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ABSTRACT 
 

A thorough knowledge of the angular distribution of light scattered by an illuminated surface under different angles is 
essential in numerous industrial and research applications. Traditionally, the angular distribution of a reflected or 
transmitted light flux as function of the illumination angle, described by the Bidirectional Scattering Distribution 
Function (BSDF), is measured with a point-by-point scanning goniophotometer yielding impractically long acquisition 
times. Significantly faster measurements can be achieved by a device capable of simultaneously imaging the far-field 
distribution of light scattered by a sample onto a two-dimensional sensor array. Such an angular-to-spatial mapping 
function can be realized with a parallel catadioptric mapping goniophotometer (CMG). 

In this contribution, we formally establish the design requirement for a reliable CMG. Based on heuristic considerations 
we show that, to avoid degrading the angular-to-spatial function, the acceptance angle of the lens system inherent to a 
CMG must be smaller than 60°. By means of a parametric study, we investigate the practical design limitations of a 
CMG caused by the constraints imposed by the properties of a real lens system. Our study reveals that the values of the 
key design parameters of a CMG fall within a relatively small range. This imposes the shape of the ellipsoidal reflector 
and drastically restricts the room for a design trade-off between the sample size and the angular resolution. We provide a 
quantitative analysis for the key parameters of a CMG for two relevant cases. 
 
Keywords: Scatterometry, Bidirectionnal Scattering Distribution Function (BSDF), Goniophotometry, Parallel 
measurement, Imaging goniophotometer, Catadioptric design, Ellipsoidal mirror 
 
 

1. INTRODUCTION 
 
A thorough knowledge of the angular distribution of light scattered by an illuminated surface under a given angle is 
essential in a large variety of scientific and industrial applications. Firstly, it provides quantitative information on the 
microscopic structure [1] and on the appearance of the surface itself, for instance for mastering the look of commercial 
products [2] or for computer rendering simulations [3]. Secondly, it can be used to calculate the distribution of light in a 
space illuminated by a multitude of secondary sources created by light interactions, such as for instance, the evaluation of 
stray light in an optical device or natural lighting in a room [4]. 

The angular distribution of a reflected or transmitted light flux as a function of the illumination angle can be described by 
the Bidirectional Scattering Distribution Function (BSDF) [5], which can be measured with an instrument called 
goniophotometer. A traditional goniophotometer generally consists of a two-axis mechanical scanner moving a 
photodetector around the sample in small angular steps across the hemisperical space [6]. The major drawback of such a 
scanning goniophotometer is its impractically long acquistion time. Indeed, assuming a time interval of one second 
between each measurement, the acquisition of a BSDF with a resolution of 1° across the hemispherical space would take 
nearly six hours for a single incidence angle. Many applications such as computer rendering [7] or daylighting 
simulations [4,8] generally require the characterizations of BSDFs for a large variety of materials and for numerous 
incidence angles and wavelengths. 
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In practice, these applications require orders of magnitude faster BSDF measurements. Such drastically faster 
measurements can be achieved only by simultaneously measuring light flux in all scattered directions. This requires a 
device capable of imaging the far-field distribution of light scattered by a sample onto a relatively small two-dimensional 
sensor array. Such an angular-to-spatial mapping function can be realized with a so-called parallel goniophotometer.  

A few research groups and companies have devised a parallel goniophotometer, generally for a specific use in the first 
instance or for commercialization in the second one. Based on their working principles, these goniophotometers can be 
classified into three main categories, namely (i) screen imaging, (ii) dioptric angular mapping, and (iii) catadioptric 
angular mapping. The first category of instruments typically consists of a hemispherical screen intercepting light 
scattered over the entire hemisphere [2]. Light backscattered by the screen is then imaged on a sensor via an optical 
system. Instrument of the second category rely on a complex custom lens assembly performing the angular-to-spatial 
mapping by means of an optical Fourier transform [12]. The third category of instruments exploits a large parabolic or 
ellipsoidal mirror redirecting light toward a lens system [8 - 11]. 

The last category of parallel goniophotomers, which we designate catadioptric mapping goniophotometer (CMG), bears 
some inherent advantages such as a high throughput and negligible stray light, compared to the devices based on screen 
imaging. From a practical standpoint, for either laboratory or industrial applications, it is appealing to be able to build a 
custom parallel goniophotometer with a readily available lens system and ellipsoidal reflector (if not too large). The 
design of a dioptric angular mapping goniophotometer requires a deep knowledge of lens design and the cost of 
manufacturing of such a device would be prohibitive for a single instrument. 

We start by explaining the working principle of a CMG (2). Then we establish the design requirements for a CMG 
incorporating a real lens system (3). By means of a parametric study, we investigate the impact of these requirements on 
the room for a practical design and analyze the quantitative figures calculated for the key parameters of a CMG for two 
relevant cases (4). We end up with a conclusion (5). 
 
 

2. WORKING PRINCIPLE 
 
In a catadioptric mapping goniophotometer (CMG), the simultaneous measurement of the far-field angular intensity 
distribution of light scattered by a sample relies on the optimal combination of a large reflector (catopric part) with a lens 
system (dioptric part). The primary function of the reflector is to reshape the light scattered by the sample within a large 
solid angle into either a converging or a nearly collimated beam so that it can be collected by a conventional lens system 
and dispatched on a two-dimensional detector array. Moreover, the shape of the mirror, which can be either ellipsoidal or 
parabolic, provides a known angular distribution of the reflected light beam at the lens system. This makes possible the 
accurate angular-to-spatial mapping of a direction of scattering onto a position on the sensor. 
 
Since the design of a CMG based on a parabolic reflector is relatively straightforward and does not need thorough 
investigation, we will focus exclusively on the designs relying on an ellipsoidal reflector. The working principle is 
explained here below. 
In a CMG relying on an ellipsoidal design, the sample and the lens system are located at the first and second focal points 
(F1 and F2), respectively. To get some insights into the angular-to-spatial mapping performed by a CMG, assume a very 
small sample relative to the ellipsoidal reflector (d → 0), and an ideal lens system that behaves like a thin lens (TL), 
whose optical axis coincides with the main axis of the ellipsoid, positioned exactly at F2 (see figure 1). Thanks to the 
geometrical properties of an ellipse, namely the stigmatic relationship between the two foci F1 and F2, any ray scattered 
by the small sample positioned at F1 – independent of its direction - is directed towards F2 after reflection on the 
ellipsoidal mirror (red dotted line in figure 1). After passing by the center of the thin lens, the ray continues its straight 
trajectory till reaching the detector (D) in the focal plane at a position defined by the vector r = [Y(α) Z(β)], where α and 
β are the azimuthal and elevation angles of the reflected ray relative to the lens axis, repectively. 
Therefore, under the above assumptions, there is a linear correspondence between the angles α and β defining the 
trajectories of the reflected rays passing by F2 and the coordinates Y(α) and Z(β) measured on the detector. Since the 
relationship (non-linear) between a scattering direction SD(θ,ϕ) and the direction of reflection RD(α,β) can be calculated 
with geometrical rules, the relationship between the angular intensity distribution of light scattered by the sample IS(θ,ϕ) 
and the corresponding spatial intensity distribution on the two-dimensional array ID(y,z) can be known.  
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Therefore, by knowing the angular-to-spatial mapping function performed by a CMG (IS(θ,ϕ) à ID(y,z)), one can 
extrapolate the angular intensity distribution of the rays scattered by the sample at F1, i.e. the BSDF of the sample. 
 
 

 
 

Figure 1. Working principle of a catadioptric mapping goniophotometer (CMG) with key components and parameters. Red lines: 
Path of a ray bundle scattered by the sample of finite size (diameter s) in a direction SD(θ,ϕ) and its intersection with the plane Σ. 
The distance ρ is the largest distance relative to F2 and p is the smallest entrance pupil diameter of the lens system to collect largest 
ρ for all scattering directions. Red-dotted lines: Chief ray of the ray bundle. Blue lines: Path of a collimated ray bundle in the 
viewing direction RD(α,β) focused by a thin lens (TL) and its intersection point r(α) at the detector (D). 

 
So far in our explanations we considered an infinitely small sample, i.e. a single ray (red dotted line) emitted at F1 in a 
given direction. Let us now examine the more relevant case a collimated ray bundle emitted by a sample of finite size in 
a given direction SD(θ,ϕ). As depicted in figure 1 (red lines), the ellipsoidal mirror makes the ray bundle converge into a 
focusing volume (FV) before it enters the thin lens (TL). The latter focuses the resulting diverging ray bundle on a spot 
roughly centered on a point of the detector defined by the vector r. For an ideal angular-to-spatial mapping, the ray 
bundle should be focused on a single spot. Under the rules of paraxial optics, this would be the case for a collimated ray 
bundle entering the thin lens as shown in blue lines in figure 1. 
The largest focusing spot caused by the diverging ray bundle entering the lens simply accounts for a loss of angular 
resolution. The angular resolution is determined by the angle of divergence of the ray bundle, which is not rotationally 
symmetrical relative to its axis of propagation (PF2). As shown in figure 1, the largest divergence angle for a focused ray 
bundle, corresponds to the angle ωrb defined in a longitudinal plane containing the axis PF2. Thus, the angle ωrb 
corresponds to the lowest angular resolution for a given scattering direction. 
For our investigation need to know the lowest angular resolution, i.e. the largest focusing angle ωrb, for all the directional 
ray bundles collected. We designate the largest of the focusing angles ωrb by ω. The method used for the calculation of ω 
is provided in section 4.2.  
 
 

3. DESIGN REQUIREMENTS 
 
3.1 Requirements for an ideal lens system 
 
In this section we establish the requirements with which the lens system of a CMG must comply. As seen in 1.1, the 
reflector of a CMG reshapes the light scattered into a beam directed towards the lens system. The spatial and angular 
extents of the beam, which are determined by the design of the CMG and by the sample size, impose requirements to the 
lens system. In order to formally establish these requirements, we need to define the key parameters for describing the 
spatial and angular properties of the beam and of the lens system. Moreover, we will need to consider the inherent 
properties of a real lens system. 
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The relevant dimensional parameters for the reflected beam are its largest angle of focusing (Ω in figure 1) and its largest 
size at the entrance of the lens system. In the first approximation, the angle Ω is mainly determined by the size and 
ellipticity of the reflective mirror (see 4.2). The largest beam size is defined by its radial distance ρm relative to F2 in the 
plane Σ. A radial distance ρ (see figure 1) is defined for each ray bundle corresponding to a different direction of 
scattering. The distance ρm corresponds to the largest distance ρ in the plane Σ. In section 4.2, we provide the method 
used to calculate ρm as well as the intersections of a few ray bundles in the place Σ calculated for a specific case. For 
simplifying the notations we define the distance w = 2ρm as the smallest diameter centered on F2 encircling the full beam 
waist (see figure 3). 
The relevant dimensional parameters for the lens system are its acceptance angle (Φ) and the effective size of the 
entrance lens allowing a light beam into the system without truncation. For the ideal case of a thin lens (TL), obviously, 
the effective lens aperture corresponds to the size of the lens itself. The latter also corresponds to the entrance pupil of the 
lens with a diameter p (see figure 1). 
Obviously, since the whole beam must be collected, the lens system of a CMG must comply with the following two basic 
requirements: 

(i) Φ > Ω 
(ii) p > w = 2ρm 

Moreover, to be able to achieve the angular-to-spatial mapping function described in 1.1, the lens system of a CMG must 
comply with a third basic requirement: 

(iii) The mid-point of the entrance pupil of the lens system is coincident with F2 
 
As explained in the next section, the possibility to comply with the above specifications very much depends on the 
properties of the entrance pupil of the lens system. 
 
3.2 Properties of a real lens system and impact on a CMG 
 
So far we assumed a lens system with an entrance pupil with ideal properties, i.e. with a size and position independent of 
the angular field. Depending on the lens system, the entrance pupil generally varies in size, shape and orientation [13] as 
a function of the angular field α relative to the lens axis. The underlying reason for this dependence is to be found in the 
definition of the entrance pupil, which rests on the paraxial (also called first order, or gaussian) optics approximation that 
implies very low angles relative to the optical axis (α → 0°). Actually, the entrance pupil is the aperture stop as would be 
seen from a point on the optical axis. Generally, a different image (size, position and orientation) of the aperture stop is 
obtained at a large angular field. 
Obviously, the properties of an angular dependent entrance pupil, designated here by AP(α), are different than the ones 
of a paraxial pupil, whose two key properties are briefly recalled. First, independent of the angular field (α), the 
prolonged central ray of a collimated ray bundle entering the lens system, called the principal or chief ray (CR), passes 
by a unique point, which corresponds to the mid-point of the entrance pupil. Second, the size of a collimated ray bundle 
entering a lens (d) system is determined by the size of the entrance pupil. 
 
An angular dependent entrance pupil can severely impact the angular-to-spatial mapping function in a CMG as suggested 
in figure 2. This figure shows a lens system with an angular dependent pupil AP(α) with very different properties at the 
two angular fields α1 and α2. The pupil AP1, which corresponds to a relatively low angular field α1, yields an entrance 
diameter d1 and is located at the focal point F2. The pupil AP2, which corresponds to a relatively large angular field α2, 
yields an entrance diameter d2 - significantly smaller than d1 - and is located at a point ξ2 on the optical axis. 
To emphasize the importance of the pupil properties we investigate qualitatively how a lens system with an angular 
dependent entrance pupil impacts the performance of CMG. 
Firstly, since AP(α) cannot be centered on F2 our third requirement cannot be fulfilled and the chief ray of an oblique ray 
bundle entering the lens system (CR2) generally points towards a point (ξ2) which does not coincide with F2. 
Since CR2 passes by ξ2, the stigmatic relationship between F1 and F2 – on which the working principle rests (see 2) – 
does not hold anymore. This has far reaching consequences: the ray CR2, which is the center of gravity of the ray bundle, 
originates from a point ξ1 not coincident with F1. In other words, the position of the field of view depends on the position 
of the entrance pupil. This means that an angular dependent entrance pupil induces a spatial dependence in the 
measurement of intensity scattering distributions. 
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Figure 2. Impact of an aperture dependent entrance pupil AP(α) on the angular-to-spatial mapping function in a CMG 
incorporating a real lens system (LS). 

 
Consider now the effect of a change of pupil size. The size of the pupil p(α) determines the spatial extent of the ray 
bundle entering the lens system (d(α)).The effective lens entrance size d2 allows a smaller ray bundle into the lens system 
than d1. Like in any optical system, this yields a loss of power throughput. More importantly, in a CMG, the size of the 
ray bundle is directly related to the sample size that can be measured. Figure 2 shows the largest sample size s1 and s2 
that can be measured for the effective lens entrance sizes d1 and d2, respectively. In addition, as shown in figure 2, a ray 
bundle of smaller diameter results in a smaller focusing angle (ω2 < ω1), i.e. in a higher angular resolution (see 2) in the 
plane xy. Therefore, in a CMG, the size of the entrance pupil of the lens system plays a crucial role regarding the largest 
measurable sample size and the angular resolution. An optimal trade-off must be found for each specific application. 
 
Therefore, the angular-to-spatial mapping function of a CMG strongly relies on the properties of the entrance pupil of the 
lens system [14]. Despite the large variety of existing lens designs, there is a trend related to the acceptance angle of a 
lens system. Generally, for a lens system with acceptance angle lower than 60°, the lens designer strives to design for an 
a optical system with paraxial-like properties, i.e. the entering ray bundles are directed towards the same point. In 
practice, vignetting issues are not manageable for larger angular fields [15]. The design of a wide-angle lens, i.e. with an 
acceptance angle typically exceeding 90° requires a radically different optimization procedure and trade-off to cancel out 
vignetting effects. Such multi-angle design optimization implies that the prolonged chief ray trajectories do not pass 
anymore by a single point for the whole angular field, which translates into grid distortion [15]. Moreover, such design 
results in a significant reduction of the size of the effective lens entrance (d). Between, 60° and 90° there is no clear 
design trend and lens systems with very different properties can be found.  
 
We can conclude from our heuristic considerations that it would be perilous to use lenses with acceptance angles larger 
than 60° in a CMG (Φ < 60°). 
To get a quantitative estimate of the constraint set by the size of the effective lens entrance (d) we have extrapolated the 
value of d for ten lenses taken from a database of lenses modeled in ZEMAX. We found out that d lies in a range 
between 30 mm and 40 mm. We will consider the middle range value, i.e. that d = 35 mm, for the upper limit of the 
effective entrance size of the lens. Our requirements are updated accordingly in the next section. 
 
3.3 Requirements for a CMG with a real lens system 
 
Taking into account our findings of the last section, the requirements for a CMG must be updated as follows: 

(i) Φ < 60° > Ω 
(ii) d < 35 mm > w = 2ρm 
(iii) The mid-point of the entrance pupil of the lens system is coincident with F2 
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In the next section we will investigate the room left for a practical design of a CMG when complying with our 
consolidated design requirements. 
 
 

4. ROOM FOR THE DESIGN OF A CMG WITH A REAL LENS SYSTEM  
 
4.1 Description of the parametric study 
 
A CMG with a good design must provide the angular resolution required, while ensuring an angular-to-spatial-mapping 
function free of artefacts. To avoid artefacts the CMG must incorporate a lens system that complies with our consolidated 
requirements (3.3).  
Moreover, the design must meet practical requirements related to the finite sizes of a few key components. First, a CMG 
must incorporate a lens system, whose size is necessarily limited. Second, the size of the instrument, which is mainly 
determined by the size of the reflector, depends on the application. Typically, a portable instrument should be smaller 
than 10 centimeters while a laboratory instrument could be one order of magnitude larger. Finally, the design must 
provide a correct measurement for a given sample size, which varies a lot depending on the application. 
To meet both these fundamental and practical requirements, the best trade-off should be found between the following 
parameters (described in sections 2 and 3.1): the sample diameter (s), the angular resolution (ω), the size of the 
ellipsoidal reflector (characterized by its semi-axis a), the reflector’s ellipticity (ε = F/a), the beam waist (w) and the 
beam focusing angle (Ω). 
Since these parameters are interrelated, a parametric study is best suited to get some insights into the room available for a 
practical design. The geometrical relationship between these parameters is shown in figure 1 and the calculation method 
is provided in the next section. In our study, we will investigate separately the case of a relatively small instrument (a = 
100 mm) and the case of a relatively large instrument (a = 1000 mm). 
Our analysis of the parametric study will show that, in a practical design, the fundamental and practical design 
requirements constrain the values of the key design parameters to relatively small ranges drastically restricting the room 
for a trade-off. 
 
4.2 Method for calculation 
 
We need to calculate the following parameters defined in sections 2 and 3.1: the largest beam waist (w = 2ρm), the largest 
beam focusing angle (Ω), and the lowest angular resolution (ω). 
Light propagating in a given scattering direction SD(θ, ϕ) corresponds to a bundle of parallel rays (Figure 1). For our 
investigation it is sufficient to model such a ray bundle with its peripheral rays. In all our simulations, a ray bundle is 
modeled with 25 rays evenly spaced at the periphery of a circular sample (i.e. one ray every 15° of azimuth angle). 
 

 
 

Figure 3. Results of ray tracing calculations with our Matlab code (ε = 0.6, a = 600mm, s = 20). The intersection of reflected ray 
bundles with the plane Σ (see figure 1) are shown for a few directions of scattering defined by the angles θ and ϕ. The radius ρm, 
defined by the largest ray bundle intersection, determines the largest beam waist (w) centered on F2 (that corresponds to the 
requirement of the smallest effective lens system size.) 
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All the calculations described in this section are coded in Matlab. Figure 3 shows calculations results obtained for ray 
bundles intersecting the plane Σ (see figure 1) for a few directions of scattering from the sample. 
This calculation was performed for the following key parameters and values: sample diameter s = 20mm, ellipse semi-
axis a = 600 mm, ellipticity ε = 0.6. In this specific case, the entrance pupil must be approximately three times larger than 
the sample size (s) to allow collecting the largest ray bundle. 
The direction SD(θ, ϕ) of the ray bundle that defines w and ω is unknown a priori  since it depends on the sample size 
relative to the ellipse size and on the ellipticity. Therefore we need to calculate the parameters ρ and ωrb for a multitude 
of ray bundles scattered within a semi-hemispherical space (π steradian) and find out the largest figure for these two 
parameters. In all our simulations, the calculations of ρ and ωrb are performed with 49 directions of ray bundles. This 
corresponds to a sampling every 15° over 90° for θ as well as for ϕ thanks to the symmetry of the ellipsoidal reflector 
around its main axis.  
The parameter ωrb is calculated as follows for a ray bundle. An angle of tilt relative to the beam axis P-F2 is calculated for 
each of the 25 peripheral rays reflected on the ellipsoidal surface. For each pair of opposite peripheral rays, a focusing 
angle ωp is calculated by summing the tilt angles obtained. The focusing angle ωrb is defined as the largest of these 
peripheral focusing angles (see 2). 
Note that, since the largest beam focusing angle (Ω) corresponds to the largest elevation angle considered, i.e. θ = 90° 
(see figure 3), our calculation must be made only for this angle. For a small sample relative to the ellipsoid (d → 0), the 
angle Ω only depends on the ellipticity (ε). The following expression for Ω was derived in [16]: Ω = 2 atan((1-ε2)/2ε). 
 
4.3 Results and analysis 
 
Small CMG 

Consider first the case of a relatively small instrument with an ellipsoidal reflector with a main semi-axis of dimension a 
= 100 mm. The plot of figure 4 shows a calculation of the parameter Ω (blue curve) and of the parameter w (green curve) 
as a function of the reflector’s ellipticity (ε), for a sample size s = 2 mm. The parameter Ω decreases nearly linearly with 
ε, while the parameter w increases in an exponential-like manner with ε above 0.35. The slope of w(ε) increases 
dramatically above ε = 0.8. 

 

 
 

Figure 4. Results of calculation for Ω(ε) and w(ε) for a size of reflector a = 100 mm with a sample size s = 2 mm. Low-end design 
boundary set by the largest possible acceptance angle of the lens system (LB), and high-end design boundary set by the largest 
effective surface of the lens system (HB). 

 
The practical limitations imposed by our design requirement for the lens system (Φ < 60° and d < 35 mm) can be well 
appreciated thanks to this plot. To comply with the first requirement (Ω < Φ = 60°), the ellipticity must be larger than 
approximately 0.58, which sets the low-end design boundary ε > 0.58 (LB). To ensure some margin of security and have 
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more flexibility for choosing the lens system, the largest possible ε is desirable.  However, there is also a high-end design 
boundary (HB) that comes from the exponential-like growth of w with ε. To comply with the second requirement (d < 35 
mm), the ellipticity must be smaller than approximately 0.88, which sets the high-end design boundary ε < 0.88 (HB). 
Therefore, in the case of the relatively large CMG considered (a = 100mm), the reflector’s ellipticity lies within the range 
ε = [0.65 - 0.85] (taking a margin of security with respect to the boundaries). 
 
Let us investigate the practical design limitations on the angular resolution (ω) and on the sample size (s), implicitly 
imposed by the restrictions on ε. The parameters s, ω and w are interrelated.  The plot of figure 5a and 5b show a 
calculation of ω (blue curve) and of w (green curve) as a function of s, for the boundary values of the ellipticity ε = 0.65 
and ε = 0.85, respectively. The practical design limitations on the sample size and on the angular resolution can be well 
appreciated thanks to this plot. 
 
   (a)      (b) 

 
 

Figure 5. Results of calculation results for ω(s) and w(s) for a size of reflector a = 100 mm with a sample size s = 2 mm. (a) 
Ellipticity ε = 0.65 and (b)  ε = 0.85. High-end design boundary set by the angular resolution required (HB). 

 
The linear relationship between the sample size and the two parameters ω and w reveal that ω and w are proportional to 
s. The beam waist w does not impose any further restriction on the sample size. However, with a sample of 2mm, the 
angular resolution is in the order of 6°, which is insufficient for most applications. An improvement of the resolution by a 
factor of two, i.e. the fulfillment of the requirement ω < ωR = 3°, imposes a high-end boundary to the sample size (HB) 
whose impact on the sample size can be observed on the plots of figure 5. 
For the case ε = 0.65 (figure 5a) and ε = 0.85 (figure 5b), the sample size must be smaller than approximately 0.75mm 
and 1.5 mm, respectively. A larger ellipticity allows measuring a larger sample. 
Therefore, in a CMG of relatively small size (a = 100 mm) with ε = 0.75, the room for a trade-off between the angular 
resolution and the sample size is determined by the expression KS = ω/s, where KS is a constant equal to two (3/1.5) and 
ω < ωR, the angular resolution required. A higher angular resolution can be obtained by proportionally reducing the 
sample size, and vice and versa. If there is no inferior limit to the sample size, the angular resolution of a CMG is 
ultimately limited by the angular resolution of the lens system. 
 
Large CMG 

Consider now the case of a relatively large instrument with an ellipsoidal reflector with a main semi-axis of dimension a 
= 1000 mm. The plot of figure 6 shows a calculation of the parameter Ω (blue curve) and of the parameter w (green 
curve) as a function of the reflector’s ellipticity (ε), for a sample size s = 10 mm. Since, in the first approximation the 
parameter Ω is independent on the size of the reflector (see 5.2), the plot for the parameter Ω is identical to the one 
obtained for a CMG of smaller size (figure 4) and the low-end boundary (LB) is the same (ε > 0.58). 
Due to the large size of the beam waist (w), which increases with the size of the CMG, the limited size of the optical 
systems (d < 35mm) imposes severe limitations to the high-end boundary (HB) for ε. In the case investigated, the 
compliance with the requirement d < 35 mm, imposes that HB < LB, which is impossible. This means first that either a 
sample of smaller size must be considered or a lens system with larger d must exist. We will make a marginal 

Angular(resolu,on(
ωR=#3°##

HB#

w(s) 
ω(s) 

Angular(resolu,on(
ωR=#3°##

HB#w(s) 

ω(s) 



Proceedings of the Optical Measurement Systems for Industrial Inspection VIII conference, SPIE Optical 
Metrology 2013, Munich, Germany, May 13-16, 2013 

compromise on the sample size (d < 10 mm). Second, this means that, in the case of the relatively large CMG considered 
(a = 1000 mm), the reflector’s ellipticity and the acceptance angle take the deterministic values ε = 0.6 and Φ = 60°, 
respectively. 
 

 
Figure 6. Results of calculation for Ω(ε) and w(ε) for a size of reflector a = 1000 mm with a sample size s = 10 mm. Low-end 
design boundary set by the largest possible acceptance angle of the lens system (LB), and high-end design boundary set by the 
largest effective surface of the lens system (HB). 

 
Let us investigate the practical design limitations on the angular resolution (ω) and on the sample size (s), implicitly 
imposed by the restrictions on ε. The plot of figure 7 shows a calculation of ω (blue curve) and of w (green curve) as a 
function of s, for ε = 0.6. 
 

 
 

Figure 7. Results of calculation results for ω(s) and w(s) for a sample size s = 10mm with a reflector of size and ellipticity a = 1000 
mm and ε = 0.6, respectively. High-end design boundary set by the by the largest effective surface of the lens system (HB1). High-
end design boundary set by the angular resolution required (HB2). 

 
The practical design limitations on the sample size and on the angular resolution can be well appreciated thanks to this 
plot. Firstly, the plot w(s) reveals a high-end design boundary (HB1) due to the maximum effective size of the lens 
system (d < 35mm). This boundary restricts the sample size to approximately 9.3mm (trade-off on s necessary with ε = 
0.6 as mentioned above) and implies that the angular resolution will be better than around 1.1°. Secondly, the plot ω(s) 
reveals that the room for a trade-off between the angular resolution and the sample size is determined by the expression 
KL = ω/s, where KL is a constant equal to approximately 0.12 (1.1/9.3) and ω < 1.1°.  
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The requirement for a higher angular resolution (ωR) than 1.1° imposes a more restrictive high-end boundary (HB2) to the 
sample size. As shown on figure 7, an angular resolution of ωR = 1° yields a maximum sample size s = 5.6mm. If there is 
no inferior limit to the sample size, the angular resolution of a CMG is ultimately limited by the angular resolution of the 
lens system. 
 
 

5. CONCLUSION 
 
Our investigation reveals the practical limitations in the design of a CMG due to the constraints imposed by the 
properties of a real lens system. In particular, our parametric study shows that the fundamental and practical design 
requirements constrain the values of the key design parameters to relatively small ranges drastically restricting the room 
for a trade-off. 
We found out that, for a CMG of relatively small size (reflector semi-axis of 10 cm), the reflector’s ellipticity must lie in 
a range between 0.65 and 0.85 and that the larger value allows for the largest sample size. The latter is in the range of 1.5 
mm and yields an angular resolution of 3°. A higher angular resolution can be obtained by proportionally reducing the 
sample size, and vice and versa. To reach a higher resolution while keeping a relatively large sample size, a larger CMG 
is necessary. 
Our investigation revealed that there is an ultimate limit to the size of a CMG that is in the order of one meter for the 
semi-axis of the ellipsoidal reflector. Moreover, the shape of the CMG, i.e. its ellipticity, is fully determined by the 
properties of the lens system. The value found for the ellipticity is ε = 0.6. The largest possible sample size that can be 
used in such a CMG is of 9 mm, which yields an angular resolution of around 1°. Like in the smaller CMG, the angular 
resolution improves by reducing the sample size (and vice and versa). However, it is challenging to fabricate an accurate 
enough ellipsoidal reflector of such a large size without impacting the angular resolution. 
The relatively limited sample size that can be measured in a CMG is insufficient for applications that require the 
characterization of the average scattering properties of large objects such a as complex fenestration systems. 
It must be remembered that our study rests on assumptions made on the properties of the lens system. Ideally, the design 
of a CMG should account for the design of the real lens system used and be performed with the help of a dedicated ray-
tracing software. Unfortunately, the details of lens system are usually proprietary and hence not available in practice. 
Hopefully, our study provides a deeper understanding of the fundamental and practical limitations of a CMG that will 
provide helpful guidelines for the realization of future instruments. 
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