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VASCULAR BIOLOGY
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Key Points

• Exposure to chemotherapy
promotes the exit of specific
subpopulations of BMDCs
with angio-supportive activity.

• Notch in BMDCs is required
for the exit of these cells from
the bone marrow and for
chemotherapy-enhanced
angiogenesis in tumors.

Host responses to chemotherapy can induce resistance mechanisms that facilitate tumor

regrowth. To determine the contribution of bone marrow–derived cells (BMDCs), we

exposed tumor-bearing mice to chemotherapeutic agents and evaluated the influx and

contribution of a genetically traceable subpopulation of BMDCs (vascular endothe-

lial–cadherin-Cre-enhanced yellow fluorescent protein [VE-Cad-Cre-EYFP]). Treatment of

tumor-bearing mice with different chemotherapeutics resulted in a three- to 10-fold

increase in the influx of VE-Cad-Cre-EYFP. This enhanced influx was accompanied by

a significant increase in angiogenesis. Expression profile analysis revealed a progressive

change in the EYFP population with loss of endothelial markers and an increase in

mononuclear markers. In the tumor, 2 specific populations of VE-Cad-Cre-EYFP BMDCs

were identified: Gr11/CD11b1 and Tie2high/platelet endothelial cell adhesion moleculelow

cells, both located in perivascular areas. A common signature of the EYFP population that

exits the bonemarrow is an increase in Notch. Inducible inactivation of Notch in the EYFP1

BMDCs impaired homing of these BMDCs to the tumor. Importantly, Notch deletion reduced therapy-enhanced angiogenesis, and was

associated with an increased antitumor effect of the chemotherapy. These findings revealed the functional significance of a specific

population of supportive BMDCs in response to chemotherapeutics and uncovered a new potential strategy to enhance anticancer

therapy. (Blood. 2013;122(1):143-153)

Introduction

Anticancer treatment, including chemotherapy, vascular disruptive
agents, antiangiogenic agents, and even surgery, induces host re-
sponses that can reduce the efficacy of therapy.1-9 These host re-
sponses promote changes in the (tumor) microenvironment including
the influx of bone marrow–derived cells (BMDCs), as well as mesen-
chymal, inflammatory, and vascular cells, to the tumor. These cells
might partially negate the anticancer effects of treatment by providing
survival signals and inducing angiogenesis.1-3,7,9-13 In particular, the
increase of BMDCs after chemotherapy has been recently considered
as an important cause for reduced responsiveness to chemotherapy
and for enhanced angiogenesis.

Our understanding of vascular growth in tumors has evolved from
the simple model of endothelial sprouting into a multifaceted process
that also includes local activation and support by additional cell
types. Specifically, BMDCs featuring characteristics and properties of
macrophages have been found to support angiogenesis in various
mouse models.14 Gr11 and CD11b1 cells, including Tie2-expressing
monocytes and tumor-associated macrophages (TAMs), can catalyze
angiogenesis by producing proangiogenic factors and/or function as
“vascular bridges” by guiding and connecting the filopodia tips of

nascent vessels.7,12,15-19 Selective loss of these cells results in reduced
tumor growth and impaired angiogenesis.11 However, whether these
BMDCs contribute to angiogenesis by direct incorporation into the
vascular wall or whether they assist in other aspects of vascular
morphogenesis has been the subject of lively debate. To date, the
relative contribution of BMDCs to tumor vasculature has been reported
to range from ,0.1% up to .50%,20-23 and there is still a lack of
consensus on the definition, origin, and specific function of “the endo-
thelial progenitor cell.” This lack of a defined phenotype is partially due
to the fact that these cells most likely change their surface markers as
they egress the bone marrow, circulate, and enter the tumor micro-
environment. Most articles define endothelial progenitor cells as
BMDCs expressing vascular markers, like vascular endothelial–
cadherin (VE-cadherin), vascular endothelial growth factor receptor
2 (VEGFR-2), CD133, and CD31, in the absence of hematopoietic
markers.24 However, a significant body of evidence indicates that these
cells are in fact bone marrow–derived (BMD) proangiogenic hema-
topoietic cells and lack true endothelial properties.25

The aims of this study were to determine the contribution of the
chemotherapy-induced influx of BMD angio-supportive cells to

Submitted November 14, 2012; accepted May 6, 2013. Prepublished online as

Blood First Edition paper, May 20, 2013; DOI 10.1182/blood-2012-11-459347.

E.E.V. and M.L.I.-A. contributed equally to this study.

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge

payment. Therefore, and solely to indicate this fact, this article is hereby

marked “advertisement” in accordance with 18 USC section 1734.

© 2013 by The American Society of Hematology

BLOOD, 4 JULY 2013 x VOLUME 122, NUMBER 1 143



chemoresistance in solid tumors, to understand their relation-
ship to previously described populations, and to gain additional
information as to the signaling pathways that regulate their
function.

Materials and methods

Animal models

Studies were conducted in accordance with the Animal Research Committee
guidelines established by the University of California, Los Angeles and the
University Medical Center Utrecht, The Netherlands. VE-cadherin-Cre/R26R
mice, VE-cadherin-Cre/EYFP mice, inducible VE-cadherin-Cre-ERT2/enhanced
yellow fluorescent protein (EYFP) mice, inducible VE-cadherin-Cre-ERT2/
R26R (CIVE) mice, and inducible VE-cadherin-Cre-ERT2/NOTCH/EYFP
mice were described elsewhere.26-31 See supplemental Table 1 for an
overview. Six-week-old C57BL/6 mice (Charles River) were lethally
irradiated (1000 rad) and transplanted with 53 106 bone marrow cells from
the different donor mice. Tamoxifen was prepared as described inMonvoisin
et al,30 and 1 mg was injected intraperitoneally every other day for the times
indicated.

Tumor models

Mammary epithelial tumor cells from MMTV-c-neu transgenics (mixed
background 129/C57BL) were isolated, characterized, and injected orthotopi-
cally (106) into nude mice after transplantation with bone marrow cells from
VE-cadherin constitutive, inducible, or control mice. Lewis lung carcinoma
(LLC) cells were subcutaneously (0.7 3 106) injected into C57BL/6 mice 3
weeks after irradiation and transplantation with bone marrow cells from dif-
ferent donor mice. C26 colorectal cancer cells were subcutaneously (13 106)
injected into BALB/c mice (Charles River). Tumor size was assessed with
calipers using the formula width2 3 length 3 0.5. Treatment was initiated
when tumors reached 100 mm3. Mice received intraperitoneally 6 mg/kg
cisplatin or 40 mg/kg paclitaxel or a vehicle. Tumors were harvested 1 and
8 days after treatment. Blood was obtained by cardiac puncture, followed
by perfusion with phosphate-buffered saline/2 mM EDTA (37°C) for 3 to 5
minutes before harvesting part of the femur and tumor for fluorescence-
activated cell sorter (FACS) analysis. Thereafter, mice were perfused for 3
minutes with 1% paraformaldehyde/2 mM EDTA (37°C) and organs and
tumors were fixed in 4% paraformaldehyde.

Flow cytometry analysis

Single-cell suspensions were minced, incubated at 37°C for 15 minutes
in collagenase (1 mg/mL)/Dnase (0.4 mg/mL), and filtered with 100- and
40-mm filters (BD Biosciences). Bone marrow cells were either flushed
from the femur or isolated from the blood or from the tumors. Cells were
analyzed on a FACS LSR II with monoclonal antibodies or appropriate
isotype controls as indicated in the supplemental Methods on the Blood
website. Cells were sorted on a FACSAria using the Ag-presenting
cell–conjugated platelet endothelial cell adhesion molecule (PECAM),
EYFP, and 7-aminoactinomycin D Cells were gated based on size, viability,
PECAM, and/or EYFP expression. FACS analysis on embryonic tissue was
performed as previously described in Zovein et al.28

Immunohistochemistry

Vibratome sections (300 mm) were incubated with 1:400 PECAM-1 rat anti-
mouse antibody (BD Pharmingen); smooth-muscle actin anti-mouse (Sigma)
and 1:200 Cy3 or Cy5 secondary antibody (Jackson ImmunoResearch);
TO-PRO-3 (Invitrogen); or DAPI (4,6 diamidino-2-phenylindole) (Sigma).
Confocal laser scanning microscopy evaluation was performed. Immuno-
histochemistry on CD31 and b-galactosidase (b-gal) staining were performed
as described in Alva et al29 and in supplemental Methods.

Real-time reverse transcription–polymerase chain

reaction (RT-PCR)

Total RNA was extracted from FACS cells using TRIzol (Invitrogen).
Complementary DNA was generated by reversed transcription in 20 mL
reaction mixture at 50°C for 1 hour. Half of that volume was mixed with
SYBR Green 1 Buffer (QIAGEN). Complementary DNA was amplified by
RT-PCR using specific primers. Emission of SYBR Green 1 incorporation
was quantified using the threshold cycle value. Results presented are from
4 independent experiments, normalized to endogenous Hprt. Primers are
shown in the supplemental Material.

Results

Contribution of the different VE-cadherin–expressing cells to

the tumor vasculature of unperturbed tumors

We used several transgenic mouse models to genetically trace BMD-
VE-cadherin–expressing cells. First we used the constitutive VE-
cadherin-Cre/R26R model. In these mice, the endothelium and a large
part of the hematopoietic compartment is b-gal–positive, as em-
bryonic VE-cadherin–expressing cells give rise to both endothelial
and hematopoietic progeny28-30 (Figure 1Aa). In c-neu, transformed
mammary epithelial tumor b-gal–positive cells were found both lining
and associated with blood vessels (Figure 1Ab). Using VE-cadherin-
Cre/EYFP mice, FACS analysis showed that 60% of all cells in the
tumor were EYFP-positive (Figure 1B). To investigate the contribu-
tion of specifically BMD-VE-cadherin–expressing cells, we trans-
planted the bone marrow of VE-cadherin-Cre/R26R mice into lethally
irradiated wild-type C57BL/6 mice. In the bone marrow of trans-
planted mice, again, 50% of the cells expressed b-gal, mostly
coexpressed with CD45 (.90%) (Figure 1Ac and supplemental
Figure 1A). Tumors showed a clear influx of b-gal–positive cells,
mainly CD451; only a very small subset of the b-gal–positive cells
was actually part of the endothelium (Figure 1Ad). CD31 costaining
of these sections clearly demonstrates that the recombination mainly
occurs in the cells surrounding the vessels and only 0.02% of all
vessel lining cells expressed b-gal (Figure 1C-E). FACS analysis
showed a contribution of 50% of EYFP1 cells in the tumor
(Figure 1B), although we did not discriminate between circulating
and tumor-resident inflammatory cells.

To bypass the ability of embryonic VE-cadherin–expressing cells
to give rise to the broad cohort of hematopoietic progeny, we next used
tamoxifen-inducible CIVE mice. After tamoxifen induction, a specific
and widespread recombination can be found in the endothelium with
very limited expression in the hematopoietic lineage.28-30 Using this
strategy, we were able to identify a relative minor subpopulation
(0.3%6 0.1%) that was positive for b-gal (supplemental Figure 1B).
As predicted, many of these cells were found lining blood vessels by
virtue of VE-cadherin expression (endothelial cells), but others
(exclusively in the bone marrow) were nonvessel-associated cells
(Figure 1Ae and supplemental Figure 1C-D). In subcutaneously
implanted tumors, recombined VE-cadherin–expressing cells were
found lining the vasculature32 and a very small population of
nonvascular cells (Figure 1Af). FACS analysis showed that the
contribution of the VE-cadherin-Cre–expressing population, as per
recombination of the reporter EYFP1, was remarkably reduced to, on
average, 0.5% compared with the constitutive model (Figure 1B).

To distinguish between BMD-adult-VE-cadherin–expressing cells
and peripheral-VE-cadherin–expressing cells, we next performed 2
different transplantation experiments. First we transplanted the bone
marrow of CIVE mice into lethally irradiated wild-type C57BL/6
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mice. We found 0.3% b-gal–expressing cells in the bone marrow
(Figure 1Ag and supplemental Figure 1B). Tumors in these mice
showed a limited influx of mainly nonvessel-associated positive cells
(Figure 1Ah). In total, the influx of EYFP1 cells was similar to the
previous, nontransplanted CIVE model (0.5%). However, most cells
were in the nonvessel-associated compartment (Figure 1B and 1Ah).
Next we transplanted bone marrow from wild-type BL/6 mice into
lethally irradiated CIVE mice. As expected, bone marrow from these
mice contained no b-gal–expressing cells (Figure 1Ai). When we
analyzed tumors growing in these mice, the endothelium in tumor
vessels was clearly b-gal–positive and no nonvessel-associated
b-gal–positive cells were detected (Figure 1Aj). CD31 immunohis-
tochemistry of previously X-gal–stained sections demonstrated that
the recombination occurred in the tumor endothelium (Figure 1F). In
total, 0.1% of all cells in the tumor were found to be positive in this
model (Figure 1B).

Taken together, in unperturbed tumors the vast majority of
the tumor endothelium is derived from adult, non-BMD-VE-
cadherin–expressing cells. However, a very small population of

BMD-VE-cadherin–expressing cells was found to incorporate
the vascular wall of tumors at a proportion of 0.02%; this was
not found in normal tissues.

Chemotherapy-enhanced angiogenesis is associated with an

influx of BMD-VE-cadherin–expressing cells

We next questioned whether challenging the host with maximum
tolerated dose chemotherapy would affect the influx of VE-cadherin
BMDCs in the tumor. We transplanted the bone marrow from
tamoxifen-inducible VE-cadherin-Cre-ERT2/EYFP (CIVE/EYFP)
mice into wild-type, lethally irradiated C57BL/6 mice. These
animals were subsequently treated with tamoxifen to reveal the
VE-cadherin–expressing population, injected with tumor cells,
and subjected to chemotherapy (Figure 2A).

We first accessed the percentage of endothelial cells after
different types of chemotherapy in 2 different mouse tumor models.
C57BL/6 mice bearing LLC tumors and BALB/c mice bearing C26
tumors were treated with either cisplatin, paclitaxel, or a vehicle

Figure 1. Contribution of the different VE-cadherin–expressing cells to the tumor vasculature of unperturbed tumors. (A) Immunohistochemical analysis of b-gal

expression in bone marrow sections and sections of subcutaneous growing c-neu transformed mammary epithelial tumors in 5 different mouse models is shown: (Aa-b)

constitutive VE-cadherin-Cre/R26R mice (VECAD), (Ac-d) bone marrow transplantation of constitutive VECAD mice in lethally irradiated wild-type (WT) C57BL/6, (Ae-f) inducible

CIVE mice, (Ag-h) bone marrow transplantation of CIVE mice in lethally irradiated WT C57BL/6 mice, and (Ai-j) bone marrow transplantation of WT C57BL/6 mice into lethally

irradiated CIVE mice. (B) The fluorescent versions of the above models with EYFP instead of lacZ expression were used for FACS analysis of subcutaneous growing c-neu

transformed mammary epithelial tumors. The graph depicts the percentage of EYFP1 cells in the tumors. (C-F) Shown is the immunohistochemical analysis of b-gal (and CD31

expression for [E] and [F]) in the tumors of the constitutive VE-cadherin transplantation into (C-E) WT C57BL/6 mice and (F) the WT C57BL/6 transplantation into CIVE mice. All

images were 203 except for (D) (633) and (F) (403).
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(Figure 2B and supplemental Figure 2A). In bothmodels, a significant
increase in endothelial cells in the tumor was noted after chemo-
therapy (Figure 2C-F), despite an initial decrease in tumor growth
(Figure 2B). Confocal microscopy confirmed the presence of
more vascular structures 8 days after chemotherapy (supplemental
Figure 2B). Notably, C26 cells are intrinsically resistant to paclitaxel
(supplemental Figure 2A).

This burst in angiogenesis was temporally correlated with a
significant increase in the influx of EYFP1 BMDCs in the tumor
after treatment with chemotherapy (Figure 2G-H and supplemental
Figure 2C). A slight increase in EYFP1 cells in the circulation was
detected 1 day after chemotherapy (supplemental Figure 2D-E).

The influx of EYFP1 cells was specific for tumor tissue and, as in
control organs like the lung, liver, and spleen, hardly any EYFP1

cells were detected and there were no differences between the
treated and untreated mice (supplemental Figure 2F). In summary,
systemic treatment with chemotherapy strongly increased the influx
of VE-cadherin–expressing BMDCs in tumors.

Specific tumor influx of 2 subpopulations of

VE-cadherin–expressing BMDCs

Confocal microscopy revealed that EYFP1 cells in the tumor were
found in close association with tumor vessels, whereas in areas

Figure 2. Chemotherapy-enhanced angiogenesis is

associated with an influx of BMDCs. (A) A schematic

overview of the mouse model is shown. sc, sub-

cutaneous. (B) The graph shows the tumor growth of

LLC cells in C57BL/6 mice either untreated or treated

with cisplatin or with paclitaxel. (C-D) The graphs show

the percentage of PECAM1/CD452 cells of the total

cells in subcutaneous growing LLC cells in BL/6 mice

transplanted with CIVE bone marrow, (C) 1 day or (D)

8 days after the start of treatment. (E-F) The graphs

show the percentage of endothelial cells in subcutane-

ous growing C26 cells in BALB/c mice (E) 1 day or (F) 8

days after the start of treatment. (G-H) The graphs

show the percentage of EYFP1 cells in LLC tumors in

BL/6 mice transplanted with CIVE bone marrow (G) 1

or (H) 8 days after treatment. *P , .05; **P , .01;

***P , .001 compared with the vehicle control.
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without vessels hardly any EYFP1 cells were noted (Figure 3A
and supplemental Figure 3A). After chemotherapy, more EYFP1

cells were identified per vascular structure than in the untreated
tumors (supplemental Figure 3B). Although the EYFP1 cells clus-
tered around the vessels, only a few EYFP1/PECAMlow cells were
seen (Figure 3A). In order to further characterize the influx of
EYFP1 cells, we analyzed the phenotype of the EYFP1 cells in the
bone marrow of these transplanted mice (supplemental Table 2).
As noted before, the EYFP1 population constituted only 0.3% of
all bone marrow cells. Eighty percent of the EYFP1 cells ex-
pressed the hematopoietic marker CD45 and were divided into an
endotheliallike population coexpressing VE-cadherin, PECAM,

and VEGFR-2 and a population expressing monocyte/macrophage
markers CD11b and Gr1 (Figure 3B-C). After cisplatin or
paclitaxel chemotherapy, an increase in both EYFP1/PECAMlow

cells and in EYFP1/Gr11/CD11b1 cells was seen in the tumor
(Figure 3D,F), and both cell types are known for their proangiogenic
properties.7,10,11,15-19,23,24,32-34

In the untreated tumors, on average 0.45% of all PECAMlow cells
were EYFP-positive. However, the majority of these cells coex-
pressed CD45 and therefore belongs to the hematopoietic lineage.
When focusing on only the PECAMlow/CD452 cells, only 0.002%
of these cells were yellow fluorescent protein (YFP)–positive.
Remarkably, after treatment with chemotherapy this percentage

Figure 3. Influx of 2 subpopulations of VE-cadherin

BMDCs. (A) Representative confocal pictures show

EYFP1 cells in the LLC tumors (blue: TO-PRO, red:

PECAM, green: EYFP). (B) Shown are adult bone

marrow cells expressing VE-cadherin from 2 distinct

populations: an endotheliallike population expressing

PECAM and VE-cadherin and a monocytic population

expressing Gr1 and CD11b. (C) Cytospins of FACS

sorted BMD-EYFP1 cells stained for Gr1, PECAM, and

VE-cadherin are shown. (D-E) The graphs show the

percentage of (D) EYFP1/PECAM1 or (E) EYFP1/

PECAM1/CD452 cells in subcutaneous growing LLC

cells in BL/6 mice transplanted with CIVE bone marrow

8 days after the start of treatment. (F-G) The graphs

show the percentage of (F) EYFP1/Gr11/CD11b1 cells

or (G) Gr11/CD11b1 cells in subcutaneous growing

LLC cells in BL/6 mice transplanted with CIVE bone

morrow 1 day after the start of treatment. *P , .05

compared with the vehicle control. *, single green

EYFP cells; arrowheads, double-positive cells (EYFP1/

PECAM1). All images were obtained at 203 except for

the zoom images; scale bar sizes are indicated.
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increased to 0.1% upon cisplatin, and 0.16% upon paclitaxel,
exposure (Figure 3D-E). This relative increase in EFYP1/PECAM1

cells exceeded the increase of the total EYFP1 cells (2.2- and 2.6-
fold, respectively), suggesting a specific influx of PECAMlow/
CD452/EYFP cells. The specificity was further supported by our
findings in the constitutive VE-cadherin-Cre/EYFP model. Using
the bone marrow from these mice resulted in much higher levels of
EYFP cells in the tumor when compared with the inducible model
(supplemental Figure 3C). However, no overall increase in EYFP1

cells was seen after chemotherapy (supplemental Figure 3C),
showing that there is no general increased influx of BMDCs. We did
find a specific increase in EYFP/PECAMlow cells with borderline
significance (P5 .05) after chemotherapy (supplemental Figure 3D).

In addition to the influx of PECAMlow/EYFP cells, 1 day after
chemotherapy a significant increase of EYFP/Gr11/CD11b1 cells
was noted (Figure 3F). Interestingly, there was no increase in the
overall Gr11/CD11b1 population (Figure 3G). This shows a specific
influx of the EYFP/Gr11/CD11b1 cells and suggests that these cells
actually might be different from their counterparts that did not express
VE-cadherin. Notably, after 8 days, the EYFP/Gr11/CD11b1 levels
were similar in all groups, with an average contribution of 0.01%
(standard deviation 0.07). Because the total number of EYFP cells in
the tumor increased later on, we predicted that this populationwill lose
these specific markers over time. In addition to directly enhancing
angiogenesis, Gr11/CD11b1 cells have been found to promote matu-
ration of vessels via better pericyte coverage.35 We found a significant
increase in pericyte coverage of tumor vessels 8 days after chemo-
therapy (supplemental Figure 4A) compared with the untreated
tumors, with only a small part of the smooth-muscle actin1 cells
being EYFP-positive (supplemental Figure 4B). Furthermore,
there was a borderline significant increase in neuron-glia2–positive
cells 8 days after chemotherapy (data not shown).

VE-cadherin-BMDC–derived cells exhibit phenotypic changes

as they exit the bone marrow

Because the EYFP/PECAMlow population exhibited the most
significant change in the tumors, we followed this population while
in transit to the tumor. FACS analysis revealed that this group
of cells made up 2.6% of the CD452 population (Figure 4A).
Interestingly, in the bone marrow they expressed high levels of
PECAM. In the bloodstream, EYFP cells made up 0.47% of the
circulating nucleated cells (Figure 4B). In the tumor, the percentage
of these cells ranged from 0.3% (vehicle treated) to 1.6% (after
chemotherapy treatment) (Figure 4C). Importantly, the level of
PECAMwas heterogeneous but continued to decrease in the tumors
(Figure 4C). We characterized the EYFP population in the 3
different compartments through gene expression profiling. In the
bone marrow, we compared the EYFP2/PECAM1 bone marrow
cells (Figure 4E) with the EYFP/PECAM1 bone marrow cells
(Figure 4F). As can be observed, the expression profile of several
endothelial markers showed a significant level of similarity. This
pattern changed as the EYFP population reached the circulation
(Figure 4G). In particular, levels of PECAM, VE-cadherin, and
VEGFR-2 decreased, while Notch1, Notch ligand D-like 4 (Dll4),
and Tie2 increased. As the population reached the tumor, a selective
increase of MRC-1, a molecule typically expressed by macro-
phages, was noted (Figure 4H).

This analysis revealed that the genetically traced EYFP popu-
lation changes drastically during its mobilization from the bone
marrow, through the circulation, to the tumor (Figure 4D). In general,
the endothelial markers (gray) tend to decrease, whereas the

macrophage markers (black) tend to increase during this process
(Figure 4E-H). Interestingly, Notch1 messenger RNA levels were
selectively induced in the subgroup that egressed the bone marrow
and gained access to the circulation (Figure 4G). This suggested that
Notch signaling might likely participate in the egression of EYFP
cells from the bone marrow.

Notch1 in EYFP cells is critical for the egression of these cells

from the bone marrow, and its absence enhances response

to chemotherapy

To determine the relevance of Notch signaling in the regulation of
chemotherapy-induced egression of the subpopulations of BMDCs,
we next used bone marrow fromVE-cadherin-Cre-ERT2/NOTCH2/fl/
EYFP mice and compared these results with the transplantation
experiment using the CIVE mice (Figure 5A). These experiments
enabled inducible Notch deletion concurrent with EYFP expression
upon tamoxifen treatment (supplemental Figure 5). We found similar
levels of EYFP cells in the bone marrow (Figure 5B), but sig-
nificantly lower levels of EYFP cells were circulating in the Notch
knockout (KO) mice (Figure 5C) after 8 days of treatment with either
the vehicle or cisplatin. Notably, in the CIVE mice at day 1,
a (borderline) significant increase was seen after treatment with
chemotherapy (supplemental Figure 2); this was not detected in the
Notch KO mice (data not shown). Thus, defective Notch signaling
does not result in differences in the viability of EYFP1 cells within
the bone marrow, but Notch is necessary for the egression of EYFP
cells from the bone marrow. To exclude that chemotherapy itself
influenced Notch signaling in EYFP cells, we performed RT-PCR on
Notch, Dll4, and the downstream targets Hes1 and Hey1 in the
EYFP1 cells with and without chemotherapy. We found no differ-
ences in Notch or Dll4 messenger RNA levels after treatment with
cisplatin (supplemental Figure 6). In unstimulated EYFP cells, Hes1 or
Hey 1 could not be detected; however, after plating the cells on JagFc
both genes were induced in a manner that was indistinguishable in
each of the groups (vehicle or cisplatin) (supplemental Figure 6).

In the vehicle-treated mice, we found reduced tumor growth in
animals with deleted Notch in the bone marrow (Figure 5D). More-
over, the antitumor effect of cisplatin was greatly enhanced when
Notch was deleted and tumor growth remained suppressed even 8
days after treatment (Figure 5D). Consistent with the finding that
Notch is required for the EYFP cells’ egression from the bone
marrow, we found only traces of EYFP cells in the tumors of these
mice (Figure 5E-F). Furthermore, there was no increase in EYFP cells
after chemotherapy (Figure 5E-F). Finally, the number of endothelial
cells in the tumor was markedly reduced in mice with Notch-deleted
VE-cadherin BMDCs and poor angiogenic activity was noted after
chemotherapy (Figure 5E,G). Notably, pericyte coverage in these
tumors was at best marginal (supplemental Figure 7). These findings
indicate that this small subpopulation of VE-cadherin1 BMDCs is
responsive to chemotherapy and plays a critical role in stimulating
angiogenesis, vessel maturation, and tumor growth.

Finally, we performed an additional experiment in which the
deletion of Notch1 was done 2 days after tumor inoculation
(Figure 6A). This protocol allowed for egression of BMDCs
during the initial days of tumor growth. In these experiments,
similar results to those with pretumor deletion of Notch1 were also
obtained. Angiogenesis, influx of EYFP cells, and tumor growth
were reduced in the mice where the deletion of Notch1 was
induced shortly after tumor transplantation (Figure 6B-D). Over-
all, the findings indicate that the early egression of EYFP cells
was either not sufficient for stimulating angiogenesis or that
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a continuous egression was necessary to support angiogenesis and
tumor growth.

Discussion

A rapidly increasing body of evidence supports the notion that
chemotherapy can evoke a host-repair response in which BMDCs are
recruited to the tumor. There, BMDCs might facilitate regrowth of
the tumor through negating the anticancer effects of chemotherapy.1-9

Research specifically identifying relevant subpopulations of
chemotherapy-induced BMDCs has been hampered by pheno-
typic changes as BMDCs migrate from the bone marrow into the
circulation and finally into the tumor microenvironment.

Our study used unique mouse models to lineage trace the BMD-
VE-cadherin–expressing cells into the tumor, thereby bypassing
phenotypical changes in this population over time. Using the
inducible VE-cadherin/EYFP/Cre model, we focused on the small
population (0.3%) of adult BMDCs that expressed VE-cadherin in
the bone marrow. At least 2 subpopulations could be discriminated.
Both were recruited to the tumor microenvironment, and the recruit-
ment was clearly enhanced after chemotherapy, which coincided with
an almost twofold increase in endothelial cells and an increased
vascular density in the tumor 8 days after chemotherapy. The vast
majority of the EYFP cells in the tumor was located perivascularly
and did not appear to be incorporated in the vasculature. In fact,
although they express VE-cadherin at some point in the bone
marrow, these cells are myeloid in nature as per their phenotypic
and functional features and are not endothelial cell progenitors.

Figure 4. Notch is upregulated in VE-cadherin–

expressing cells that egressed the bone marrow.

(A-C) FACS sorting results are shown for 3 populations

of cells from (A) the bone marrow, (B) the blood, and

(C) the tumor of the CIVE mice after tamoxifen

induction. (D) Shown is a schematic overview of the

different stages of the EYFP1 cells. (E-H) From the

bone marrow, a population of EYFP2/PECAM1 and

a population of EYFP1/PECAM1 were sorted. From

the blood, the EYFP1/PECAM1 population was sorted.

RT-PCR was performed for levels of different proteins

in the 4 populations: (E) BM EYFP2/PECAM1, (F) BM

EYFP1/PECAM1, (G) blood EYFP1/PECAM1, and

(H) tumor PECAM1/EYFP1, showing the endothelial

markers (gray), Notch1/Dll4 (red), and the macrophage

markers (black). eNOS, endothelial nitric oxide synthase;

iNOS, inducible nitric oxide synthase; ICAM, intercellular

adhesion molecule; mRNA, messenger RNA; VCAM,

vascular cell adhesion molecule.

BLOOD, 4 JULY 2013 x VOLUME 122, NUMBER 1 ANGIO-SUPPORTIVE CELLS IN RESPONSE TO CHEMOTHERAPY 149



Our findings are in line with other studies showing that a hetero-
geneous population of BMDCs is found to infiltrate the tumor in
response to therapy and interferes with response. We now show that
both the PECAMlow population and the CD11b1/Gr11 population are
in fact derived from the adult VE-cadherin–positive BMDCs, which
therefore clearly represent a small but biologically relevant constit-
uency of cells in the bone marrow. Interestingly, once in the tumor,
these cells also express high levels of Tie2 and MRC-1, suggesting
a likely overlap with the previously described TAM population.6

Previously, vascular disruptive agents, radiotherapy, and chemother-
apy were found to recruit both endothelial cell progenitor cells,1-4 as
hematopoietic cells including Tie2-expressing monocytes,18 TAMs,6

and CD11b1 myelomonocytic cells.5 Importantly, it was shown that
targeting both the endothelial as well as the myeloid populations has
an additive effect and the influx of CD11b/Gr1–positive cells mediates
the refractoriness of tumors to antiangiogenic therapy.7,11,36 This

suggests shared properties and perhaps redundancy between the
different pathways and populations of BDMCs in tumor angiogenesis.
It has been further demonstrated that recruitment of BMDCs could be
prevented by either targeting the CXC chemokine receptor 4/stromal
cell derived factor 1 axis,1,2,4 the VEGF pathway,1 or the colony
stimulating factor 1 receptor.6 The present study adds Notch1 to this
panel of therapeutic targets. Mechanistically, we found that Notch1 is
critical for the egression of this population from the bone marrow and
that this population, albeit small, holds biological significance in both
tumor growth and therapeutic response.

It is evident that Notch ligands and receptors play an important
role in the differentiation and function of the vasculature. Mice with
deficiencies in Notch signaling display severe vascular defects, and
haploinsufficiency of Dll4 results in embryonic lethality.37-39

Furthermore, Notch signaling in BMD-progenitor cells is important
for their proangiogenic effect in both tumor angiogenesis and wound

Figure 5. The influx of BMD-VE-cadherin/Notchhigh

cells confers chemoresistance and enhanced an-

giogenesis. (A) Shown is a schematic overview of the

transplantation model. Tumor growth occurred in LLC

cells in C57BL/6 mice transplanted with either CIVE

bone marrow or CIVE–Notch KO bone marrow; mice

were either untreated or treated with cisplatin. (B-C)

The graphs show a comparison of the EYFP1 cells in

(B) the bone marrow (BM) and (C) the blood between

the mice transplanted with CIVE or the CIVE–Notch KO

bone marrow. (D) The graphs shows a comparison of

the tumor growth of LLC cells in C57BL/6 mice trans-

planted with the CIVE bone marrow vs the CIVE–Notch

KO bone marrow, either untreated or treated with

cisplatin. (E) Representative confocal pictures show

EYFP1 cells in the LLC tumors (blue: DAPI, red:

PECAM, green: EYFP) in the mice with the CIVE–Notch

KO bone marrow (upper panels) and the mice with the

CIVE bone marrow (lower panels). (F) Shown is the

contribution of EYFP1 cells to the LLC tumors in BL/6

mice transplanted with CIVE or CIVE–Notch KO bone

marrow 8 days after start treatment. (G) The graph

shows the percentage of endothelial cells (PECAM1

cells) of the total cells in subcutaneous growing LLC

cells in BL/6 mice transplanted with CIVE or CIVE–

Notch KO bone marrow 8 days after the start of

treatment. *P , .05; **P , .01; ***P , .001 compared

with the CIVE vehicle control. The scale bar applies to

all images.
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healing.40,41 In contrast, a role of Notch signaling in resistance to
chemotherapy is less well established. Notch is a regulator of
cancer stem cell programming and contributes to the epithelial-to-
mesenchymal transition, both associated with anticancer drug
resistance.42,43 Therefore, targeting Notch could be a novel approach
to overcoming the drug resistance of cancer cells by reducing
cancer stem cells or epithelial-to-mesenchymal transition processes.
Our data revealed an additional Notch-regulated mechanism of
chemoresistance through the regulation of angio-supportive BMDC
exit from the bone marrow. Strikingly, by specifically preventing
the incorporation of these cells into the tumor microenvironment,

a significant reduction in angiogenesis and tumor growth was noted.
Several Notch inhibitors have been tested for antitumor effects in in
vivo models and were shown to be additive to various types of
chemotherapy.44,45 In addition, Notch inhibition was also found to
act synergistically with other antiangiogenic agents.46 However,
using Notch as a pharmacological target to enhance chemotherapy
efficacy has been challenging due to (gastrointestinal) toxicity.47

Our findings highlight the importance of specific BMDCs in
chemoresistance. Generally, the term “chemoresistance” is used to
characterize tumor cell intrinsic mechanisms to neutralize the
effects of chemotherapy. However, in the past decade, tumor cell

Figure 6. Late deletion of Notch, 2 days after tumor cell inoculation, renders the same effect. (A) The schematic overview shows the transplantation model and

experimental procedure. (B) Representative confocal pictures show EYFP1 cells in the LLC tumors (red: PECAM, green: EYFP) in the mice with the Notch-Cre2/2 bone marrow (left

panel) and the mice with the Notch-Cre1/1 bone marrow (right panel) (both treated with the vehicle control, cisplatin, or paclitaxel). In the table (below), mean (standard deviation)

PECAM1/CD452 cells per treatment group are shown. (C) The graph shows the contribution of EYFP1 cells to the LLC tumors in BL/6 mice, transplanted, respectively, with the

Notch-Cre2/2 or the Notch-Cre1/1 bone marrow, shown by FACS analysis and confocal microscopy. (D) The graph shows a comparison of the tumor growth of LLC cells in C57BL/6

mice transplanted with the CIVE bone marrow vs the CIVE–Notch KO bone marrow, either untreated or treated with cisplatin. *P, .05; **P, .01; ***P, .001. Panel B images were

obtained with a 203 objective.
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extrinsic mechanisms of chemoresistance have been reported. In
particular, inflammatory cells and other constituents of the tumor
microenvironment all have been shown to render tumors insensitive
to chemotherapy as part of a “host response to therapy,” even when
tumor cells themselves were sensitive to chemotherapy.48 Thus, the
overall benefit of a treatment is determined by the ratio of the
sensitivity of cancer cells to the cytotoxic effects of chemotherapy
and the counteracting host responses. In the case of an intrinsic
resistant tumor, this could potentially even lead to enhanced tumor
growth by having only the tumor promoting effects.49,50 Here we
show that chemotherapy activates a host response mediated by a
specific population of VE-cadherin–expressing BMDCs. This popu-
lation changes while in transit and acquires some of the features
previously associated with TAMs and CD11b/Gr1, indicating that
these are likely to be the same. In addition, our findings further
uncovered the relevance of Notch1 in the egression of these
cells and indicate that this might be a potential target to improve
chemotherapeutic treatment.
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