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Let k be a field of characteristic 6= 2, and let L be a Galois extension of k
with group G. Let us denote by qL : L × L → k the trace form, defined by
qL(x, y) = TrL/k(xy). Let (gx)g∈G be a normal basis of L over k. We say that
this is a self–dual normal basis if qL(gx, hx) = δg,h. If the order of G is odd,
then L always has a self–dual normal basis over k (cf. [1]). This is no longer
true in general if the order of G is even; some partial results are given in [2].

If k is a global field, then it is natural to ask whether a local–global principle
holds for this problem. In order to make this question precise, we have to
consider G–Galois algebras and not only field extensions. Moreover, it is useful
to note that qL is a G–quadratic form, in other words qL(gx, gy) = qL(x, y) for
all x, y ∈ L and g ∈ G. The G–Galois algebra has a self–dual normal basis if
and only if the G–form qL is isomorphic to the unit G–form. This leads to the
following question:

Question. Suppose that k is a global field, and let L and L′ be two G–Galois
algebras. Assume that for all places v of k, the G–forms qLv and qL′

v
are

isomorphic over kv. Are the G–forms qL and qL′ isomorphic over k ?

Note that a similar Hasse principle does not hold for arbitrary G–forms, cf.
Morales [5]. In the context of trace forms of G–Galois algebras, positive results
are obtained in [2] in some special cases. However, the problem is open in
general.

The starting point of this paper is to investigate this question. The main tool,
which is of independent interest, is to develop induction–restriction methods
for arbitraryG–forms, generalizing some results of [2] and of Lequeu in [4]. The
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key ingredient is an odd determinant property of the group G (cf. §2) which is
shown to hold for instance if the normalizer of a 2–Sylow subgroup S controls
the fusion of S in G. We obtain the following :

Theorem. Suppose that k is a global field of characteristic 6= 2. Let G be a
finite group, and suppose that G has the odd determinant property if char(k) =
0. Let L and L′ be two G–Galois algebras such that for all places v of k, the
G–forms qLv and qL′

v
are isomorphic over kv. Then the G–forms qL and qL′

are isomorphic over k.

Corollary. Suppose that k and G are as above. Then a G–Galois algebra
has a self–dual normal basis over k if and only if such a basis exists over all
the completions of k.

We thank Jean–Pierre Serre for many fruitful conversations and correspon-
dence. We also thank Emmanuel Lequeu for very interesting conversations,
and for showing us a preliminary version of his paper [4]. The authors acknowl-
edge hospitality of Emory University and the École Polytechnique Fédérale de
Lausanne, institutions in which the work was carried out. The first named
author was partially supported by the Swiss National Science Fundation, grant
200020-109174/1, and the second named author was partially supported by
NSF grant DMS 1001872.

§1. Definitions and basic facts

Let k be a field of characteristic 6= 2, let G be a finite group, and let k[G] be
the associated group ring. We refer to [7] for basic facts on k[G]–modules.

Group ring and involution

Let ι : k[G] → k[G] be the canonical involution of the group ring, in other
words the k–linear involution of k[G] characterized by ι(g) = g−1 for all g ∈ G.
Let R be the radical of k[G]. Then k[G]/R is a semi–simple k–algebra, hence
we have a decomposition k[G]/R =

∏

i=1,...,r Mni(Di), where D1, . . . , Dr are

division algebras. Let us denote by Ki the center of Di, and let Dop
i be the

opposite algebra of Di.

Note that ι(R) = R, hence ι induces an involution ι : k[G]/R → k[G]/R. There-
fore k[G]/R decomposes into a product of involution invariant factors. These
can be of two types: either an involution invariant matrix algebra Mni(Di), or
a product Mni(Di)×Mni(D

op
i ), with Mni(Di) and Mni(D

op
i ) exchanged by the

involution. We say that a factor is unitary if the restriction of the involution
to its center is not the identity: in other words, either an involution invariant
Mni(Di) with ι|Ki not the identity, or a product Mni(Di)×Mni(D

op
i ) . Oth-

erwise, the factor is said to be of the first kind. In this case, the component
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is of the form Mni(Di) and the restriction of ι to Ki is the identity. We say
that the component is orthogonal if after base change to a separable closure ι
is given by the transposition, and symplectic otherwise.

We say that a component Mni(Di) is split if Di is a commutative field.

G–quadratic forms

A G–quadratic form is a pair (V, q), where V is a k[G]–module that is a finite
dimensional k–vector space, and q : V ×V → k is a non–degenerate symmetric
bilinear form such that

q(gx, gy) = q(x, y)

for all x, y ∈ V and all g ∈ G. We say that two G–quadratic forms (V, q)
and (V ′, q′) are isomorphic if there exists an isomorphism of k[G]–modules
f : V → V ′ such that q′(f(x), f(y)) = q(x, y) for all x, y ∈ V . If this is the
case, we write (V, q) ≃G (V ′, q′), or q ≃G q′.

Let S be a subgroup of G. We have two operations, induction and restriction
(see for instance [2], 1.2 for details):

If (V, q) is an S–quadratic form, then IndG
S (V, q) is a G–quadratic form;

If (V, q) is a G–quadratic form, then ResGS (V, q) is an S–quadratic form.

The following result will be used in the sequel

Theorem 1.1. (see [1], th. 4.1) Let q and q′ be two G–quadratic forms. If they
become isomorphic over an odd degree extension, then they are isomorphic.

It is well–known that S–quadratic forms correspond bijectively to k[S]–
hermitian forms with respect to the involution ι : k[S] → k[S]. We will use
the same notation for the S–quadratic form and the corresponding hermitian
form.

Trace forms

Let L be a G–Galois algebra, and let

qL : L× L → k, qL(x, y) = TrL/k(xy)

be its trace form. Then qL is a G–quadratic form.

Let us recall a result from [2] that will be basic for the proof of the main
theorem:

Lemma 1.2. (cf. [2], 2.1.1.): Let S be a 2–Sylow subgroup of G. For any
G–Galois algebra L, there exists an odd degree field extension k′/k and an S–
Galois algebra M over k′ such that the G–form (L, qL) ⊗k k′ is isomorphic to
the G–form IndG

S (qM ).

Documenta Mathematica 16 (2011) 677–707



680 E. Bayer-Fluckiger and R. Parimala

§2. The induction-restriction functor and the odd determinant
property

The aim of this section is to introduce the odd determinant property, and to
state a result (th. 2.2), which will be used in the proof of the Hasse principle
result of §3.

Let G be a finite group, let S be a 2–Sylow subgroup of G, and let N = NG(S)
be the normalizer of S in G. Then N acts on S, and we denote by Σ the set of
orbits of S under the action of N .

LetX be the Z–module of Z–valued functions on S invariant under conjugation
by N , and let Φ : X → X be ResGS IndGS considered as an endomorphism of X
(cf. [7], 7.2).

Definition 2.1 We say that G has the odd determinant property if the deter-
minant of Φ : X → X is an odd integer.

One of the main results of this paper is the following

Theorem 2.2 Suppose that G has the odd determinant property. Let (V1, q1)
and (V2, q2) be two S–quadratic spaces. Suppose that

ResGS IndGS (V1, q1) ≃S ResGS IndGS (V2, q2).

Then

IndGS (V1, q1) ≃G IndGS (V2, q2).

This result is used in the proof of the Hasse principle stated in the introduction,
see th. 3.1. The proof relies on an analysis of the odd determinant property,
and is the subject matter of sections 4-11. The structure of the proof of th. 2.2
is as follows. Sections 5 and 6 study induction and restriction properties of S–
quadratic forms. Section 7 is concerned with the odd determinant property in
the special case where all the characters of S over k are absolutely irreducible.
Using a filtration introduced in §9 and the quadratic descent argument of §8,
we obtain a general result (see th. 10.1) based on the case considered in §7.
This is then used in §11 to prove th. 2.2.

We next show that the odd determinant property holds if N controls the fusion
of S in G.

Definition 2.3 We say that N controls the fusion of S in G if for all subsets
T and T ′ of S, if there exists g ∈ G with gTg−1 = T ′ then there exists n ∈ N
such that nTn−1 = T ′.
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There are many examples of groups G in which the normalizer controls the
fusion of the 2–Sylow subroups; see for instance Thévenaz [8] for a survey.

Remark. Note that we only use the following property, which is clearly satis-
fied if N controls the fusion of S in G :

(*) For all s, t ∈ S, if there exists g ∈ G with gsg−1 = t then there exists n ∈ N
such that nsn−1 = t.

It does not seem to be known whether there exist groups G having property
(*) where N does not control the fusion of S in G.

Proposition 2.4 Suppose that N controls the fusion of S in G. Then G has
the odd determinant property.

In order to prove this proposition, we need the following lemma:

Lemma 2.5 Suppose that N controls the fusion of S in G, and let x ∈ S. Then
CS(x) is a 2–Sylow subgroup of CG(x).

Proof. Let S0 be a 2–Sylow subgroup of CG(x) containing x and let S1 be
a 2–Sylow subgroup of G containing S0. Let g ∈ G be such that gS1g

−1 = S.
In view of the fusion hypothesis, there exists n ∈ N such that ngxg−1n−1 =
x. Let us consider Int(ng) : G → G. Then, as Int(ng)(x) = x, we have
Int(ng)(CG(x)) = CG(x). We have Int(ng)(S1) = S, hence Int(ng)(S0) =
Int(ng)(S1 ∩ CG(x)) = S ∩ CG(x) = CS(x). This implies that CS(x) is a
2–Sylow subgroup of CG(x), as claimed.

Proof of prop. 2.4 For σ ∈ Σ, let qσ be the function on S which is equal to
1 on σ and 0 otherwise. Note that the set (qσ)σ∈Σ is a basis of the Z–module
X . Let σ, σ′ ∈ Σ, and fix x ∈ σ′. By definition, the coefficient of qσ in Φ(qσ′ )
is equal to

1

#S
#{g ∈ G | gxg−1 ∈ σ }.

As N controls the fusion of S in G, we have gxg−1 ∈ σ if and only if x ∈ σ.
Therefore the coefficient of qσ in Φ(qσ′) is equal to 0 if σ 6= σ′.

The coefficient of qσ in Φ(qσ) is equal to

1

#S
#CG(x) #σ =

1

#S
#CG(x)

#N

#CN (x)
=

#N

#S

#CG(x)

#CS(x)

#CS(x)

#CN (x)
.

Therefore it suffices to check that #CG(x)
#CS(x)

is odd, and this follows from lemma
2.5.
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§3. Hasse principle

In this section, we suppose that k is a global field of characteristic 6= 2. Let G
be a finite group, and let us denote by k[G] the associated group ring. One of
the main results of this paper is the following

Theorem 3.1 Suppose that G has the odd determinant property if char(k) = 0,
and let L and L′ be two G–Galois algebras. Then qL ≃G qL′ over k if and only
if qL ≃G qL′ over all the completions of k.

As an immediate consequence, we get

Corollary 3.2 Suppose that G has the odd determinant property if char(k) =
0. Then a G–Galois algebra has a self–dual normal basis over k if and only if
it has a self–dual normal basis over every completion of k.

By prop. 2.3, we know that G has the odd determinant property whenever for
a 2–Sylow subgroup S, the normalizer NG(S) controls the fusion of S in G.
Hence we have

Corollary 3.3 Suppose that for a 2–Sylow subgroup S of G, the normalizer
NG(S) controls the fusion of S in G. Then the trace forms of two G–Galois
algebras are G–isomorphic over k if and only if they are G–isomorphic over
each completion of k. In particular, a G–Galois algebra has a self–dual normal
basis over k if and only if it has a self–dual normal basis over every completion
of k.

Corollary 3.4 Suppose that G has a normal 2–Sylow subgroup. Then the
trace forms of two G–Galois algebras are isomorphic over k if and only if they
are isomorphic over each completion of k. In particular, a G–Galois algebra
has a self–dual normal basis over k if and only if it has a self–dual normal basis
over every completion of k.

Proof. This is an immediate consequence of 3.3.

The proof of th. 3.1 relies on th. 2.2, and on some properties of group rings
and of quadratic and hermitian forms that we recall in this section. Let us first
note that the Hasse principle holds for any G–form provided the orthogonal
components of the group ring are split:

Theorem 3.5 Suppose that all the orthogonal components of k[G] are split,
and let q, q′ be two G–forms. Then q ≃G q′ over k if and only if q ≃G q′ over
all the completions of k.

Proof. This follows from the Hasse principle for unitary and symplectic forms,
as well as the Hasse principle for quadratic forms over global fields (see for
instance [6], chap. 10).
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Therefore th. 3.1 is new for number fields only – indeed, if char(k) > 0, then
all the orthogonal components of k[G] are split.

Proposition 3.6 Let S be a 2–group. Then the orthogonal and unitary com-
ponents of k[S] are split, and the symplectic components of k[S] are either split,
or of the form Mn(H) where H is a quaternion division algebra over its center.

Proof. Note that k[S] = Q[S]⊗Q k if char(k) = 0, and k[S] = Fp[S]⊗Fp k if
char(k) = p 6= 0. Therefore it is sufficient to prove the proposition when k = Q
or k = Fp. As the Brauer group of a finite field is trivial, every component is
split if k = Fp.

Suppose that k = Q. Then each component of Q[S] is invariant under ι (cf.
[6], Chap 8, 13.2.).

Let Mn(D) be a symplectic component of Q[S]. This implies that the algebra
Mn(D) is of order one or two in the Brauer group of Q, and it is well–known
that this can only happen if D is a commutative field or a quaternion algebra.

Let us now show that the orthogonal and unitary components of Q[S] are split.
Let v be a non–dyadic place of Q, and let Ov be the ring of integers of Qv.
Since #S is invertible in Ov, it follows that Ov[S] is Azumaya over its center.
This implies that this algebra is split mod π, where π is a uniformizer at v,
therefore it is split over Ov. In particular every component of Qv[S] is split.

If v is the real place of Q, then every orthogonal and unitary component of
Qv[S] = R[S] is split (cf. [6], Chap 8, 13.5).

Let Mn(D) be an orthogonal or unitary component of Q[S], and let Z(D) = K.
As S is a 2–group, K is a subfield of a 2–cyclotomic field, hence K admits a
unique dyadic place. Since D is split at all the other places, D is split at the
dyadic place as well, hence D is split.

Corollary 3.7 Let S be a 2–group, and let q, q′ be two S–forms. Then
q ≃S q′ over k if and only if q ≃S q′ over all the completions of k.

Proof. This follows from 3.5 and 3.6.

We are now ready to prove 3.1. The proof uses th. 2.2, which will be proved
in section 11.

Proof of th. 3.1 Suppose first that char(k) > 0. Then all the components
of k[G] are split, hence th. 3.5 implies the desired result.

Suppose now that char(k) = 0, in other words that k is an algebraic number
field. By lemma 1.2, there exists an odd degree field extension k′/k and S–
Galois algebras M and M ′ over k′ such that (L, qL) ⊗k k′ ≃G IndG

S (M, qM ),
and (L,′ qL′)⊗k k′ ≃G IndGS (M

′, qM ′). Recall that by hypothesis the G–forms
(L, qL) and (L′, qL′) are isomorphic over all the completions of k. This implies
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that the G–forms (L, qL) ⊗k k′ and (L,′ qL′) ⊗k k′ are isomorphic over all the
completions of k′. Hence the S–forms ResGS (L, qL)⊗kk

′ ≃S ResGS IndG
S (M, qM ),

and ResGS (L
′, qL′) ⊗k k′ ≃S ResGS IndGS (M

′, qM ′) are isomorphic over all the
completions of k′. By corollary 3.7, this implies that the S forms ResGS (L, qL)⊗k

k′ ≃S ResGS IndGS (M, qM ), and ResGS (L
′, qL′)⊗k k

′ ≃S ResGS IndGS (M
′, qM ′) are

isomorphic over k′. AsG has the odd determinant property, th. 2.2 implies that
the G–forms IndG

S (M, qM ) and IndGS (M
′, qM ′ ) are isomorphic. As (L, qL) ⊗k

k′ ≃G IndG
S (M, qM ) and (L,′ qL′) ⊗k k′ ≃G IndGS (M

′, qM ′ ), we get (L, qL) ⊗k

k′ ≃G (L,′ qL′) ⊗k k′. By th. 1.1, this implies that (L, qL) ≃G (L,′ qL′), and
this completes the proof of th. 3.1.

§4. Properties of determinants in characteristic 2

This section is concerned with properties of determinants of linear transforma-
tions over rings of characteristic 2 that will be needed in the following sections.
Let F be a field of characteristic 2, and let R = F [X ]/(X2 + 1). We start by
recalling a result of linear algebra :

Proposition 4.1 Let M = Rn be the free R–module of rank n, and let f :
M → M be an R–linear map. Then

NR/F (det(f)) = det(fF ),

where det(fF ) is the determinant of f considered as an F–linear map.

Corollary 4.2 Let

A =











a1,1 b1,1 . . . a1,n b1,n
b1,1, a1,1 . . . b1,n a1,n
. . . . . . . . . . . . . . .
an,1 bn,1 . . . an,n bn,n
bn,1 a1,n . . . bn,n an,n











and

B =





a1,1 + b1,1 . . . a1,n + b1,n
. . . . . . . . .

an,1 + bn,1 . . . an,n + bn,n





with ai,j , bi,j ∈ F . Then
det(B)2 = det(A).

Proof. Let f : Rn → Rn be defined by f(ej) = Σ1≤i≤n(ai,j + bi,jX)ei, where
e1, . . . , en is the standard basis of Rn. The matrix of f with respect to the
basis e1, . . . , en is (ai,j + bi,jX). We have

NR/F (det(ai,j + bi,jX)) = (det(ai,j + bi,j))
2,
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which is equal to det(B)2. By 4.1, this is the determinant of f as an
F–linear map. On the other hand, the determinant of f in the basis
e1, e1X, e2, e2X, . . . , en, enX is equal to det(A); hence we have det(B)2 =
det(A), as claimed.

We also need the following observation:

Lemma 4.3 Let n ∈ N , and suppose that the group {1, ι} of order 2 acts on
the set {1, . . . , n} in such a way that {1, . . . , r} is the set of fixed points. Let
(di,j)1≤i,j≤n be an integral matrix such that dι(i),ι(j) = di,j for all i, j. Then

det(di,j)1≤i,j≤n ≡ det(di,j)1≤i,j≤rdet(di,j)r+1≤i,j≤n (mod 2).

Proof. Let S be the set of permutations of {1, 2, ...n}. For s ∈ S and 1 ≤ i ≤
n, set ι ∗ s(i) = ιsι(i). We have

det(di,j)1≤i,j≤n ≡ Σs∈S(
∏

1≤i≤n

dsi,i) mod 2.

Set
H = {s ∈ S | s(i) ≤ r for i ≤ r}.

Then

Σs∈S(
∏

1≤i≤n

dsi,i) = Σs∈H(
∏

1≤i≤n

dsi,i) + Σs6∈H(
∏

1≤i≤n

dsi,i).

For s 6∈ H , we have ι ∗ s 6∈ H and s 6= ι ∗ s. In view of di,j = dι(i),ι(j) for all
i, j, we get

Σs6∈H(
∏

1≤i≤n

dsi,i) ≡ 0 mod 2.

Let
S1 = {s ∈ S | s(i) = i for i ≥ r + 1},

and
S2 = {s ∈ S | s(i) = i for i ≤ r}.

Then we have

Σs∈H(
∏

1≤i≤n

dsi,i) = [Σs∈S1(
∏

1≤i≤r

dsi,i)].[Σs∈S2(
∏

r+1≤i≤n

dsi,i)].

This completes the proof of the lemma.

Lemma 4.3 is used in the next sections, in particular in the proofs of 7.1, 8.4
and 8.5.
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§5. Group rings of 2–groups and decomposition of S–quadratic
forms

The aim of this section is to introduce some tools and notation that will be
used in the sequel. In particular, we set up a decomposition of the quadratic
forms invariant by a 2–group, generalizing the approach of [2], §5.

Group rings of 2–groups

Let k be a field of characteristic 6= 2, and let S be a 2–group. Recall that
ι : k[S] → k[S] is the canonical involution of the group ring.

As the characteristic of k is not 2, the algebra k[S] is semi–simple. We have
a decomposition of k[S] into simple factors, corresponding to the irreducible
representations of S over k, hence also to the irreducible characters of S over
k. Let us denote by S′

k the set of these irreducible characters. Each of them
determines a component Mnx(∆x) of k[S], where ∆x is a division algebra. Let
Kx = Z(∆x) be the center of ∆x. Recall that the orthogonal and unitary
components are split, and that the symplectic components are either split, or
of the form Mn(H) where H is a quaternion division algebra (see prop. 3.6).

Let us denote by Ux the simple k[S]–module associated to the irreducible char-
acter x ∈ S′

k. Note that it is isomorphic to ∆nx
x . Let Yk be the free Z–module

generated by S′
k.

Note that ι acts on S′
k by ι(x)(s) = x(s−1) for all x ∈ S′

k and s ∈ S. We say
that x ∈ S′

k is self–dual if ι(x) = x. This is equivalent to requiring that the
corresponding component Mnx(∆x) is stable by ι. If x ∈ S′

k is not self–dual,
then there exists x′ ∈ S′

k such that x′ 6= x and ι(x) = x′. In this case, set

x = (x, x′). If x is self–dual, then set x = x. Let us denote by S
′

k the set of x
for x ∈ S′

k.

Set Mnx(∆x) = Mnx(∆x) if x is self–dual, and Mnx(∆x) = Mnx(∆x) ×
Mnx′

(∆x′) if ι(x) = x′ 6= x. Similarly, set Kx = Kx is x is self–dual and
Kx = Kx × Kx′ if x = (x, x′). Note that Kx is an étale algebra, but not
necessarily a field. Let K0

x = {a ∈ Kx | ι(a) = a} be the invariants of ι in Kx.
When x is not self–dual, then we have Kx ≃ Kx′ ≃ K0

x.

The involution ι of k[S] restricts to the factors Mnx(∆x), and it is adjoint to a
hermitian or skew–hermitian form, which we fix in the different cases as follows.

If x is orthogonal, then ∆x = Kx. In this case, we set Dx = Kx, and we
chose the involution τx : Dx → Dx to be the identity. The restriction of the
involution ι to this factor is adjoint to a symmetric form on Dnx

x which we
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denote by ρx. We define mx = nx, and the symmetric form is supported on
the simple module Ux.

If x is symplectic, then ∆x = Kx or a quaternion division algebra. We set
Dx = M2(Kx) in the first case, and Dx = ∆x in the second case. In both
cases, we choose the involution τx : Dx → Dx to be the standard symplectic
involution of Dx. In this case, the restriction of the involution ι to this factor is
adjoint to a hermitian form overDmx

x with respect to the involution τx which we
denote by ρx. The form ρx is supported on the module Ux⊕Ux and nx = 2mx

if Dx is not division, it is supported on the module Ux and mx = nx if Dx is
division.

If x is unitary, then ∆x = Kx, and Kx is a quadratic algebra over K0
x. We

set Dx = Kx, and we fix the involution τx : Dx → Dx to be the non–trivial
automorphism of this quadratic algebra. Then the restriction of the involution
ι to this factor is adjoint to a hermitian form on Dnx

x with respect to the
involution τx which we denote by ρx. We set mx = nx in this case. The form
ρx is supported on Ux if x is self–dual, and on Ux1

⊕ Ux2
if x = (x1, x2) with

x1 6= x2 and ι(x1) = x2.

Set Ux = Ux⊕Ux if x is symplectic and Dx not division, Ux = Ux1
⊕Ux2

if x is
unitary with x = (x1, x2) such that ι(x1) = x2 and x1 6= x2, and Ux = Ux in all
other cases. Note that Ux ≃ Dmx

x . Therefore in all cases we have a hermitian
form ρx : Ux × Ux → Dx which we fix throughout. We denote the hermitian
form (Ux, ρx) by ρx.

We also fix a quadratic form nx : Dx → K0
x to be the one–dimensional unit

form if x is orthogonal, the reduced norm form of the quaternion algebra Dx if
x is symplectic, and the norm form of the quadratic algebra Dx if x is unitary.

Decomposition of S–quadratic forms

Let (V, q) be an S–quadratic form. Then (V, q) decomposes as an orthogonal
sum of hermitian forms (Mx, Qx) for x ∈ S′

k, over Mmx(Dx) with respect to
the restriction of ι to this factor. By Morita theory, fixing ρx, the hermitian
form (Mx, Qx) is uniquely determined up to isomorphism by a hermitian form
hx over a free Dx–module Wx of finite rank with respect to the involution τx,
and conversely the hermitian form (Wx, hx) is uniquely determined up to iso-
morphism by (Mx, Qx). Moreover, by Jacobson’s theorem the hermitian form
(Wx, hx) corresponds to a quadratic form (Vx, gx) over K0

x with the property
that (Vx, gx)⊗nx is uniquely determined by (Wx, hx) (cf. [6], 10.1.1 and 10.1.7)
. We have (Mx, Qx) ≃ ρx⊗K0

x
(Vx, gx), and (Vx, gx)⊗nx is uniquely determined

by (Mx, Qx), hence by (V, q). In other words, we have

(V, q) ≃
⊕

x∈S
′

k

ρx ⊗K0

x
(Vx, gx),
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and if (V1, q1) and (V2, q2) are two S–quadratic forms with

(V1, q1) ≃
⊕

x∈S
′

k

ρx ⊗K0

x
(V 1

x , g
1
x) and (V2, q2) ≃

⊕

x∈S
′

k

ρx ⊗K0

x
(V 2

x , g
2
x),

then

(V1, q1) ≃S (V2, q2)

if and only if
nx ⊗ g1x ≃ nx ⊗ g2x

for all x ∈ S′
k.

§6. Induction of S–forms

Let k be a field of characteristic 6= 2. Let G be a finite group, and let S be a
2–Sylow subgroup of G, We use the notation introduced in §5. In particular,
S′
k is the set of irreducible characters of S over k. Recall that ι : k[S] → k[S] is

the standard involution, and that for x ∈ S′
k we set x = x if x is selfdual, and

x = (x, x′) if ι(x) = x′ 6= x.

Let N = NG(S) be the normalizer of S in G. Then N acts on S′
k by n(x)(s) =

x(nsn−1) for all n ∈ N , x ∈ S′
k and s ∈ S. Note that the actions of N and ι

commute. We need the following lemmas:

Lemma 6.1 The orbits of S′
k under N have odd cardinality.

Proof. Let x ∈ S′
k and let ω be the orbit of x under N . We have ♯(ω) =

♯(N/StabN (x)). As S ⊂ StabN(x), we see that ♯(N/StabN (x)) is odd.

Lemma 6.2 Let x, x′ ∈ S′
k such that ι(x) = x′ 6= x. Let ω, ω′ be the orbits of

x, respectively x′. Then ω 6= ω′.

Proof. Indeed, suppose that ω = ω′. As the actions of N and ι commute,
we see that for every n ∈ N , we have ιn(x) 6= n(x). This implies that ιy 6= y
for every y ∈ ω, and therefore ω has even cardinality, contradicting lemma 6.1.
Therefore ω 6= ω′.

Let us denote by Ωk the set of orbits of S′
k under N . There is an induced action

of N on the free Z–module generated by S′
k and the set of orbits under this

action is the free Z–module generated by Ωk.

Let us define an action of ι on Ωk by letting ιω to be the orbit of ι(x) for any
x ∈ ω; this is well–defined as the actions of N and ι on S′

k commute. For any
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ω ∈ Ωk, set ω = ω if ιω = ω, and ω = (ω1, ω2) with ιω1 = ω2 and ω1 6= ω2. Let
Ωk be the set of all ω with ω ∈ Ωk. Let us fix a field extension K0

ω of k such
that K0

ω ≃ K0
x for all x ∈ ω.

Let (V, q) be an S–quadratic form. Then we have an orthogonal decomposition

(V, q) ≃
⊕

x∈S
′

k

ρx ⊗K0

x
(Vx, gx),

where (Vx, gx) is a quadratic form over K0
x, and (Vx, gx) ⊗ nx is uniquely de-

termined by (V, q) (cf. §5).

For all ω ∈ Ωk, let us consider the orthogonal sum

(Vω , gω) =
⊕

x∈ω

(Vx, gx).

Then (Vω , gω) is a quadratic form over K0
ω.

Note that IndGS (ρx) does not depend on the choice of x ∈ ω. Set

I(ω) = IndG
S (ρx)

where x is any element of ω.

Therefore we have

IndG
S (V, q) =

⊕

ω∈Ωk

I(ω)⊗K0

ω
(Vω , gω).

Set
A(V, q) = ResGS IndGS (V, q).

Then we have

A(V, q) =
⊕

ω∈Ωk

ResGS (I(ω))⊗K0

ω
(Vω, gω).

Let y ∈ S
′

k, and let us take the y–component of the equation above. We get

A(V, q)y =
⊕

ω∈Ωk

ResGS (I(ω))y ⊗K0

ω
(Vω, gω).

Let ω′ ∈ Ωk such that y ∈ ω′. Note that the S–quadratic spaces A(V, q)y and

ResGS (Iω)y do not depend on the choice of y ∈ ω′. Set

A(V, q)ω′ = A(V, q)y
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and
ResGS (I(ω))ω′ = ResGS (I(ω))y

for any y ∈ ω′.

Then we have
ResGS (I(ω))ω′ = ρy ⊗K0

ω′

Fω,ω′

for y ∈ ω′, where Fω,ω′ is a quadratic form over K0
ω′ .

Hence
A(V, q)ω′ = ρy ⊗K0

ω′

⊕

ω∈Ωk

[Fω,ω′ ⊗K0

ω
(Vω, gω)].

Notation. Let ω, ω′ ∈ Ωk be such that K0
ω = K0

ω′ = k. We define dω,ω′ to be
the dimension of the k–vector space underlying the quadratic form Fω,ω′ .

Note that dω,ω′ is the number of times ρy occurs in ResGS IndGS (ρx) for any
x ∈ ω, y ∈ ω′. As Ux is the underlying module of ρx, the integer dω,ω′ can also

be seen as the number of times Uy occurs in ResGS IndGS (Ux) for any x ∈ ω,
y ∈ ω′.

Let (V1, q1) and (V2, q2) be two S–quadratic forms. If A(V1, q1) ≃ A(V2, q2),
then A(V1, q1)ω′ ≃ A(V2, q2)ω′ for all ω′ ∈ Ωk. Hence, if we have

(V1, q1) ≃
⊕

x∈S
′

k

ρx ⊗K0

x
(V 1

x , g
1
x) and (V2, q2) ≃

⊕

x∈S
′

k

ρx ⊗K0

x
(V 2

x , g
2
x),

then, for each ω′ ∈ Ωk,

⊕

ω∈Ωk

nω′ ⊗K0

ω′

[Fω,ω′ ⊗K0

ω
(V 1

ω , g
1
ω)] ≃

⊕

ω∈Ωk

nω′ ⊗K0

ω′

[Fω,ω′ ⊗K0

ω
(V 2

ω , g
2
ω)].

§7. Odd determinant property – a special case

The aim of this section and the next ones is to establish some technical results
relative to the odd determinant property. These will be used in §11 to prove
th. 2.2.

We keep the notation of the previous sections, and we suppose that all the
characters in S′

k are absolutely irreducible.

Recall that Ωk is the set of N–orbits of S′
k. The following notation will be

important in the sequel:
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Notation. Let us define dω,ω′ as being the number of times Uy occurs in

ResGS IndGS (Ux)

for x ∈ ω, y ∈ ω′.

The standard involution ι : k[S] → k[S] acts on Ωk. Note that dιω,ιω′ = dω,ω′

for all ω, ω′ ∈ Ωk. Let us define

Ω1 = {ω ∈ Ωk | ιω = ω}

and

Ω2 = {ω ∈ Ωk | ιω 6= ω}.

Since all the characters in S′
k are absolutely irreducible and in view of Lemma

6.2, Ω1 is precisely the set of orbits of irreducible orthogonal and symplectic
characters.

Proposition 7.1 Suppose that

detω,ω′∈Ωk
(dω,ω′) ≡ 1 (mod 2).

Then
detω,ω′∈Ω1(dω,ω′) ≡ 1 (mod 2)

and
detω,ω′∈Ω2(dω,ω′) ≡ 1 (mod 2).

Proof. Since the group {1, ι} acts on Ω with fixed points precisely Ω1, it
follows from lemma 4.3 that

detω,ω′∈Ωk
(dω,ω′) ≡ detω,ω′∈Ω1(dω,ω′)detω,ω′∈Ω2(dω,ω′) (mod 2).

Hence we have

detω,ω′∈Ω1(dω,ω′) ≡ 1 (mod 2),

and
detω,ω′∈Ω2(dω,ω′) ≡ 1 (mod 2).

This completes the proof of the proposition.

We define Ω1,o = {ω ∈ Ω1 | ω orthogonal}, and Ω1,s = {ω ∈ Ω1 | ω symplectic}.

Proposition 7.2 Suppose that detω,ω′∈Ω1(dω,ω′) ≡ 1 (mod 2). Then

detω,ω′∈Ω1,o(dω,ω′) ≡ 1 (mod 2),
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and

detω,ω′∈Ω1,s(dω,ω′) ≡ 1 (mod 2).

Proof. Let ω be orthogonal and ω′ symplectic. For x ∈ ω, y ∈ ω′, recall
that Ux and Uy are the simple k[S]–modules associated to x and y respectively.
Then ρy is supported on Uy = Uy ⊕Uy and ρx is supported on Ux = Ux, hence

the y–component of ResGS IndGS (Ux, ρx) is isomorphic to (Uy ⊕Uy, ρy)⊗k Fω,ω′ .

Thus the module Uy occurs with even multiplicity in ResGS IndGS (Ux), so that
dω,ω′ ≡ 0 (mod 2). Therefore the matrix (dω,ω′)ω,ω′∈Ω1 has the shape

(

A 0
∗ B

)

.

mod 2, where A = detω,ω′∈Ω1,o(dω,ω′) and B = detω,ω′∈Ω1,s(dω,ω′). This com-
pletes the proof of the proposition.

For any ω ∈ Ωk, recall that ω = ω if ιω = ω, and ω = (ω1, ω2) with ιω1 = ω2

and ω1 6= ω2. Let Ωk be the set of all ω with ω ∈ Ωk. Let

Ω
2
= {ω = (ω1, ω2) ∈ Ω | ιω1 = ω2 and ω1 6= ω2}.

Proposition 7.3 Suppose that detω,ω′∈Ω2(dω,ω′) ≡ 1 (mod 2). Then we have

det
ω,ω′∈Ω

2(dω,ω′) ≡ 1 (mod 2).

Proof. Let ω = (ω1, ω2) and ω′ = (ω′
1, ω

′
2), and let dω1,ω′

1
= a, dω1,ω′

2
=

b. Then dω,ω′ = a + b. For a suitable ordering of the orbits Ω
2
, and the

corresponding ordering of Ω2, the matrices dω,ω′ and dω,ω′ are of the shape B
and A as in corollary 4.2. Hence det(B)2 ≡ det(A) (mod 2). This gives the
desired result.

We have the following

Proposition 7.4 Suppose that G has the odd determinant property. Then

detω,ω′∈Ωk
(dω,ω′) ≡ 1 (mod 2).

For the proof of prop. 7.4, we need the following lemma
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Lemma 7.5 Let K be a field of characteristic 0, and assume that all the charac-
ters in S′

K are absolutely irreducible. Suppose that G has the odd determinant
property. Then

detω,ω′∈ΩK (dω,ω′) ≡ 1 (mod 2).

Proof. Let XK = X ⊗Z K be the vector space of K–valued functions on S
invariant under conjugation by N . For all ω ∈ ΩK , set pω = Σx∈ωx. Note
that as all the characters in S′

K are absolutely irreducible, the set (pω)ω∈ΩK is
a basis of XK .

Let Φ : XK → XK be ResGS IndGS considered as an endomorphism of XK . Note
that we have

Φ(pω) = (♯ω)Σω∈ΩKdω,ω′pω′ .

This implies that the matrix of Φ in the basis (pω)ω∈ΩK is equal to ((♯ω)dω,ω′).

On the other hand, the odd determinant property implies that the determinant
of Φ : XZ → XZ is odd (cf. §2). Hence the determinant of Φ : XK → XK is
also odd. Note that ♯ω is odd for all ω ∈ Ω (see lemma 6.1). This implies that
detω,ω′∈ΩK (dω,ω′) is odd, hence the lemma is proved.

Proof of prop. 7.4 Note that for any field E and any ω, ω′ ∈ ΩE , we have

dω,ω′ = 〈x,ResGS IndGS x
′〉S = 〈IndG

S x, Ind
S
Gx

′〉G

for any x ∈ ω, x′ ∈ ω′.

If char(k) = 0, then the proposition follows from lemma 7.5. Suppose that
char(k) > 0. Let A be a complete discrete valuation ring of characteristic
0 with residue field k, and let π be a uniformizer of A. Let K be the field
of fractions of A. Then all the characters in S′

K are absolutely irreducible.
Indeed, we have k[S] =

∏

1≤i≤r Mni(k), where r is the number of irreducible
representations of S over k. Since A[S] is complete with respect to the ideal
πA[S], the isomorphism A[S]/πA[S] →

∏

1≤i≤r Mni(k) can be lifted to an
isomorphism A[S] ≃

∏

1≤i≤r Mni(A), hence we have K[S] ≃
∏

1≤i≤r Mni(K).
Thus every character of S′

K is absolutely irreducible, hence by lemma 7.5 we
have

detω,ω′∈ΩK (dω,ω′) ≡ 1 (mod 2).

Let us show that the matrices (dω,ω′)ω,ω′∈Ωk
and (dω,ω′)ω,ω′∈ΩK are equal for

suitable orderings of the sets Ωk and ΩK . As S is a 2–group and char(k) 6= 2,
every k[S]–module is projective. If P is a projective k[S]–module, then IndG

S (P )
is projective as well.

Let P be a projective k[S]–module. Since A[S] is π–adically complete, there
is a projective A[S]–module P̃ such that P̃ /πP̃ ≃ P . Then P̃K = P̃ ⊗A K is
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a projective K[S]–module. Moreover, P is simple if and only if P̃K is simple.
Note that if P and Q are simple k[S]–modules, then we have

〈IndGS (P ), IndG
S (Q)〉G = 〈IndGS P̃K , IndGS Q̃K〉G.

Therefore the matrices (dω,ω′)ω,ω′∈Ωk
and (dω,ω′)ω,ω′∈ΩK are equal for suitable

orderings of the sets Ωk and ΩK , and this completes the proof of the proposition.

§8. Odd determinant property–behavior under quadratic exten-
sion

This section contains a quadratic descent argument. Together with a filtration
introduced in §9, this quadratic descent will enable us to reduce to the case
where all the characters are absolutely irreducible, cf. §7. Putting these infor-
mations together in §10, we obtain a result (th. 10.1) that will be used in §11
to prove th. 2.2. We start by recalling and introducing some notation that will
be needed in this section and the next ones.

Let G be a finite group and let S be a 2–Sylow subgroup of G. For any field
E with char(E) 6= 2, we denote by S′

E the set of irreducible characters of S
over E, and by ΩE be the set of orbits of S′

E under the action of N = NG(S).
Recall that ι : E[S] → E[S] is the standard involution, and that for x ∈ S′

E we
denote x = x if x is selfdual, and x = (x, x′) if ι(x) = x′ 6= x.

For any ω ∈ ΩE , recall that ω = ω if the characters of ω are invariant under ι,
and ω = (ω1, ω2) if there exist x1 ∈ ω1 and x2 ∈ ω2 such that ι(x1) = x2 with
x1 6= x2. Let ΩE be the set of all ω with ω ∈ ΩE , and let K0

ω = K0
x for x ∈ ω.

Let us define dω,ω′ as being the number of times Uy occurs in

ResGS IndGS (Ux)

for x ∈ ω, y ∈ ω′.

Let us recall that for all ω, ω′ ∈ Ωk such that K0
ω = K0

ω′ = k, we denote by
dω,ω′ the dimension of the k–vector space underlying the quadratic form Fω,ω′

(see §6).

Set
Ω0

E = {ω ∈ ΩE | K0
ω = E}

Ω
0

E = {ω ∈ ΩE | K0
ω = E}

Ω1
E = {ω ∈ Ω0

E | ω orthogonal or symplectic}
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Ω1,o
E = {ω ∈ Ω0

E | ω orthogonal}

Ω1,s
E = {ω ∈ Ω0

E | ω symplectic}

Ω2
E = {ω ∈ Ω0

E | ω unitary}

Ω
2

E = {ω ∈ Ω
0

E | ω unitary}

and

δ1E = detω,ω′∈Ω1

E
(dω,ω′)

δ2E = detω,ω′∈Ω2

E
(dω,ω′)

δ
2

E = det
ω,ω′∈Ω

2

E
(dω,ω′)

δ1,oE = detω,ω′∈Ω1,o
E

(dω,ω′)

δ1,sE = detω,ω′∈Ω1,s
E
(dω,ω′)

Let L/K be a quadratic extension, and let τ : L → L be the non–trivial
automorphism of L/K. Then τ acts on S′

L by (τx)(s) = τ(x(s)) for all s ∈ S
and x ∈ S′

L. This induces an action of τ on ΩL.

Proposition 8.1 Let ω ∈ ΩL. Then τω = ω if and only if there is a character
x ∈ S′

L with x ∈ ω such that τx = x.

Proof. If there exists x ∈ ω such that τx = x, then we have τω = ω.
Conversely, suppose that ω ∈ ΩL is such that τω = ω. If we had τx 6= x for
every x ∈ ω, then ♯(ω) would be even, contradicting lemma 6.1. This implies
that there exists x ∈ ω with τx = x, hence the proposition is proved.

Note that τ acts on the center of L[S], and that the action of τ on S′
L can

be described in terms of this action. This leads to the following observation,
which will be used in the sequel:

Lemma 8.2 Let x ∈ S′
L be an orthogonal or symplectic character such that

τx = x. Let L = Kx. Then

(i) There exists x0 ∈ S′
K such that Kx0

= K.
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(ii) If x is orthogonal (resp. symplectic) then x0 is orthogonal (resp. symplec-
tic).

(iii) If x0 is orthogonal, then (x0)L = x

(iv) If x0 is symplectic, then (x0)L = x or (x0)L = 2x.

Proof. For any field E, let us denote by Z(E[S])) the center of E[S].

The Galois automorphism τ : L → L over K acts on L[S], hence also on
Z(L[S]). Then the subalgebra of Z(L[S]) fixed by τ is equal to Z(K[S]). The
hypothesis implies that L is one of the factors in the decomposition of Z(L[S]).
Note that the restriction of τ to the factor L in Z(L[S]) is non–trivial, and that
the fixed field is equal to K. This corresponds to a factor in the decomposition
of K[S], and hence to a character x0 of S′

K . This proves (i). Noting that
the base change to L of the factor corresponding to x0 in K[S] is the factor
corresponding to (x0)L, points (ii) and (iii) are immediate. Suppose now that
x is symplectic. Then the same reasoning proves that if ∆x0

is a quaternion
division algebra and ∆x = L, then (x0)L = 2x; if both ∆x0

and ∆x are
quaternion division algebras, or if ∆x0

= K and ∆x = L, then (x0)L = x. This
proves (iv).

Corollary 8.3 Let ω ∈ Ω1
L be such that τω = ω.

(i) If ω ∈ Ω1,o
L , there exists ω0 ∈ Ω1,o

K such that (ω0)L = ω.

(ii) If ω ∈ Ω1,s
L , then there exists ω0 ∈ Ω1,s

K such that (ω0)L = ω or (ω0)L = 2ω.

Proof. By prop. 8.1 we can choose x ∈ ω such that τx = x. Let x0 ∈ S′
K

such that Kx0
= K (see lemma 8.2 (i)). Hence we have K(x0) ⊗K L = L = Kx.

(i) Suppose that ω ∈ Ω1,o
L . Then x is orthogonal. Hence x0 is orthogonal, and

(x0)L = x (cf. 8.2 (ii) and (iii)). Let ω0 be the orbit of x0; then ω0 ∈ Ω1,o
K and

(ω0)L = ω.
(ii) Suppose that ω ∈ Ω1,s

L . Then x is symplectic. Hence x0 is symplectic, and
(x0)L = x or (x0)L = 2x (cf. 8.2 (ii) and (iv)). Let ω0 be the orbit of x0. Then
ω0 ∈ Ω1,s

K has the required property.

Proposition 8.4 Suppose that

δ1,oL ≡ 1 (mod 2).

Then
δ1,oK ≡ 1 (mod 2).

Proof. The automorphism τ of L/K induces a permutation of Ω1,o
L . Set

Ω1,1
L = {ω ∈ Ω1,o

L |τω = ω}
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and
Ω1,2

L = {ω ∈ Ω1,o
L |τω 6= ω}.

Let SL be the group of permutations of Ω1,o
L , and let S1

L respectively S2
L be the

group of permutations of Ω1,1
L , respectively Ω1,2

L , regarded as subgroups of SL.
Set

α = Σs∈S1

L
(

∏

ω∈Ω1,1
L

dsω,ω),

β = Σs∈S2

L
(

∏

ω∈Ω1,2
L

dsω,ω),

By lemma 4.3, we have
δ1,oL ≡ αβ (mod 2).

On the other hand, we have

δ1,oK ≡ α (mod 2).

Indeed, by cor. 8.3 (i) the map ω0 7→ (ω0)L induces a bijection between Ω1,o
K

and Ω1,1
L with dω0,ω′

0
= d(ω0)L,(ω′

0
)L for ω0, ω

′
0 ∈ Ω1,o

K . It follows that δ1,oK ≡
α (mod 2). This completes the proof of the proposition.

Proposition 8.5 Suppose that

δ1,sL ≡ 1 (mod 2).

Then
δ1,sK ≡ 1 (mod 2).

Proof. The automorphism τ of L/K induces a permutation of Ω1,s. Let

Ω1,1
L = {w ∈ Ω1,s

L |τω = ω},

Ω1,2
L = {w ∈ Ω1,s

L |τω 6= ω}.

Let SL be the group of permutations of Ω1,s
L , and let S1

L respectively S2
L be the

group of permutations of Ω1,1
L , respectively Ω1,2

L , regarded as subgroups of SL.
Set

α = Σs∈S1

L
(

∏

ω∈Ω1,1
L

dsω,ω),
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γ = Σs∈S2

L
(

∏

ω∈Ω1,2
L

dsω,ω).

Arguing as in 8.4, we get

δ1,sL ≡ γα (mod 2).

Claim. We have
δ1,sK ≡ α (mod 2).

Let us write
Ω1,1

L = Ωs
L/K ∪Ωns

L/K ,

where

Ωs
L/K = {ω ∈ Ω1,1

L | there exists ω0 ∈ Ω1,s
K with (ω0)L = 2ω},

and
Ωns

L/K = {ω ∈ Ω1,1
L | there exists ω0 ∈ Ω1,s

K with (ω0)L = ω}.

By corollary 8.3 (ii) the above is a disjoint union decomposition.

For ω ∈ Ωs
L/K with 2ω = (ω0)L and ω′ ∈ Ωns

L/K with ω′ = (ω′
0)L, ω0, ω

′
0 ∈ ΩK ,

we have:

If dω′

0
,ω0

= r, then dω′,ω = 2r.

Thus the matrix (dω,ω′)ω,ω′∈Ω1

L
is congruent to the matrix

(

A ∗
0 B

)

where A = (dω,ω′)ω,ω′∈Ωs
L/K

, and B = (dω,ω′)ω,ω′∈Ωns
L/K

. Therefore

α ≡ det(A)det(B) (mod 2).

We next determine δ1,sK (mod 2). Let us write

Ω1,s
K = Ωs

K/L ∪ Ωns
K/L,

with

Ωs
K/L = {ω ∈ ΩK | there exists ω0 ∈ Ω1,1

L with (ω)L = 2ω0},

and
Ωns

K/L = {ω ∈ ΩK | there exists ω0 ∈ Ω1,1
L with (ω)L = ω0}.
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For ω, ω′ ∈ Ωs
K/L, if ωL = 2ω0, ω

′
L = 2ω′

0 for some ω0, ω
′
0 ∈ Ωs

L/K , we have

dω,ω′ = dω0,ω′

0
. Also, for ω, ω′ ∈ Ωns

K/L, if ωL = ω0, ω
′
L = ω′

0 for some ω0, ω
′
0 ∈

Ωns
L/K , we have dω,ω′ = dω0,ω′

0
. Thus the matrix (dω,ω′)ω,ω′∈Ωs

K/L
is equal to

A, and the matrix (dω,ω′)ω,ω′∈Ωns
K/L

is equal to B. Further, if ω ∈ Ωs
K/L, then

ωL = 2ω0 for some ω0 ∈ Ω1,1
L , and if ω′ ∈ Ωns

K/L, then ω′
L = ω′

0 for some

ω′
0 ∈ Ω1,1

L . If dω0,ω′

0
= r, then dω,ω′ = 2r. Thus the matrix (dω,ω′)ω,ω′∈Ω1,s

K
is

congruent to

(

A 0
∗ B

)

.

mod 2. Therefore

δ1,sK = det(A)det(B) ≡ α (mod 2),

and this completes the proof of the claim. Therefore we see that δ1,sL ≡

1 (mod 2) implies δ1,sK ≡ 1 (mod 2), hence prop. 8.5 is proved.

Let us recall that for any field E of characteristic 6= 2, we denote by S
′

E the
set of x for x ∈ S′

E .

The Galois automorphism τ : L → L over K induces an action on S
′

L which
we denote by y 7→ τy.

Lemma 8.6 Let y ∈ S
′

L with y unitary such that τy = y. Then there exists

x ∈ S
′

K with x unitary such that xL = y. Moreover, if K0
y = L, then K0

x = K.

Proof. Suppose that y = y and τy = y. Then by the method of lemma 8.2
we see that there is a unitary character x ∈ S′

K such that xL = y. Moreover,
τ restricts to a non–trivial automorphism of Ky which commutes with ι. If
E = (Ky)

ι, then τ |E is non–trivial and Kx = E. Since KxL = EL = Ky, we
have xL = y. Further, if K0

y = L, then K0
x = K.

Suppose that y = (y, ιy) with ιy 6= y and τy = y. Then τy = y or τιy = y. Set
M = Ky ×Kιy.

Suppose first that τy = y. Then there is an x ∈ S′
K such that xL = y. Further,

τ induces an automorphism on M which takes each factor Ky and Kιy in itself.

Moreover, we have M τ = Kx × Kιx. Thus x = (x, ιx) ∈ S
′

K is unitary with
xL = y. Moreover, if K0

y = M ι = L, then K0
x = K.

Suppose now that τιy = y. Then τy = ιy, and τ switches the factors Ky and
Kιy ofM . Let E = M τ . Then E is a field which is a factor of the center ofK[S]
and ι restricted to E is non–trivial. Let x ∈ S′

K be the character associated
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to E. Then x is unitary, Kx = E and KxL = EL = M = Ky × Kιy. Thus
xL = (y, ιy). Further, if K0

y = M ι = L, then K0
x = Eι = K, where x = x.

The automorphism τ induces an action on Ω
2

L that we denote by ω 7→ τω.

Corollary 8.7 Let ω ∈ Ω
2

L be a unitary orbit with τω = ω. Then there is a

unitary orbit ω0 ∈ Ω
2

K such that (ω0)L = ω.

Proof. Suppose that ω = ω and τω = ω. By proposition 8.1, there is a
character y ∈ S′

L belonging to ω with τy = y. In this case, the proposition
follows from lemma 8.6.

Suppose that ω = (ω, ιω) with ιω 6= ω. Then τω = ω implies that τω = ω or
τιω = ω.

Suppose first that τω = ω. Then by proposition 8.1 there is a y ∈ ω such that
τy = y. Further, y = (y, ιy) is unitary with τy = y. In this case, we appeal to
lemma 8.6 to conclude the proof.

Suppose now that τιω = ω and that τω 6= ω. Then τι induces an action on
the characters in ω. As ♯ω is odd by lemma 6.1, there exists y ∈ ω such that
τιy = y and τy 6= y, since τω 6= ω. Then y = (y, ιy) is a unitary pair with
τy = y and the proposition follows from lemma 8.6.

Proposition 8.8 If det
ω,ω′∈Ω

2

L
(dω,ω′) ≡ 1 (mod 2), then det

ω,ω′∈Ω
2

K
(dω,ω′) ≡

1 (mod 2).

Proof. Recall that τ : L → L is the non–trivial automorphism of L/K. Let

us write Ω
2

L = Ω2,1
L ∪ Ω2,2

L , where

Ω2,1
L = {ω ∈ ΩL |τω = ω},

and
Ω2,2

L = {ω ∈ ΩL |τω 6= ω}.

Arguing as in 8.4 and using 4.3, we get

det
ω,ω′∈Ω

2

L
(dω,ω′) = [detω,ω′∈Ω2,1

L
(dω,ω′)][detω,ω′∈Ω2,2

L
(dω,ω′)].

Note that scalar extension induces a bijection between Ω
2

K and Ω2,1
L , and we

have dω,ω′ = dωL,ω′

L
for ω, ω′ ∈ Ω

2

K . This proves the proposition.

§9. A filtration

Let k be a field of characteristic 6= 2, let G be a finite group and let S be a
2–Sylow subgroup of G. In this section, we introduce a quadratic filtration of
the field k that will be needed in the next two sections.
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Let κ be the prime field of k, that is, κ = Q if char(k) = 0 and κ = Fp

if char(k) = p > 0. Note that k[S] = κ[S] ⊗κ k, hence it is interesting to
investigate the structure of κ[S] in both cases.

Suppose first that κ = Q. We have the following lemma:

Lemma 9.1 Let S be a 2–group, and let Q[S] =
∏

i=1,...,r Mni(Di) where the
Di’s are division algebras, and let Z(Di) = Ki. Let ι : Q[S] → Q[S] be the
standard involution. Then each component of Q[S] is invariant under ι. Let
us denote by K0

i the invariant subfield of Ki under the restriction of ι to Ki.
Then there exists m ∈ N such that K0

i is a subfield of the real 2–cyclotomic
subfield Q(ζ2m + ζ−1

2m ).

Proof. The fact that each component of Q[S] is invariant under ι follows
from [6], Chap. 8, 13.2. We know that as S is a 2–group, there exists m ∈ N
such that for all i = 1, . . . , r the field Ki is a subfield of the cyclotomic field
Q(ζ2m). The standard involution ι : Q[S] → Q[S] is positive definite, hence
its restriction to each component is positive definite as well. This implies (cf
[6], Chap 8, 13.5) that K0

i ⊂ R for all i. Hence for all i = 1, . . . , r, we have
K0

i ⊂ Q(ζ2m + ζ−1
2m ) as claimed.

With the notation of lemma 9.1, let L = Q(ζ2m + ζ−1
2m ). Since L/Q is cyclic of

degree a power of 2, it has a unique set of subfields which fit into a filtration

L0 = Q ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Ls = L

with all inclusions being strict, and Li/Li−1 of degree 2.

Suppose now that κ = Fp for some prime number p. We have

Fp[S] =
∏

i=1,...,r

Mni(Ki)

where the Ki’s are finite degree extensions of Fp. As S is a 2–group, the
degrees of these extensions are powers of 2. There exists a finite extension
L/Fp of degree a power of 2 containing all the K0

i ’s. Note that as Fp is a finite
field, the extension L/Fp is cyclic. Hence in this case too, we have a unique set
of subfields of L which fit into a filtration

L0 = Q ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Ls = L

with all inclusions being strict, and Li/Li−1 of degree 2.

Let

k0 = k ⊂ k1 ⊂ k2 ⊂ . . . ⊂ kt = Lk
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be the induced strict filtration of Lk/k. Note that every subfield of Lk con-
taining k is one of the fields ki. Let kr be the smallest of these fields containing
K0

x for all x ∈ S′
k.

§10. The odd determinant property revisited

For any field E, set

δ
1,o

E = det
ω,ω′∈Ω

1,o

E
(dω,ω′)

δ
1,s

E = det
ω,ω′∈Ω

1,s

E
(dω,ω′)

δ
2

E = det
ω,ω′∈Ω

2

E
(dω,ω′)

d0E = det
ω,ω′∈Ω

0

E
(dω,ω′).

The result below will be instrumental in the proof of th. 2.2 in the next section:

Theorem 10.1 Let G be a finite group having the odd determinant property.
Then for any field K of characteristic not 2, we have

d0K ≡ 1 (mod 2).

Proof. We first treat the case where all the characters in S′
K are absolutely

irreducible. The reduction to this case is via the filtration introduced in §9,
and the quadratic descent of §8.

Suppose first that all the characters in S′
K are absolutely irreducible. For

x ∈ S′
K , the form ρx is supported on Ux if x is orthogonal, on Ux ⊕ Ux if x is

symplectic, and Ux1
⊕Ux2

if x = (x1, x2) with ι(x1) = x2 and x1 6= x2. Noting
that for a general K, the integers dω,ω′ can be computed after base changing
to an algebraic closure of K, we get the following:

1) dω,ω′ = dω,ω′ if ω, ω′ ∈ Ω1,s
K ;

2) dω,ω′ = 2dω,ω′ if ω is symplectic and ω′ is not symplectic;

3) dω,ω′ = 2dω,ω′ if ω is unitary and ω′ is orthogonal;

4) dω,ω′ = dω,ω′ if ω, ω′ are orthogonal.

Thus the matrix (dω,ω′)
ω,ω′∈Ω

0

K
has the following shape modulo 2
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A ∗ ∗
0 B ∗
0 0 C



 ,

where

A = (dω,ω′)
ω,ω′∈Ω

1,o

K

B = (dω,ω′)
ω,ω′∈Ω

2

K

C = (dω,ω′)
ω,ω′∈Ω

1,s

K
.

Thus d0K ≡ 1 (mod 2) if and only if δ
1,0

K = det(A) ≡ 1 (mod 2), δ
1,s

K =

det(C) ≡ 1 (mod 2), and δ
2

K = det(B) ≡ 1 (mod 2). We also note that for

ω, ω′ ∈ Ω1,o
K , or for ω, ω′ ∈ Ω1,s

K , we have dω,ω′ = dω,ω′ . Therefore δ
1,o

K = δ1,oK ,

and δ
1,s

K = δ1,sK . Thus d0K ≡ 1 (mod 2) if and only if δ1,oK ≡ 1 (mod 2),

δ1,sK ≡ 1 (mod 2), and δ
2

K ≡ 1 (mod 2).

There exists a field extension L/K and a filtration by quadratic extensions

K ⊂ K2 ⊂ . . . ⊂ Kn = L

such that all characters in S′
L are absolutely irreducible (cf. §9). By prop. 7.2

and 7.3, we have δ1,oL ≡ 1 (mod 2), δ1,sL ≡ 1 (mod 2), and δ
2

L ≡ 1 (mod 2). By

the quadratic descent results 8.4, 8.5 and 8.8, we get δ
1,0

K = det(A) ≡ 1 (mod 2),

δ
1,s

K = det(C) ≡ 1 (mod 2), and δ
2

K = det(B) ≡ 1 (mod 2). Therefore
d0K ≡ 1 (mod 2).

§11. Proof of the induction–restriction result

The aim of this section is to prove th. 2.2. Let

k0 = k ⊂ k1 ⊂ k2 ⊂ . . . ⊂ kr

be the filtration introduced in §9, kr being the smallest of these fields containing
K0

x for all x.

Proof of theorem 2.2 Let (V, h) be an S–quadratic form. We have a
decomposition (cf. §5)

(V, h) ≃
⊕

x

ρx ⊗K0

x
(Vx, gx),
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where (Vx, gx) is a quadratic form over K0
x (cf. §5). Recall that the Witt class

(Vx, gx)⊗ nx ∈ W (K0
x)

is uniquely determined by (V, h), where nx is the reduced norm of Dx over K0
x

if Dx is a quaternion algebra, the norm of Kx over K0
x if Kx is a quadratic

algebra, and nx = 1 otherwise. We have

IndGS (V, h) =
⊕

ω∈Ω

I(ω)⊗K0

ω
(Vω, gω),

where

(Vω , gω) =
⊕

x∈w

(Vx, gx)

is a quadratic space determined up to multiplication by nω = nx. We have
I(ω) = IndGS (ρx), which does not depend on the choice of x ∈ ω.

We have
ResGS IndGS (V, h) =

⊕

ω∈Ω

ResGS (I(ω))⊗K0

ω
(Vω , gω).

For y ∈ S
′

k, the y–component of ResGS (Iω) is ρy ⊗K0

ω′

Fω,ω′ , where y ∈ ω′, and

where Fω,ω′ is a quadratic space over K0
ω′ , determined up to multiplication by

nω′ .

Let (V1, h1) and (V2, h2) be two S–quadratic forms such that

ResGS IndG
S (V1, h1) ≃S ResGS IndGS (V2, h2).

Let

(V1, h1) ≃
⊕

x∈S
′

ρx ⊗K0

x
(V 1

x , g
1
x) and (V2, h2) ≃

⊕

x∈S
′

ρx ⊗K0

x
(V 2

x , g
2
x)

and
(V i

ω, g
i
ω) =

⊕

x∈w

(V i
x , g

i
x)

for i = 1, 2.

Note that as the k[S]–modules ResGS IndGS (V1) and ResGS IndGS (V2) are isomor-
phic, the k[G]–modules IndGS (V1) and IndGS (V2) are also isomorphic (see for
instance [3], cor. 6.8). This implies that dim(V 1

ω ) = dim(V i
ω) for all ω ∈ Ω.

Claim. We have
nω ⊗k (V

1
ω , g

1
ω) ≃ nω ⊗k (V

2
ω , g

2
ω).
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For the proof, we distinguish two cases

Case 1. Suppose that K0
x = k for all x ∈ S′

k.

Then we have ResGS (I(ω))y = ρy ⊗k Fω,ω′ , where y ∈ ω′, where Fω,ω′ is a

quadratic form over k, and nω′ ⊗k Fω,ω′ is determined by ResGS (I(ω))y. Hence

ResGS IndGS (Vi, hi) =
⊕

y∈S
′

k

ρy ⊗k [
⊕

ω∈Ωk

Fω,ω′ ⊗k (V
i
ω, g

i
ω)]

Suppose that ResGS IndGS (V1, h1) ≃ ResGS IndGS (V2, h2), and set giω = (V i
ω , g

i
ω)

for i = 1, 2. Then

nω′ ⊗k [
⊕

ω∈Ω

Fω,ω′ ⊗k g
1
ω] ≃ nω′ ⊗k [

⊕

ω∈Ω

Fω,ω′ ⊗k g
2
ω].

Let us denote by fω,ω′ the element of W (k) determined by the quadratic form

Fω,ω′ , and let (f̃ω,ω′) be the matrix of cofactors of the matrix (fω,ω′) in the

Witt ring W (k). Then the product (f̃ω,ω′)(nω′ ⊗k fω,ω′) is equal to

ϕ





nω1
0 . . . 0

0 nω2
. . . 0

0 . . . . . . nωn



 ,

a diagonal matrix with diagonal entries ϕ.nωj
, where ϕ ∈ W (k) is the determi-

nant of the matrix (fω,ω′). Let viω be the element of W (k) determined by the
quadratic form giω = (V i

ω , g
i
ω) for i = 1, 2. Then we get

ϕ.nω ⊗k (v
1
ω − v2ω) = 0

in W (k), for every ω ∈ Ω.

Note that det(dim((fω,ω′)) = dim(det((fω,ω′)), and that

det(dim((fω,ω′)) = det(dω,ω′) = d0k.

Since G has the odd determinant property, by prop. 10.1 we have d0k ≡
1 (mod 2). Therefore dim(ϕ) is odd, hence ϕ is not a zero divisor in W (k)
(see for instance [6], 2.6.5). Therefore we have

nω ⊗k (v
1
ω − v2ω) = 0

in W (k), for all ω ∈ Ω, and hence nω ⊗k (V 1
ω , g

1
ω) and nω ⊗k (V 2

ω , g
2
ω) are in

the same Witt class. Recall that dim(V 1
ω ) = dim(V 2

ω ) for all ω ∈ Ω. Hence the
quadratic forms nω ⊗k (V 1

ω , g
1
ω) and nω ⊗k (V 2

ω , g
2
ω) have the same dimension

and are in the same Witt class, therefore we have
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nω ⊗k (V
1
ω , g

1
ω) ≃ nω ⊗k (V

2
ω , g

2
ω)

for all ω ∈ Ω. This completes the proof of the claim in case 1.

General case. Let us consider (Vi, hi)⊗k kr. We have

ResGS IndGS (V1, h1)⊗k kr ≃S ResGS IndGS (V2, h2)⊗k kr.

Moreover, K0
ω ⊗k kr ≃

∏

α∈Gal(K0

ω
/k) k

α
r . The orbit ω splits into distinct conju-

gate orbits over kr. Each ω ∈ Ωk with K0
ω = kr occurs as one of the conjugate

orbits over kr. Using case 1, we get, for orbits ω with K0
ω = kr,

nω ⊗ (V 1
ω , g

1
ω) ≃ nω ⊗ (V 2

ω , g
2
ω).

Cancelling these factors, we may assume that

IndGS (V, h) =
⊕

ω∈Ω

I(ω)⊗K0

ω
(Vω , gω)

with K0
ω ⊂ kr−1 for all ω in the above decomposition. Inductively we get, for

all ω, that
nω ⊗ (V 1

ω , g
1
ω) ≃ nω ⊗ (V 2

ω , g
2
ω).

This completes the proof of the theorem.
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