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Application to a single nanowire radial p-i-n junction

Pierre Blanc, Martin Heiss,
Carlo Colombo, Anna Dalmau Mallorqui
and Tina Saberi Safaei

Laboratory of Semiconductor Materials (LMSC),
Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

Email: pierre.blanc@epfl.ch

Email: martin.heiss@epfl.ch

Email: carlo.colombo@epfl.ch

Email: anna.dalmaumallorqui@epfl.ch

Email: tina.saberisafaei@epfl.ch

Peter Krogstrup and Jesper Nygard

Nano-Science Center,

Niels Bohr Institute,
University of Copenhagen,
2100 Copenhagen, Denmark
Email: krogstrup@fys.ku.dk
Email: nygard@fys.ku.dk

Anna Fontcuberta i Morral*

Laboratory of Semiconductor Materials (LMSC),
Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

Email: anna.fontcuberta-morral@epfl.ch
*Corresponding author

Abstract: Semiconductor nanowires are currently at the forefront of research
in the areas of nanoelectronics and energy conversion. In all these studies,
realising electrical contacts and statistically relevant measurements is a key
issue. We propose a method that enables to contact hundreds of nanowires on a
single wafer in an extremely fast electron beam lithography session. The
method is applied to nanowire-based radial GaAs p-i-n junction. Current—
voltage characteristics are shown, along with scanning photocurrent mapping.
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1 Introduction

Semiconductor nanowires have been exciting interest in the last ten years for their novel
physical properties and their promising applications in different fields such as
nanoelectronic devices and high mobility field effect transistors [1-3]. In the last few
years, part of the scientific and technological interest in nanowires has been moved to
energy harvesting such as photovoltaic [4-13], thermoelectric devices [14-17] and
batteries [18-22]. Most of these devices are linked to the external world via electrical
contacts. Given the small size of nanowires, the overall area interfacing the contacts and
the semiconductor is extremely small (few 100 nm or less). Variability on the sample
quality can also be an issue in nanoscale materials (one doping atom more can make a
large difference in the doping density). All these elements can lead to significant
variations in the quality of the interface. For this reason, it has been recognised that
realising statistics on the devices is extremely important. Nowadays numerous contacting
procedures have been adjusted to the nature of nanoscale materials and nanowires [23—
27]. Most of them imply the contacting step of one device at a time. Procedures
developed for contacting large ensembles of randomly positioned nanodevices on a
substrate with electron beam lithography have not been published. Other approaches in
the literature to place many nanowires in parallel in a controlled way on wafer scale to
pre-patterned sites include dielectrophoresis [28—32] and contact printing [33].

In this paper, we present a method to design and fabricate numerous nanowire-based
devices on a single step and in a parallel manner. The method is based on a user-friendly
MATLAB routine that enables the fast and prompt design of many nanoscale contacts in
one chip. In Section 2, we discuss the fabrication process of the electrical contacts.
Section 3 introduces the automatic process of contacts design. The performance of the
proposed method is explained in Section 4. We apply the method to contact nanowire
GaAs radial p-i-n junctions. Result is given in Section 5. Finally, we will make a
conclusion of our study in Section 6.

2 Experimental details

2.1 Nanowire growth

GaAs nanowire-based p-i-n structures were grown by Molecular Beam Epitaxy (MBE)
on a silicon substrate. The core was obtained by the self-catalysed Ga-assisted process
(VLS) [34-37], with a nominal gallium growth rate of 0.27 pum/h, for 45 min, at
T =630°C and V/III beam equivalent flux ratio of 60. The p-doping was achieved with a
beryllium flux corresponding to a doping level of 3.5 x 10"’ atoms/cm® for planar growth
[38]. The core diameter was about 120 nm. After the growth of the p-type core, the
growth conditions were switched from axial to radial growth as described elsewhere
[39—41]. The shell consisted of a 30 nm layer without any intentional impurity, followed
by 60 nm n-doped, using silicon as a dopant, with a nominal concentration of 5 x 10"
atoms/cm’. The overall diameter of the final structure is about 300 nm while the length is
approximately 10 um.
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2.2 Contacting procedure

The devices were prepared by transferring nanowires onto an oxidised Si substrate with a
pattern having macroscopic contacts. The electrical contacts to the p and n part were
realised in a double-step Electron Beam Lithography (EBL) procedure, as it will be
explained in the following. We start by describing the structure of the macroscopic mask
realised on a 4 inch oxidised Si wafer (see Figure 1). It is defined by optical lithography,
followed by evaporation and lift-off. The pattern is divided into 6 x 6 fields. Each field is
divided into 8 x 8 sub-fields. Each of these sub-fields contains a separate contacting
region formed by a 100 x 100 pm field surrounded by macroscopic contacts. The latter
corresponds to the contacts to the ‘outside world’ for the electrical measurements. They
can be used for wire-bonding or measuring in a probe-station. More information can be
found elsewhere [42]. A schematic drawing of the steps followed to contact nanowires is
shown in Figure 2. After fabrication of the macroscopic contacts, the nanowires are
removed from the growth substrate and dispersed in isopropyl alcohol by ultrasonication
of a piece of sample in the liquid. After that, the nanowires are deposited on the patterned
substrate by a pipette on the contact areas. Few droplets of the solution are enough to
deposit hundreds of nanowires. After evaporation of the solution they are localised on the
patterned substrate. Several methods can be applied to find the coordinates of the
nanowires. If the nanowires are longer than about 3 um, an optical microscope can easily
image them. If the structures are smaller, scanning electron microscope is another option.
Still, all images of the same run must be taken with the same magnification. After this,
we use our software Autocontact [42] to treat the images, to detect the nanowires on the
substrate and to define the coordinates with respect to the alignment markers closest to
the nanowire.

Figure 1 Structure of the macro-contact pattern on the wafer (see online version for colours)

The software reproduces the position of the nanowire on the CAD drawing of the
lithography mask of the contacting field. The software can further be employed to define
the contacts on the nanowire. This procedure is repeated with all images containing
nanowires. At the end, the software produces a file that will be read by the e-beam
lithography machine to write the contacts on the resist. In order to contact a radial p-i-n
junction, first we cover the sample with resist and expose one side of the nanowire.
Subsequently, the n-shell of this side of the wire is etched in a solution of 1 g citric acid
mono-hydrate: 51 ml H,O: 2 ml H,O,. In a subsequent electron beam lithography step,
we write the second contact on the nanowire and evaporate both contacts formed by
Pd-Ti-Au (70/10/120 nm). Additional details on the contacting procedure and device
geometry can be found elsewhere [41, 42].
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Figure 2  Sketch of the steps followed during the fabrication processes (see online version
for colours)
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3 Nano-contacts automation

We have written a software to facilitate the procedure of contacting several tens to
hundreds of nanowires at once [42]. The goal is to achieve enough statistics with the
devices, extremely important in general in science but especially when dealing with
nanoscale materials. The software is aimed to reduce the time spent on the design of the
contacts. For simplicity, the program is a graphical user interface that allows the users to
work directly with images (see Figure 3). This allows to design the contact for several
hundreds nanowires in less than an hour.

The first step is to take pictures of the desired nanowires inside the four crosses
markers (see Figure 1) with the proper magnification and good contrast between the gold
and the oxidised silicon surface. The pictures can directly be named so that the filenames
correspond to the location coordinate of the image inside the pattern. The first small letter
corresponds to the location of the big square. The second capital letter and the third
number correspond to the location of the smallest pattern inside the big square (see
Figure 1).

Then the user must select the input directory (where the images are) and the output
directory (where to save the processed files). By clicking on ‘Run the fitting’ the first
picture is appearing for the calibration. The user must click on two next cross markers.
The program search for the scale, rotation and translations of the images compared to a
model. When the proper rotation and translations have been found, the process is
terminated. The coordinates of the markers are defined making the localisation of the
nanowire possible. One can control the results inside the folder ‘Fittedlmages’ in the
output directory. On the right part of the software, one can adjust the parameters of the
contacts (width, space, type, etc.).
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Figure 3  Graphical user interface of the AUTOCONTACT program [42] (see online version
for colours)
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After setting all the parameters and by simply clicking on ‘Run the Contacts’, each image
appears and allows the user to click on both sides of the nanowires to be contacted.
Depending on the parameters set, the contacts will be placed automatically. It is then
possible to see the resulted dxf files as well as the setting parameters in the output
directory. The current version brings the possibilities to choose between a single-step
EFL, a double-step EFL for pn-junctions, as well as two, four until eight contacts. If
‘eight contacts’ is selected, only the contacts that are on the nanowire will be drawn (the
contacts outside will be deleted). The thickness, spacing and shape are all settings that
can be set. Finally, there is the possibility to adjust the spacing automatically depending
on the length of the nanowires.

4 The theory behind the MATLAB code

The program is coded with MATLAB. The following describes how the code is working.
A loop lists all the images stored inside the input directory. All the images are then
converted in binary colour using the greythresh function. This function chooses the
threshold to minimise the intraclass variance of the black and white pixels based on
Otsu’s method. Every pixel having a value higher than the threshold is reset to 1. All the
others are reset to 0.

The coordinates of each square in the pattern have been implemented so that, the
name of the file gives approximately the place where the image was taken. Since it is
supposed that all images have been taken with the same magnification, the first image is
taken for calibration. It is asked to click on two next markers via the ButtonDownFcn
function. The factor converting the number of pixels separating the two points clicked,
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into the real distance, is set. An approximate scale is then defined. At this step, the
program has information on the coordinates and the scale of the pictures. However, these
factors are not accurate and nothing is known about the rotation and the translations. In
order to retrieve the real coordinates, the program uses two fitting processes. A model
that reproduces the design of the optical lithography patterns will be adjusted on the
pictures until both match. The model image function depends on a four-dimensional
parameter P.

Pz[Ax,Ay,ga,s] @)

where Ax and Ay gives the translational offset from the centre as fraction of the image
size, ¢ is the rotation angle and s is a scale correction with respect to the rough scale
selected in the user interface as described above.

The model represents the smallest entities of the pattern, which are the markers and
the 12 branches. It was previously created in the layout software and saved in dxf files.
The coordinates of this pattern are then extracted and stored in a matrix. The program
uses the function poly2mask that computes a binary region of interest, to create the mask.

4.1 Coordinates extraction

In order to fit the model with the images, the matrix representing the model and the
matrix representing one of the images are compared using an XOR function: if the two
same pixels from the two matrices are equal, the result would be zero. Since the two
images have to be exactly superposed, the goal is to achieve a matrix filled with zeros.

The first fitting process uses the simulated annealing algorithm [43]. The simulated
annealing is an application of the Metropolis—Hastings algorithm to optimisation. It is an
analogy with annealing in metallurgy, involving heating and controlled cooling of a
material to reduce its defects. In our case, the mask-model will be moved, rotated and
rescaled with four random unknown parameters that will be refined every iteration. The
extent of the search depends on a transition probability with a scale proportional to the
‘temperature’. If the new solution is better than the previous, the next state is
automatically accepted. Otherwise, it is accepted with a certain probability. Since the
raise of the objective function can be accepted, the algorithm avoids being trapped in a
local minimum.

The simulated annealing algorithm is used on the full images resized by a factor
defined by the user. A smaller size reduces the computation time but decreases the
accuracy. The starting points are set to zero except the scale factor, which is equal to the
calibration parameter. A maximum of iteration is set to 250. The constraints for the two
translational degrees of freedom are set in order to limit the four markers to move outside
the image. For the model scaling, the constraint is set to a 5% change and the maximum
allowed model rotation is limited to 4.5°.

During acquisition of the optical microscope images, it can be easily achieved for the
image to fall within these constraints. For a better refinement, another fit is performed by
taking the final results as starting points. However, not the full picture will be taken, but
only the four markers (not resized) and will be summed up. The fitting algorithm uses the
patternsearch function. This refinement allows the model to move with a tolerance of
+0.05 P.
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4.2 Design of contacts

The two fitting processes allow retrieving parameter P that defines the coordinate
transformation between the microscope image and the mask layout (see Figure 4b). The
missing part is now the design of contacts. The precise position and rotation of the
nanowire are calculated when the user clicks on both ends of the nanowire in the
microscope image using the coordinate transformation obtained by the fit. A small
rectangular portion of the contacts, with the geometrical characteristics that can be
defined by the user, is drawn perpendicularly to the NW. The direction of this portion is
represented by the red axis in Figure 5. Depending on the position of the NW, this
portion must be bounded to one of the pad represented by the letter ¢;. The contacts
should be as straight as possible and they should not cross either each other, or the
nanowire.

Figure 4 Fitting principle used by our AUTOCONTACT program (see online version

for colours)

(a) Fitting on process (in grey, the mask moving to superpose the image)

y0

A

(0,0 X0
(b) After fitting, a set of coordinate is define
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Figure 5 Schematics showing how the contacts are designed, once the position of the nanowires
is known (see online version for colours)

The best way to solve this is to find the shortest perpendicular distance between the axis
of the portion contact (red axis in Figure 5) and the pad ¢;. The following equations are
solved:
ababe, — —
L% ifab be, >0
a1 || @)

0 if ab-bc, <0

The perpendicular distances to the red axis are found via the cross product. The

conditions state that the pads chosen must be in the same direction as the vector ab . This
avoids the issue of having contacts with an angle higher than 90° with the first portion
drawn. The same procedure is done for the second contact but in the opposite direction.
When there are more than two contacts, the two inner ones are chosen for respecting the
equations. The other contacts are then defined on the pads beside.

Once the paths are defined, the coordinates and the shape of the contacts will be
added line by line on the dxf output file containing the electron beam lithography pattern.
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5 Results

To demonstrate the performance of electron beam lithography contacted nanodevice, we
now turn to our results on radial nanowire p-i-n-junction operated in light absorption. We
have studied the properties of the radial junction by means of photo-current mapping of
our nanowires. The sample is placed on an x-y piezo-driven scanning stage and a focused
laser spot with a diameter in the order of 1 um is scanned over an area of 15 x 15 um.
Meanwhile the short circuit current is acquired. The laser wavelength is 520 nm and the
intensity of incident beam is approximately 2.5 nW. Moreover we modulate the laser
light with a chopper wheel allowing measuring the photo-current with a lock-in
amplifier.

Figure 6 (a) [-V characteristics of a nanowire radial p-i-n junction device. (b) Lock-in photo-
current mapping of the nanowire device illuminated with a 520 nm wavelength. The
device contacts that cover part of the nanowire are schematically indicated by the white
lines (see online version for colours)
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The I-V characteristics of a single nanowire device are shown in Figure 6 together with
the spatial mapping of laser beam induced photo-current in the same nanowire. The
photo-current is generated over the entire length of the exposed radial p-i-n junction
indicating the good quality of the device.

The I-V curve in Figure 6a can be modelled with a diode equation and series
resistance:

9(U-R1)

=1 ex
P nk,T

A3)

A fit to the experimental data allows to obtain a value for the series resistance of
R =104 kQ.

6 Conclusion

In conclusion we have presented a technique that allows the contacting of multiple single
nanowires that are randomly oriented on a host substrate with an automatised and
scalable approach. This allows to significantly increase the production throughput and to
obtain more statistical information on the properties of the nanowires. One should point
out that our approach is easily transferable on other nanoscale materials such as
exfoliated graphene or carbon nanotubes. Indeed the advantage of sample preparation
will help in the future to further improve characterisation and understanding of nanoscale
materials.
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