operators (arithmetic-
logic operation, flow control, memory access) are used during
each step; b) platform-specific profiling extracts information
from an HDL simulation tool for HW implementations or by
using standard SW profiling tools.

Once weights have been evaluated, the total computational
load of an action 7 is defined as:

ClT = Z{wm‘vi € VT} (D

Likewise, the computational load of an actor a € A is
defined as:

oy =Y {cl,,|m € To} 2)
And finally, the overall computational load of the actors
set A is defined as:

cla =) {cla,|a; € A} (3)

B. Critical path analysis and evaluation

As illustrated in [15], the first metric for highlighting the
most complex algorithmic part of the design is provided by
the Critical Path (CP) Analysis. The CP defines the longest
weighted path of the causation trace and can be evaluated
with a linear time algorithm. The steps along this path are
defined as the critical steps V¢ and critical actions or actors
accordingly. In this direction, TURNUS has been used to
evaluate the CP of the design case under study. Table II shows

the top 5 critical actors (i.e. that contributes the most to this
path) with the corresponding number of critical execution and
dependencies. The analysis has been performed for 5 frames
of Foreman QCIF video sequence. With this configuration
the steps set size is |V| = 5251653 and number of critical
executions is |V p| = 553238. The most critical actor is found
to be the half quarter_interpolation with almost 70% on the
CP executions, followed by the picture_buffer_y with roughly
23%.

TABLE II. RESULTS FROM PROFILING THE ORIGINAL CAL
DESCRIPTION OF THE MPEG-4 AVC/H.264 DECODER.

Critical actor [Vép] [E&p|
half_quarter_interpolation 385669 1925548
picture_buffer_y 128306 506601
parser 37913 613065
blocks_reorder_y 1304 1298
deblocking_filter_y 27 31

C. Computational load reduction

CP analysis only provides a list of actions and actors that
are in the longest path of the design; here, the analysis is ex-
tended to determine the impact of reducing the computational
load of an action or a group of actions on the overall design
performance, i.e. the reduction in ACP that could be obtained
by reducing the computational load of 7.

The computational load ratio of an action 7 is defined by:

cl,

where cl; and clg represent respectively the current and
the initial computational load values. Hence,the computational
load reduction ratio can be simply defined as Acl, =1 —¢,.
The problem is then to find a configuration ¢,., = {{;|T €

Tcr}.

For this purpose, the Logical Zeroing algorithm is used,
proposed in [16]. This method is based on an iterative heuristic
algorithm where the most critical action 73 is computed and
its computational load is neglected at each step k. For every
executed action v;*, the weight w, = is reduced by the factor
o < 1 which is found using a binary search algorithm on the
CP while maintaining 7, as the most critical action.

The Logical Zeroing algorithm for analyzing the impact of
computational load reductions has been applied on the design
case study. Fig. 3 shows the graph of CP reduction for 400

25
25 T T

—— Critical Path Reduction

- - N
=) [=3
T T T
I I I

Critical Path Reduction [%]

2}
T
I

L L L L L L L
50 100 150 200 250 300 350 400
Iteration

2

Fig. 3. Logical Zeroing iterations up to 400 steps with the % reduction in CP
for the case of the Decoder_Y component of MPEG-4 AVC/H.264 decoder.

iterations. Essentially, it means for example, that CP can be
reduced by 15% by performing the required optimizations at
step 130, given in Table III.

TABLE III. LOGICAL ZEROING RESULTS FOR INTERMEDIATE VERSION
OF Decoder_Y COMPONENT, WITH THE REQUIRED COMPUTATIONAL LOAD
REDUCTION FOR A GIVEN ACTOR AND ACTION.

Actor Action Required CL
reduction (%)

half_quarter_interpolation_ getpixval_done 30.0

launchl

half_quarter_interpolation_ getpixval_done 30.0

launch3

half_quarter_interpolation_ getpixval_done 28.5

launch2

half_quarter_interpolation_ getpixvalquarter 15.5

launchl

half_quarter_interpolation_ getpixvalquarter 9.8

launch3

The analysis above is compared to actual refactoring results
and implementation performance obtained on hardware. It
is found that the analysis is suprisingly accurate. When the
actors half_quarter_interpolation_launchx (for x = {1,2,3})
are refactored by improving the average latency by 22%, an
overall 15% latency reduction is observed for the top-level
Decoder_Y. This agrees with the analysis that on average, 23%
computational load reduction is required for the actors in order
to obtain the same (15%) CP length reduction.

V. DATAFLOW PROGRAM REFACTORING TECHNIQUES

The following presents refactoring techniques, applied
on dataflow programs, such that 1) system latency is re-
duced and 2) maximum operating frequency is increased.
It should be noted that the former technique is performed
semi-automatically since it involves major modification to the
design architecture, and the latter is being performed fully
automatically since the method is applicable to the analyzable
part of the design.

A. Refactoring for reducing system latency

1) Data and task parallelism: Hardware platforms, such as
FPGAs are designed to implement designs that could exhibit
very large number of parallel computing nodes. The idea
behind data and task parallelism is to exploit as many of these
parallel computing nodes as possible, so that lower design

latency is obtained, and hence higher system throughput (at
the cost of higher computing resource). The following presents
the application of data and task parallelism in the case of
the highest ranked critical actor given by TURNUS - the
half_quarter_interpolation.

Fig. 4 shows how data and task parallelism can be exploited
for this actor. In data parallelism (a), the video blocks (i.e.
data) are sent in an alternate fashion from the picture_buffer
to the half_quarter_interpolation using several (M) dedicated
channels. Using this approach, M similar tasks are executed
concurrently, where the task (half_quarter_interpolation) is
replicated M times. The input data (from picture_buffer) is
partitioned accordingly by block and sent to each of the repli-
cated task. In this case, the blocks vary in size with dimension
WxHEeE([4x4,4x8,8x4,8x8,16x8,8x 16,16 x 16).

On the other hand, in task parallelism (b), a given
task is executed in a concurrent fashion, where the task
(half_quarter_interpolation) is partitioned across several (V)
parallel subtasks. Each subtask performs a different set of
operations, which typically requires the final merging of results
as shown by the interconnection between fy;n and gasn.

half_quarter_interpolation_1

picture_buffer b
Rd i 0 ——»

Write half_quarter_.interpolation_M
frame R
Rd " Py
w iy O
LI i
half_quarter_interpolation_M1
P
) O ————— 1 ==

half_qg uarterfinterpolationfMN‘g

! Gun
Rd,, |]
—_—

Fig. 4. (a) data parallelism, where the actor half_quarter_interpolation
is replicated M times, and later merged. For each instantiated
half_quarter_interpolation, it is possible to perform task parallelism
(b), where the task is partitioned into N subtasks with distinct set of
operations.

The estimated latency reduction for both data and task
parallelism is as follows, based on the example above.
Given B video blocks to be processed by the task
(half_quarter_interpolation), the estimated latency for serial
implementation is simply given by:

B
L=>) (tL+th+1)) (5)
b=0

where tl;, tg, and tg are the latency to receive, process, and
send a single block b € B. By implementing data parallelism
with several (M) replicated tasks, the latency is taken as
the last instance to finish executing all of its given blocks,
ie. max(Ly,..., L), where L ,m € M is the estimated
latency of instance m to process all its blocks B/M, i.e.

B/M
Ly, =) (M0 o ghfom 4 g}ty 6)

n=0

The superscript Mb + m refers to a specific block for an
instantiated task that depends on the number of instantiated
tasks M, the current block b, and the instance sequence m. The
latency reduction is therefore, L — max (L}, ..., L},), where
it is expected that L/ < L. For example with M = 2, the
instance m = 1 and m = 2 respectively process all odd and
even numbered blocks.

The estimated latency reduction for task parallelism is as
follows. Given a block b € B that is to be processed by a single
instance of the task (half_quarter_interpolation), the latency
for serial implementation is given by:

L:tb1+tb2+~-~+tb1\, @)

where t,,...,t, are the composition of latencies for
processing block b with NV sequential subtasks. By performing
the N subtasks in parallel with the merge task in instance
n = 1, the new latency is reduced to:

L=ty + 15, +...+tg, 8)

The superscript 7 refers to the latency to receive the results
from subtask n € N, where it is expected that ¢ < t,
due to the parallel pre-computations. The latency reduction is
therefore, L — L' = (tp, + ... +tpy) — (t5, +... + 15,).

It should be noted that this task and parallelism technique
is applicable to any actor specification, but most effective
for complex actors with large number of computational el-
ements, and are frequently being fired. In the design case
study, this technique is applied to two additional actors: the
blocks_reorder and the deblocking_filter.

2) Reducing number of access to memory: System latency
can also be improved by reducing its total number of access to
memory. One of the techniques to reduce memory access for
dataflow programs is the data-packing technique, which had
been introduced in [7]. It aims to reduce memory access by
merging data tokens before a write access. Here, the estimated
latency reduction of this operation is derived as follows for
the case of merging N bytes before a write access in a single
macroblock. Let ¢, be the latency to receive one token and
t. the latency to write a token to memory, both in terms of
clock cycles per byte. In the implementation without data-
packing, the total latency to write one macroblock to memory
is L = (t, + t.) x MBSZ where MBSZ is the size of one
macroblock in terms of bytes. In the implementation with data-
packing, it would take N X t,. clock cycles to receive N tokens
and merge, and ¢, clock cycles to write the N-bit word into
memory. However, since the action takes N bytes per firing,

the number of firing is now M BSZ/N. Therefore, the new
latency is L' = (N X ¢, +t.) x (MBSZ/N). The potential
reduction in latency per macroblock is given by:

por=N"1

% t. x MBSZ)

It should be noted as well that the data-packing tech-
nique can also be implemented on another critical actor, the
blocks_reorder.

Another technique to reduce the number of access to
memory is by removing any unnecessary intermediate access.
This technique is typically called the redundancy-elimination
technique. This is particularly useful for actors that require
sending output results after processing. In several original
implementation of the critical actors in the design case study,
the processing results after action firing is stored in a temporary
buffer, and later sent serially by another action. The reduction
in latency can be obtained by simply sending the results di-
rectly after processing, without storing them into intermediate
buffers. The following presents a specific technique in the case
of the picture_buffer actor.

Fig. 5 shows actions (oval) and their transitions (arrow)
in the original (a) and the improved (b) implementation of
sending reference frame in the picture_buffer actor. In the
original implementation, the action extractBlock simply ex-
tracts the required block from the picture, and stores it in a
temporary buffer. The following action sendBlock sends the
extracted block from the buffer until all pixels in the block
have been sent. Here, there is a redundant memory access
when extracting the block, when in fact, the block can be sent
directly during extraction. The new implementation first gets
the size of the block and its position relative to the picture. The
action GetLineY gets the current Y position from the picture
and the action sendLineY directly extracts and sends the line to
the output. Since the blocks are sent directly during extraction,
the latency to store and load data to and from an intermediate
memory is eliminated. This is a memory access reduction of
2x ((W+5) x (H+5)) per block for a block size of W x H.
Note the additional “5” term during extraction, which is due to
the block that requires an offset by 5 pixels for interpolation.

Similar technique can also be applied to the deblock-
ing_filter actor, where essentially, the filtering result is sent
to the output directly without using an intermediate storage
buffer.

B. Refactoring for increasing operating frequency

System throughput can also be improved by increasing its
operating frequency. This is typically performed with circuit
pipelining whereby a computational element is partitioned
into several smaller computational elements, separated by
some memory buffers. For dataflow programs, the work in
[17] presents a technique to automatically refactor single-
action actors into multi-actors pipeline implementation with
optimization for pipeline resources. In this work, the pipeline
synthesis and optimization tool is applied, together with the
divide and conquer approach for complex dataflow network,
as summarized in the flowchart in Fig. 6. The operating
frequency requirement is first defined, then for each actor in the

“ - Extract block WxH
(_ extractBlock)

- Store in memory

" doneSend

" - done send block

- Send block WxH
from memory

@

GetBlock-
PosSize

- Get block position
and size !

-Get_;urremline. — T e
posiion (_ GetLineY > dongAllLines

- Extract and send
all pixels in the line

" doneLineY

(b)

Fig. 5. Original (a) and improved (b) implementations of sending reference
frame in the picture_buffer actor, where ovals are actions and arrows are
transitions. In the new implementation, the intermediate storage after block
extraction is eliminated, therefore, reducing the number of required memory
access.

network, it is synthesized to RTL (using XST, Synplify, etc.)
to obtain the maximum operating frequency and the action
that dominates the combinatorial critical path (critical action).
If the maximum frequency obtained meets the frequency
requirement, then no further action is necessary. However, if
the frequency requirement is not met, then the critical action
is extracted and sent for a 2-stage pipeline synthesis and
optimization. This process is repeated until all actors in the
network meets the minimum frequency requirement. Since an
actor is an independent entity that is interconnected only by
FIFO buffers, the overall system frequency is given by the
worst-case frequency obtained among all actors in the network.

For each actor
RTL

RTL synthesis
(XST/Synplify)

Y

no
P
max < Frequired'

yes

Extract critical
action

2-stage
—— Pipeline synthesis
& optimization

Fig. 6. Pipeline methodology to increase system frequency in complex
dataflow network. Each actor is checked for maximum frequency, and if it does
not meet the minimum requirement, the actor is sent for pipeline synthesis
and optimization.

The pipeline synthesis and optimization tool aims to syn-

thesize actors with a single-action into k-parts as equally as
possible in terms of the required length of the combinato-
rial path using minimum pipeline registers. It first generates
the asap and alap schedules for the action based on the
operator-input, operator-output, and operator-precedence rela-
tions. From this, operator mobility is determined and operators
are arranged in order of mobility [18]. This is then used
in the coloring algorithm that generates all possible (and
valid) pipeline schedules based on the operator conflict and
nonconflict relations. For each pipeline schedule, total register
width is estimated, and the least among all the generated
pipeline schedules is taken as the optimal solution, which is
finally used to generate pipelined CAL actors.

VI. RESULTS

The CAL dataflow specification of the MPEG-4
AVC/H.264 decoder has been synthesized to both SW
and HW for implementation. In order to improve the
performance of Decoder Y and Decoder_U/V for up to
real-time HD720p, these components have been analyzed and
refactored using the methodology and techniques described in
the present paper.

The list of actors and/or actions refactoring is summa-
rized in Table IV and Table V. Refactoring for latency is
performed for 11 iterations on the component Decoder_Y.
At each iteration, Modelsim hardware simulator is used to
evaluate the resulting latency. Overall, a latency reduction
by a factor of about 6 is achieved compared to the original
design. As for pipelining, the list of actors and actions that
would continuously appear in the combinatorial critical path is
determined (this is found by synthesizing the generated RTL
description to Xilinx Virtex-5 FPGA using the XST synthe-
sizer). For example in Decoder_Y, four actors and actions
would continuously appear in such path after several iterations
of pipelining. The final worst-case frequency of 114MHz has
been obtained for this component, and together with the best-
case latency of 1054 clock cycles per macroblock, results in
30fps HD720p video decoding throughput.

TABLE IV. REFACTORING FOR REDUCING SYSTEM LATENCY OF THE
Decoder_Y COMPONENT: LIST OF ACTORS AND THE CORRESPONDING
REFACTORING TYPE AND THE RESULTING LATENCY IN CLOCK CYCLES

PER MACROBLOCK (C.C./MB)

Actor(s) Refactoring Decoder_Y
type latency
(c.c./MB)
picture_buffer_y data-packing, 5981
storage-elimination
half_quarter_interpolation data-parallelism(2x) 3483
half_quarter_interpolation data-parallelism(3x) 2857
interp_reorder_y, data 2407
add_pix_sat, parallelism(4x)
demux_parser_info
deblocking_filter storage-elimination 1797
picture_buffer_y, data-parallelism(4x) 1613
deblocking_filter
interp_reorder_y data-packing 1449
half_quarter_interpolation task-parallelism(2x) 1358
half_quarter_interpolation task-parallelism(3x) 1257
half_quarter_interpolation task-parallelism(4x) 1195
half_quarter_interpolation task-parallelism(5x) 1054

TABLE V.

LIST OF ACTORS AND ACTIONS THAT APPEAR IN THE COMBINATORIAL CRITICAL PATH FOR Decoder_Y, Decoder_U/V, AND THE FULL

DECODER. ALSO SHOWN ARE THE INITIAL AND NEW FREQUENCY AFTER THE APPLICATION OF DATAFLOW PIPELINING. Decoder_Y AND Decoder_U/V ARE
REFACTORED TO ACHIEVE THE REQUIRED FREQUENCY FOR REAL-TIME HD720P, WHILE THE FULL DECODER CAN ONLY ACHIEVE FREQUENCY OF UP TO
40.3 MHZ DUE TO LONG ROUTING DELAY IN THE SERIAL BITSTREAM PARSER.

Component Actor Action(s) Initial New # of pipeline
freq. (MHz) freq. (MHz) stages
Decoder_Y half_quarter_interpolation getPixVal_done 63.6 136.2 3
picture_buffer_y writeData_done 70.5 137.3 4
idct_scaler read_coeff 76.9 114.1 8
intrapred_lumal6x16 write_mode 56.1 116.8 7
Decoder_U/V bilinear_interpolation process 77.1 135.3 3
picture_buffer_u/v writeData_done 70.5 137.3 4
idct_scaler read_coeff 76.9 114.1 8
intrapred_chroma write_mode 72.1 118.9 5
Full MPEG-4 syn_parser Sps_mb_adaptive_frame_field_flag, 28.7 40.3 4
AVC/H.264 MB_layer_qgp_delta
decoder mvlx_reconstr SubMvLX_LaunchMxN, 333 42.8 4
MvLX_LaunchMxN,
540000 - 140000 - : :
v v v A {
520000 - A 120000 4 ;MH, 114MHz
500000 N 100000 A
A
8 480000- 8 80000 3
ﬁ 36MHz 20MHz “ ? A AM‘A< i 4 <«
& 460000 - 20Miz i wy aA A P 60000 - o 4 N
g A A A e 40000 - / A— 56MHz
< 440000 < L x>
i S0Miiz : :
420000 - QCIF, CIF, 20000 QCIF, CIF, 4CIF, HD720p,
30fps 30fps 0 30fps 301})5‘ ‘30fpsi : : 3(‘prs : |
400000 ‘ : : ‘ ‘
0 % 100 150 200 20 0 200 400 600 800 1000 1200

Throughput (QCIF fps)

Fig. 7. Full MPEG-4 AVC/H.264 decoder implementation space exploration.
A are latency refactoring design points for the Decoder_Y component, while
» are frequency refactoring design points on the full decoder. The design
achieves throughput of up to real-time CIF, but saturates at around 300 CIF
fps.

For hardware only implementation of the full decoder, it is
currently possible to achieve throughput of up to real-time CIF
when refactoring for latency is performed on Decoder_Y, and
refactoring for frequency is performed on the full decoder, as
shown in Fig. 7. The original design utilizes close to 450,000
average slice, which would require three of the largest available
FPGA of the family. Further refactoring shows significant
increase in performance with minor additional slice in terms
of percentage. However, the design saturates at roughly 200
QCIF fps due to the bottleneck in the bitstream parser. As a
result, further refactoring on the Decoder_Y component does
not yield any gain on the overall decoder.

For software only implementation of the full decoder, Table
I shows that only up to real-time QCIF can be achieved on
a general purpose computer, but the serial bitstream parser
can go up to 2300 QCIF fps. Therefore, for our heteroge-
neous software/hardware implementation, the bitstream parser
is implemented on a general purpose computer, while the main
decoding part (Decoder_Y and Decoder_U/V) on FPGA. The
space exploration for the Decoder_Y component is shown
in Fig. 8. Real-time QCIF implementation can be achieved
with a reduced frequency of the original design at 20MHz,

Throughput (QCIF fps)

Fig. 8. Decoder_Y implementation space exploration. A are latency refac-
toring design points, while », «, and Vv are frequency refactoring design
points on the component Decoder_Y. With this component on FPGA and the
bitstream parser on SW, it is possible to obtain overall decoder throughput of
up to 30fps HD720p.

while real-time CIF and 4CIF implementations can be achieved
from two Pareto points, one dominated by resource and the
other by frequency (labeled in Fig. 8). The real-time HD720p
implementation is achieved using the design point with the
most resource (~130k slice) and the highest operating fre-
quency (114MHz). Compared to the original design, this point
represents a throughput improvement of roughly 36x with an
increase in frequency and slice by 6x and 4x respectively.

Table VI provides comparison of the present work to other
implementations of the MPEG-4 AVC/H.264 in literature.
This work results in similar throughput to an FPGA imple-
mentation from FastVDO [19] and lags behind to an ASIC
implementation from coreEL [20]. Compared to designs using
synthesizable systemC [21] and co-designs using C and Verilog
[22], [23], the present work outperforms all these works in
terms of performance, but uses more resource.

VII. CONCLUSION

The main contribution of this work is on several new
methodologies and techniques to perform design space ex-
ploration of complex signal processing systems implemented
using CAL dataflow programming. First, dataflow program

TABLE VI.

COMPARISON TO SIMILAR WORKS IN LITERATURE FOR THE IMPLEMENTATION OF MPEG-4 AVC/H.264 DECODER.

Platform Language/ Frequency Throughput Area/
tools (MHz) slice
This work 17+FPGA CAL 2300/114 720p HD, 30fps 195940
[19] FPGA RTL 115 720p HD, 30fps N/A
[20] ASIC RTL N/A 1080p FHD, 25fps N/A
[21] FPGA Synthesizable 110 QCIF, 30fps 46,513
systemC
[22] RISC+FPGA C+Verilog 150/50 QCIF, 20fps 55,000
[23] ARM+FPGA C+Verilog 140/10 QCIF, 7.4fps N/A

profiling tool has been applied to a complex MPEG-4 decoder,
and based on these results, several refactoring techniques have
been applied to improve design performance by 1) reducing the
system latency and 2) increasing the operating frequency on
the critical parts of the design. The appropriate combinations of
the refactoring techniques have been used to explore the design
space for multiple criteria, including throughput, resource,
and frequency. The exploration have also been performed
for HW only, and HW/SW heterogeneous implementations of
the MPEG-4 decoder, with throughput range from real-time
QCIF to HD resolution. The techniques presented here are
generic enough to be implemented on any DSP systems, and
certainly would help in quickly designing and implementing
high performance future video codecs. In fact, one of our
current works is to implement and optimize the emerging
HEVC/H.265 video coding standard.

Despite these promising results using dataflow program-
ming, the main limitation is found to be the amount of
resource. The highest throughput design where Decoder_Y and
Decoder_U/V are implemented on hardware just about fit the
largest available Virtex-5 family FPGA. For low throughput
QCIF resolution requirement, the present work utilizes almost
2x more resource, although at a significantly lower operating
frequency. Work is currently on-going to reduce the required
resource by optimizing the buffer interconnections and mem-
ory usage.

REFERENCES

[1] C. Hewitt, “Viewing control structures as patterns of passing messages,”
Journal of Artificial Intelligence, vol. 8, no. 3, pp. 323-363, June 1977.

[2] E. Lee and T. Parks, “Dataflow process networks,” Proceedings of the
IEEE, vol. 83, no. 5, pp. 773 =801, may 1995.

[3] “Open RVC-CAL Compiler (Orcc),” "http://orcc.sourceforge.net/”, [On-
line, accessed May 2013].

[4] M. Wipliez, G. Roquier, and J. Nezan, “Software Code Generation
for the RVC-CAL Language,” Journal of Signal Processing Systems,
vol. 63, no. 2, pp. 203-213, 2009.

[5] E. Bezati, S. Casale-Brunet, M. Mattavelli, and J. Janneck, “Synthesis
and optimization of high-level stream programs,” in Electronic System
Level Synthesis Conference (ESLsyn), may 2013.

[6] M. Mattavelli, S. Casale-Brunet, A. Elguindy, E. Bezati, R. Thavot,
G. Roquier, and J. Janneck, “Methods to explore design space for
MPEG RVC codec specifications,” Signal processing Image Commu-
nication, Elsevier, 2013.

[71 A.-H. Ab Rahman, R. Thavo, C.-B. S., E. Bezati, and M. Mattavelli,
“Design space exploration strategies for FPGA implementation of
signal processing systems using CAL dataflow program,” in Design
and Architectures for Signal and Image Processing (DASIP), 2012
Conference on, oct. 2012, pp. 1 -8.

[8] J. Eker and J. Janneck, “CAL Language Report,” University of Califor-
nia at Berkeley, Tech. Rep. ERL Technical Memo UCB/ERL MO03/48,
dec 2003.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

1. 23001-4:2011, “Information technology - MPEG systems technolo-
gies - Part 4: Codec configuration representation,” 2011.

E. Bezati, R. Thavot, G. Roquier, and M. Mattavelli, “High-level
dataflow design of signal processing systems for reconfigurable and
multicore heterogeneous platforms,” Journal of Real-Time Image Pro-
cessing, pp. 1-12, 2013.

1. Amer, C. Lucarz, G. Roquier, M. Mattavelli, M. Raulet, N. J.F., and
O. Déforges, “Reconfigurable video coding on multicore,” IEEE Signal
Processing Magazine, vol. 26, no. 6, pp. 113 —123, november 2009.

J. Gorin, M. Raulet, Y. . Cheng, H. . Lin, N. Siret, K. Sugimoto,
and G. G. Lee, “An RVC dataflow description of the AVC constrained
baseline profile decoder,” in Proceedings - International Conference on
Image Processing, ICIP, 2009, pp. 753-756.

J. Janneck, I. Miller, and D. Parlour, “Profiling dataflow programs,” in
Proceedings of the IEEE International Conference on Multimedia and
Expo, 2008, pp. 1065-1068.

M. Ravasi and M. Mattavelli, “High-abstraction level complexity anal-
ysis and memory architecture simulations of multimedia algorithms,”
Circuits and Systems for Video Technology, IEEE Transactions on,
vol. 15, no. 5, pp. 673 — 684, may 2005.

M. Mattavelli, S. Casale-Brunet, A. Elguindy, E. Bezati, R. Thavot,
G. Roquier, and J. Janneck, “Methods to explore design space for
MPEG RVC codec specifications,” to appear in Signal processing Image
Communication, Elsevier, 2013.

J. Hollingsworth and B. Miller, “Parallel program performance metrics:
a comparison and validation,” in Supercomputing ’92., Proceedings,
1992, pp. 4-13.

A.-H. Ab Rahman, A. Prihozhy, and M. Mattavelli, “Pipeline synthesis
and optimization of FPGA-based video processing applications with
CAL,” EURASIP Journal on Image and Video Processing, vol. 2011,
pp. 1-28, 2011. [Online]. Available: http://dx.doi.org/10.1186/1687-
5281-2011-19

G. D. Micheli, Synthesis and Optimization of Digital Circuits, 1st ed.
McGraw-Hill Higher Education, 1994.

Fv264-h.264/avc asic ip core. [Online]. Available:
http://fastvdo.com/FV264
H.264 cbp decoder. [Online]. Available:

http://www.coreel.com/pages/productsDigital VidleoH264CBP
Decoder.aspx

M. Thadani, P. P. Carballo, P. Hernndez, G. Marrero, and A. Nez,
“Esl flow for a hardware h.264/avc decoder using tlm-2.0 and high
level synthesis: a quantitative study,” in Proceedings of SPIE - The
International Society for Optical Engineering, vol. 7363, 2009.

Y. Moshe and N. Peleg, “Implementations of h.264/avc baseline de-
coder on different digital signal processors,” in Proceedings Elmar -
International Symposium Electronics in Marine, 2005, pp. 37-40.

S. . Wang, W. . Peng, Y. He, G. . Lin, C. . Lin, S. . Chang, C. . Wang,
and T. Chiang, “A software-hardware co-implementation of mpeg-4
advanced video coding (avc) decoder with block level pipelining,”
Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, vol. 41, no. 1, pp. 93-110, 2005.

