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a b s t r a c t

Paxos is probably the most popular state machine replication protocol. Two optimizations
that can greatly improve its performance are batching and pipelining. However, tuning
these two optimizations to achieve high-throughput can be challenging, as their effective-
ness depends on many parameters like the network latency and bandwidth, the speed of
the nodes, and the properties of the application. We address this question by presenting
an analytical model of the performance of Paxos, and showing how it can be used to
determine configuration values for the batching and pipelining optimizations that result
in high-throughput. We then validate the model, by presenting the results of experiments
where we investigate the interaction of these two optimizations both in LAN and WAN
environments, and comparing these resultswith the prediction from themodel. The results
confirm the accuracy of the model, with the predicted values being usually very close to
the ones that provide the highest performance in the experiments. Furthermore, both the
model and the experiments give useful insights into the relative effectiveness of batching
and pipelining. They show that although batching by itself provides the largest gains in all
scenarios, in most cases combining it with pipelining provides a very significant additional
increase in throughput, with this being true not only on high-latencyWANbut also inmany
LAN scenarios.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

State machine replication is a technique commonly used by fault tolerant systems. This technique allows the replication
of any service that can be implemented as a deterministic state machine, i.e., where the state of the service is determined
only by the initial state and the sequence of commands executed. Given such a service, we need a protocol ensuring that
each replica of the service executes the requests received from the clients in the same order.

Paxos is probably themost popular of such protocols. It is designed for partially synchronous systems with benign faults.
In Paxos, a distinguished process, the leader, establishes a total order among the client requests using a series of instances
of an ordering protocol.

In the simplest Paxos variant, henceforth called baseline Paxos, the leader orders one client request at a time. In general,
this is very inefficient for two reasons. First, since ordering one request takes at least one network round-trip between
the leader and the replicas, the throughput is bounded by 1

2L , where L is the network latency. This dependency between
throughput and latency is undesirable, as it severely limits the throughput, especially inmoderate to high latency networks.
Second, if the request size is small, the fixed costs of executing an instance of the ordering protocol can become the dominant
factor and quickly overload the CPU of the replicas.

In this paper, we study two well-known optimizations to baseline Paxos that address these limitations: batching and
pipelining. Batching consists of packing several requests in a single instance of the ordering protocol. The main benefit is
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amortizing the fixed per-instance costs over several requests, which results in a smaller per-request overhead and, usually,
in higher throughput. Pipelining [1] is an extension of baseline Paxoswhere the leader initiates new instances of the ordering
protocol before the previous ones have completed. This optimization is particularly effective when the network latency is
high as compared to the speed of the nodes, as it allows the leader to pipeline several instances on the slow link.

Batching andpipelining are used bymost replicated statemachine implementations, as they usually provide performance
gains of one to two orders of magnitude. Although the algorithms behind these optimizations are straightforward, tuning
their parameters in order to achieve the highest throughput is challenging. With batching, the batch size controls the trade-
off between throughput and response latency.With pipelining, the number of instances executed in parallel must be limited
to avoid overloading the system resources, either the CPU of the replicas or the network, which could significantly degrade
the performance.Moreover, the optimal choice for the bounds on the batch size and number of parallel instances depends on
the properties of the system and of the application, mainly on process speed, bandwidth, latency, and size of client requests.

We begin by studying analytically what are the combinations of batch size and number of parallel instances that
maximize throughput for a given systemandworkload. This relationship is expressed as a functionw = f (Sbatch), where Sbatch
is a batch size andw is a number of parallel instances (also denoted bywindow size). This result can be used to tune batching
and pipelining, for instance, by setting the bounds on the batch andwindow size to one of the optimal combinations, so that
given enough load the system reaches maximum throughput. To obtain the relation above, we developed an analytical
model for Paxos, which predicts several performancemetrics, including the throughput of the system, the CPU and network
utilization of an instance, as well as its wall-clock duration.We then present the results of an experimental study comparing
batching and pipelining in two settings, one representing a WAN and the other a cluster. We show which gains are to be
expected by using either of the optimizations alone or combined, the results showing that although in some situations
batching by itself is enough, in many others it must be combined with parallel instances. We compare these results with
the prediction of our model, showing that the model is effective at predicting several performance metrics, including the
throughput and optimal window size for a given batch size.

The rest of the paper is organized as follows. Section 2 presents the related work, and Section 3 provides the background
for our work, describing in more detail the batching and pipelining optimizations in Paxos, Section 4 presents our analytical
model of Paxos and shows how it can be used to tune these two optimizations, Section 5 presents the experimental
evaluation of these two optimizations on LAN and WAN environments, and Section 6 discusses our results and concludes
the paper.

2. Related work

The two optimizations to Paxos studied in this paper are particular cases of general techniqueswidely used in distributed
systems. Batching is an example of message aggregation, which has been previously studied as a way of reducing the fixed
per-packet overhead by spreading it over a large number of data or messages, see [2–5]. It is also widely deployed, with
TCP’s Nagle algorithm [6] being a notable example. Pipelining is a general optimization technique, where several requests
are executed in parallel to improve the utilization of resources that are only partially used by each request. One of the
main examples of this technique is HTTP pipelining [7]. Most implementations of replicated state machines use batching
and pipelining, as they are easy to implement and provide large gains in performance. Although their implementation is
easy, tuning them is challenging. Asmentioned below, there has been somework on understanding and tuning the batching
optimization. But as far aswe are aware, there is nodetailed study on tuning these twooptimizationswhen they are deployed
in combination in the specific context of state machine replication.

In [2], the authors use simulations to study the impact of batching on several group communication protocols. The authors
conclude that batching provides one to two orders of magnitude gains both on latency and throughput. A more recent work
[3] proposes an adaptive batching policy also for group communication systems. In both cases the authors look only at
batching. In this paper, we show that pipelining should also be considered, as in some scenarios batching by itself is not
enough for optimal performance.

Batching has been studied as a general technique by [4,5]. In [4] the authors present a detailed analytical study,
quantifying the effects of batching on reliable message transmission protocols. One of the main difficulties in batching is
deciding when to stop waiting for additional data and form a batch. This problem was studied in [5], where the authors
propose two adaptive batching policies. The techniques proposed in these papers can easily be adapted to improve the
batching policy used in our work, which was kept simple on purpose as it was not our main focus. There are a few
experimental studies showing the gains of batching in replicated state machines. One such example is [8], which describes
an implementation of Paxos that uses batching to minimize the overhead of stable storage.

There has been much work on other optimizations for improving the performance of Paxos-based protocols. LCR [9]
is an atomic broadcast protocol based on a ring topology and vector clocks that is optimized for high throughput. Ring-
Paxos [10] combines several techniques, like IP multicast, ring topology, and using a minimal quorum of acceptors, to
maximize network utilization. These two papers consider only a LAN environment and, therefore, use techniques that are
only available on a LAN (IP multicast) or that are effective only if network latency is low (ring-like organization). We make
no such assumptions in our work, so it applies both to WAN and LAN environments. In particular, pipelining is especially
effective in medium to high-latency networks, so it is important to understand its behavior.
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(a) Basic MultiPaxos. (b) Pipelining. (c) Batching.

Fig. 1. Paxos: basic message pattern (a) and optimizations (b and c).

Protocols like Mencius [11] take a different approach at improving the throughput of baseline Paxos, by allowing every
replica to coordinate different instances of the ordering phase concurrently. These so-called multi-coordinated protocols
can be seen as an logical extension of the pipelining optimization discussed in this paper, where instead of overlapping
instances in the network links of a single replica (the leader), they overlap instances across the links of all replicas. The two
approaches are orthogonal and, in principle, can be combined as individual replicas in a multi-coordinated protocol system
could achieve higher throughput by pipelining the instances they coordinate.

3. Background

Paxos [1] is a protocol for state machine replication1 which requires n ≥ 2f +1 replicas to tolerate f crash failures. Paxos
can be seen as a sequencer-based atomic broadcast protocol [12], where the sequencer orders requests received from the
clients. In the Paxos terminology, the sequencer is called the leader. Although Paxos is usually described in terms of the roles
of proposer, acceptor and learner, this distinction is not relevant for the work in this paper so we ignore it and assume that
every process is at the same time proposer, acceptor and learner.

For the purpose of the paperwe describe only the relevant details of the Paxos protocol. Paxos is structured in two phases,
as shown in Fig. 1(a). Phase 1 is executed by a newly elected leader as a preparation to order requests. Afterwards, the leader
orders a series of client requests by executing several instances of Phase 2: it sends a Phase 2amessage to all replicaswith the
request and a proposal for its order (a sequence number), to which the replicas answer with a Phase 2b messages accepting
the order (in the common case). The final order is established once the leader receives amajority of Phase 2bmessages. Since
Phase 1 is executed only when a leader is elected, it has a minimal impact on performance when faults are rare. Therefore
we ignore Phase 1 in our analysis, and use the term instance as an abbreviation for one instance of Phase 2.

In baseline Paxos, the leader proposes one request per instance and executes one instance at a time (Fig. 1(a)).
Pipelining: Paxos can be extended to allow the leader to execute several instances in parallel [1]. In this case, when the
leader receives a new request, it may decide to start a new instance at once, even if other instances are still undecided, as
shown in Fig. 1(b).

Executing parallel instances improves the utilization of resources by pipelining the different instances. This optimization is
especially effective in high-latency networks, as the leader might have to wait a long time to receive the Phase 2bmessages.
The main drawback is that each instance requires additional resources from the system. If too many instances are started in
parallel, theymay overload the system, either bymaxing out the leader’s CPU or by causing network congestion, resulting in
a more or less severe performance degradation. For this reason, the number of parallel instances that the leader is allowed
to start is usually bounded. Choosing a good bound requires some careful analysis. If set too low, the network will be
underutilized. If set too high, the systemmight become overloaded resulting in a severe performance degradation, as shown
by the experiments in Section 5. The best value depends on many factors, including the network latency, the size of the
requests, the speed of the replicas, and the expected workload.
Batching: Batching is a common optimization in communication systems, which generally provides large gains in
performance [2]. It can also be applied to Paxos, as illustrated by Fig. 1(c). Instead of proposing one request per instance,
the leader packs several requests in a single instance. Once the order of a batch is established, the order of the individual
requests is decided by a deterministic rule applied to the request identifiers.

The gains of batching come from spreading the fixed costs of an instance over several requests, thereby decreasing the
average per-request overhead. For each instance, the system performs several tasks that take a constant time regardless of
the size of the proposal, or whose time increases only residually as the size of the proposal increases. These include interrupt
handling and context switching as a result of reading and writing data to the network card, allocating buffers, updating the
replicated log and the internal data structures, and executing the protocol logic. In [4], the authors show that the fixed
costs of sending a packet over a Ethernet network are dominant for small packet sizes, and that for larger packets the total
processing time grows significantly slower than the packet size. In the case of Paxos, the fixed costs of an instance are an

1 Formally, Paxos is a consensus protocol and MultiPaxos its extension to state machine replication. As commonly done in the literature, we will use
Paxos to denote also the state machine replication protocol.
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Table 1
Notation.

Symbol Description

n Number of replicas
B Bandwidth
L One way delay (latency)
Sreq Size of request
k Number of requests in a batch
w Number of parallel instances
S2a Size of a Phase 2a message (batch).
S2b Size of phase 2b message
Sans Size of answer sent to client
φexec CPU-time used to execute a request
WND Bound on maximum number of parallel instances (Configuration parameter)
BSZ Bound on batch size (Configuration parameter)

even larger fraction of the total costs because, in addition to processing individual messages, processes also have to execute
the ordering algorithm. Additionally, when stable storage is used, batching dramatically decreases its overhead, because a
single stable storage access is enough to log the state of all requests in a batch.

Batching is fairly simple to implement in Paxos: the leader waits until having ‘‘enough’’ client requests and proposes
them as a single value. The difficulty is deciding what is ‘‘enough’’. In general, the larger the batches, the bigger the gains in
throughput. But in practice, there are several reasons to limit the size of a batch. First, the system may have physical limits
on the maximum packet size; for instance, UDP packets can be at most 64 KB, and in most cases the underlying network
infrastructure imposes an even smaller limit. Second, larger batches take longer to build because the leader has to wait for
more requests, possibly delaying the ones that are already waiting and increasing the average time to order each request.
This is especially problematic with low load, as it may take a long time to form a large batch. Finally, a large batch takes
longer to transfer and process, further increasing the latency. Therefore, a batching policy must strike a balance between
creating large batches (to improve throughput) and deciding when to stop waiting for additional requests and send the
batch (to keep latency within acceptable bounds). This problem has been studied in the general context of communication
protocols by [3–5]. In the rest of the paper, we study it in the context of Paxos, and analyze its interactionwith the pipelining
optimization.

4. Analytical model of Paxos performance

4.1. Assumptions

We consider the Paxos variant described in Section 3 with point-to-point communication. There are other variants of
Paxos that use different communication schemes, like IP multicast and chained transmission in a ring [10]. We chose the
basic variant for generality and simplicity, but our analysis can be adapted to other variants. We further assume full duplex
links and that no other application is competing for bandwidth or CPU time.2 Also for simplicity, we focus on the best case,
that is, we do not consider message loss or failures. We also ignore mechanisms internal to a full implementation of Paxos,
like failure detection. On a finely tuned system, these mechanisms should have a minimal impact on throughput. Finally,
we assume that execution within each process is sequential. The model can be extended to account for multi-core or SMP
machines, but this is a non-trivial extension which, for the sake of simplicity, we do not explore here.

4.2. Quantitative analysis of phase 2 of Paxos

Table 1 shows the parameters and the notation used in the rest of the paper. We focus on the two resources that are
typically the bottleneck in a Paxos deployment, i.e., the leader’s CPU and outgoing network channel.

Our model takes as input the system parameters (n, B, L, and four constants defined below that model the speed of
the nodes), the workload parameters (Sreq, Sans and φexec), and the batching level (k). From these parameters, the model
characterizes how an instance utilizes the two critical resources, by determining the duration of an instance (wall-clock
time) and the time during which each of the resources is effectively used (the resource busy time). With these three values,
we can then determine the percentage of idle time of each resource, and predict howmany additional parallel instances are
needed to reach its maximum utilization. The resource reaching saturation with the lowest number of parallel instances is
the bottleneck of the system, and determines the maximum number of parallel instances that can be executed.

Themodel also provides estimations of the throughput and latency for a given configuration, which we use to study how
different batch sizes affect the performance and the optimal number of parallel instances for each batch size.

2 The presence of other applications can be modeled by adjusting the model parameters to reflect the competition for the resources.
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For simplicity, we assume that all requests are of similar size, although our techniques could be extended to consider the
case of different requests sizes. Note that with this assumption, we have S2a = kSreq + c , where c is the size of the protocol
headers. For readability, we use simply S2a in the formulas below.

4.2.1. Network busy time
The outgoing channel of the leader is busy for the time necessary to send all the data related to an instance,which consists

of n − 1 Phase 2a messages, one to every other replica, and k answers to the clients. Because of differences in topology, we
consider the cases of a LAN and a WAN separately.

In a LAN scenario, the replicas are typically in the same network, so the effective bandwidth available between them is
the bandwidth of the network. Therefore, the leader has a total bandwidth of B available for sending the Phase 2a messages,
which leads to the following formula for the per-instance network busy time:

φlan
inst = ((n − 1)S2a + kSans)/B.

In a WAN scenario, however, the replicas are in different data centers, so the connection between them is composed
of a fast segment inside each replica data center (bandwidth BL), and of another comparatively slow segment between the
different data centers (bandwidth BW ). Since usually BW ≪ BL, in the following analysis we consider BW to be the effective
bandwidth between the replicas, ignoring BL, i.e., we take B = BW . Moreover, while in LAN a replica has a total bandwidth
of B to share among all other replicas, on a typical WAN topology each replica has a total of BW bandwidth to every other
replica. The reason is that the inter-data center section of the connection between the replicas will likely be different for
each pair of replicas, so that after leaving the data center, the messages from a replica will follow independent paths to
each other replica. Thus, contrary to the case of a LAN, every message sent by the leader uses a separate logical channel of
bandwidth B. By the same reasoning, the messages from the leader to the clients also use separate channels. Since sending
the answers to the client does not delay executing additional instances, the network bottleneck are the channels between
the leader and the other replicas. Therefore, we get

φwan
inst = S2a/B.

From the above formulas, we can compute the maximum network throughput both in terms of instances and requests.
The throughput in instances is given by 1/φnet

inst , where net stands for either lan or wan. For the throughput in requests, we
first derive the network time used for each request, which isφnet

req = φnet
inst/k.With this new formula, the throughput in requests

is 1/φnet
req .

4.2.2. CPU time
During each instance, the leader uses the CPU to perform the following tasks: read the requests from the clients, prepare

a batch containing k requests, serialize and send n − 1 Phase 2a message, receive n − 1 Phase 2b messages, execute the
requests and send the answers to the clients (in addition to executing the protocol logic whenever it receives a message).

These tasks can be divided in two categories: interaction with clients and with other replicas. The CPU time required to
interact with clients depends mainly on the size of the requests (Sreq) and the number of requests that must be read to fill
a batch (k), while the interaction with replicas depends on the number of replicas (n) and the size of the batch (S2a). Since
these two interactions have distinct parameters and behaviors, we model them by two functions: φcli(x) and φrep(x). The
functionφcli(x) represents the CPU time used by the leader to receive a request froma client and send back the corresponding
answer,with x being the sumof the sizes of the request and the answer. Similarly,φreq(x) is the CPU timeused by the leader to
interactwith another replica,where x is the sumof the sizes of the Phase 2a and2bmessages. Both functions are linear,which
models the well-known [4] behavior where the time to process a message consists of a constant plus a variable part, the
later increasing linearly with the size of message.3 The values of the parameters of these two functions must be determined
experimentally for each system, as they depend both on the hardware used to run the replicas and on the implementation
of Paxos. We show how to do so in Section 5.2.2.

Based on the previous discussion, we get the following expression for the CPU time of an instance:

φcpu
inst =kφcli(Sreq + Sans) + (n − 1)φrep(S2a + S2b) + kφexec . (1)

The first term models the cost of receiving k requests from the clients and sending back the corresponding answers, the
second term represents the cost of processing n − 1 Phase 2a and 2b messages and, finally, the last term is the cost of
executing the k requests.

From the previous formula, we can compute the time per request as φcpu
req = φcpu

inst /k, and the throughput in instances and
requests as 1/φcpu

inst and 1/φcpu
req , respectively.

3 We chose to use a single function to represent sending and receiving a pair of related messages, instead of one function per message type. Since the
model is linear, this reduces the number of parameters that have to be estimated to half without losing any expressiveness.



N. Santos, A. Schiper / Theoretical Computer Science 496 (2013) 170–183 175

(a) CPU is the bottleneck. (b) Bandwidth is the bottleneck.

(c) Latency is the bottleneck.

Fig. 2. Utilization of the CPU and outgoing link of the leader during an instance.

4.2.3. Wall-clock time
Estimating the wall-clock duration of an instance is more challenging than estimating the network and CPU utilization,

because some operations that must complete for the instance to terminate are done in parallel. As an example, once the
leader finishes sending ⌊n/2⌋ messages to the other replicas, the execution splits into two separate sequence of events. In
one of them, the leader sends the remaining phase 2a messages. On the other, it waits for enough phase 2b messages to
decide and start executing the requests. If after executing the first request in the batch, the leader did not finish sending all
the Phase 2a messages, it may have to wait for the outgoing link to be free before sending the answers to the clients. Thus,
the exact sequence of events that leads to completion depends on the workload and the characteristics of the system. In a
fast LAN the wall-clock duration is likely to be limited by the CPU speed, while in a high-latency WAN the latency is likely
the dominant factor. Similarly, if the workload consists of large requests and answers, the bandwidth is more likely to be
the bottleneck than the CPU or the latency.

Therefore we model the wall-clock time by considering three different cases, each corresponding to a different
bottleneck: CPU, bandwidth and latency. For each case, we compute the duration of an instance, which gives us three
formulas: T cpu

inst , T
band
inst and T lat

inst . The instance time is the maximum of the three:

Tinst = max(T cpu
inst , T

band
inst , T lat

inst). (2)

Once again, due to the differences in topology, we model the LAN and the WAN cases differently. For the LAN case, we
have:

T cpu
inst = φcpu

inst + ⌊n/2⌋S2a/2B (3)

T band
inst = ((n − 1)S2a + kSans)/B (4)

T lat
inst = ⌊n/2⌋S2a/B + 2L + kφexec + kSans/B. (5)

Fig. 2 illustrates these three cases. Each sub-figure represents one instance. The two lines at the bottom represent the
leader and the replica whose Phase 2b message triggers the decision at the leader. The two bars at the top represent the
busy/idle periods of the CPU and of the outgoing link of the leader. The arrows above the leader line represent messages
exchanged with the clients (their time-lines are not represented) and the arrows below are messages exchanged with the
other replicas.

If the CPU is the bottleneck (Eq. (3) and Fig. 2(a)), the wall-clock time of an instance is dominated by its CPU time (φcpu
inst ,

Formula (1)). However, wemust also account for the time duringwhich the leader is sending the Phase 2amessages to other
replicas, because its CPU will be partially idle during this time, while waiting for the Phase 2b messages from the replicas.
This difference between CPU andwall-clock time increaseswith the size of the batch (confirmed experimentally in Section 5,
see Fig. 10). This idle time is represented by ⌊n/2⌋S2a/2B.

If the bandwidth is the bottleneck (Eq. (4) and Fig. 2(b)), the wall-clock time of an instance is the total time needed by the
leader to send all the messages of that instance through the outgoing channel, i.e., n − 1 Phase 2a messages and k answers.

Finally, if the latency is the bottleneck (Eq. (5) and Fig. 2(c), the wall-clock time of an instance is the time needed to send
the first ⌊n/2⌋ phase 2a messages to the replicas, plus the round-trip time required to receive enough Phase 2b messages
from the replicas, followed by the execution time of the requests and the time to send the answers back to the clients.
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For the WAN case, the formulas are as follow:

T cpu
inst = φcpu

inst + S2a/B (6)

T band
inst = S2a/B (7)

T lat
inst = S2a/B + 2L + kφexec . (8)

The difference is thatmessages can be sent in parallel, because of the assumption that each pair of processes has exclusive
bandwidth. Therefore, the time to send a message to the other replicas does not depend on n, and sending the answers to
the clients does not affect the duration of an instance (separate client–leader and leader–replica channels).

4.3. Maximizing resource utilization with parallel instances

If the leader’s CPU and outgoing channel are not completely busy during an instance, then the leader can execute
additional instances in parallel. The idle time of a resource R (CPU or outgoing link) is given by Tinst − φR

inst and the number
of instances that a resource can sustain, wR, is Tinst/φR

inst , for R ∈ {cpu,net}. From these, we can compute the maximum
number of parallel instances that the system can sustain as:

w = ⌈min(wcpu,wnet)⌉. (9)

This value can be used as a guideline to configure batching and pipelining. In theory, setting thewindow size to any value
equal to or higher than this lower bound results in optimal throughput, but as shown by the experiments in Section 5.2,
increasing the window size too much may result in congestion of the network or saturation of the CPU, and reduce
performance. Therefore, setting the window size to w should provide the best results.

5. Experimental study

In this section we study the batching and pipelining optimizations from an experimental perspective, and validate the
analytical model. We have performed experiments both in a cluster environment (Section 5.1) and in a WAN environment
emulated using Emulab [13] (Section 5.2).

For each scenario, we start by presenting the experimental results, then we determine the parameters of the model that
characterize the process speed (parameters of φcli(x) and φrep(x)), and finally compare the predictions for the throughput
and optimal window size of the model with the values obtained experimentally. We performed the experiments using
JPaxos [14], a full-feature implementation of Paxos in Java, which supports both batching and pipelining.

Implementing batching and pipelining in Paxos is fairly straightforward: batching has a trivial implementation and
pipelining was described in the original Paxos paper [1]. To control these optimizations, i.e., decide when to create a new
batch and initiate a new instance, we use a simple algorithmwith three parameters,WND, BSZ and ∆B. The parameterWND
is the maximum number of instances that can be executed in parallel, BSZ is the maximum batch size (in bytes), and ∆B
is the batch timeout. The timeout ∆B is reset whenever the leader opens a new batch, which happens when it receives the
first request that is assigned to the batch. The leader then waits until either it has enough requests to fill the batch or the
timeout ∆B expires. It then proposes the batch by starting a new instance as soon as the number of active instances is under
WND. In the experiments we vary BSZ and WND while keeping ∆B set to 50 ms. This timeout has no impact on the results,
because as explained below, all experiments were performed with the system under high load, so that in the common case
the leader is able to fill a batch before the timeout expires.

We consider a systemwith three replicas. In order to stress the batching and pipeliningmechanisms, all the experiments
were performed with the system under high load. More precisely, we used a total of 1200 clients spread over three nodes,
each running in a separate thread and sending requests in a closed loop (i.e., waiting for the previous reply before sending
the next request). During the experiments, the nodes running the clients were far from being saturated, which implies that
the bottleneck of the system was on the replicas.

The replicated service keeps no state. It receives requests containing an array of Sreq bytes and returns an 8 byte array.
We chose a simple service as this puts the most stress on the replication mechanisms. JPaxos adds a header of 16 bytes per
request and 4 bytes per batch of requests. The analytical results reported below take the protocol overhead in consideration.

All communication is done over TCP. We did not use IP multicast because it is not generally available in WAN-like
topologies. Initially we considered UDP, but rejected it because in our tests it did not provide any performance advantage
over TCP. TCP has the advantage of providing flow and congestion control, and of having no limits on message size. The
replicas open the connections at startup and keep themopenuntil the end of the run. Each data point in the plots corresponds
to a 3min run, excluding the first 10%. For clarity, we omit the error barswith the confidence intervals, as they are very small.

We report our results using the followingmetrics. The throughput of instances is the number of Phase 2 instances executed
per second, and the throughput of requests is the number of requests ordered per second. These two metrics correspond to
the throughput formulas of the analytical model given at the end of Sections 4.2.1 and 4.2.2. The latency per instance is the
time elapsed at the leader from proposal to decision of an instance, i.e., from sending the Phase 2a message to receiving a
majority of Phase 2b messages. It corresponds to Tinst (Formula (2)) in the analytical model. The client latency is the time the
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(a) Sreq = 128. (b) Sreq = 1 KB. (c) Sreq = 8 KB.

Fig. 3. Cluster. Experimental results: throughput as a function of batch size.

(a) Client latency. (b) Instance latency. (c) Instances/sec.

Fig. 4. Cluster, experimental results with Sreq = 128.

client waits for the reply to a request, which includes the transmission time from the client to the leader, the queuing time
of the request at the leader, the time to order the request, and the time to send the answer back to the client.

5.1. Cluster

The following experiments were run on a cluster of Pentium 4 at 3 GHz with 1 GB memory connected by a Gigabit
Ethernet. The effective bandwidth of a TCP stream between two nodes measured by netperf is 940 Mbit/s.

5.1.1. Experimental results
Fig. 3 shows the request throughput as a function of batch size, for request sizes of 128 bytes, 1 KB and 8 KB, and for

maximum window sizes of 1, 2 and 5.
Batching provides a major improvement in performance in all cases, ranging from an almost ten times improvement

with 128 bytes requests to a little over four times with 8 KB requests. The batch size where the system reaches optimal
throughput varies depending on the request size: around 10 KB, 64 KB and 128 KB for request sizes of 128 bytes, 1 KB and
8 KB, respectively. On the other hand, increasingWND does not improve performance. In fact, except for the smallest batch
sizes, the average number of consensus instances open at any timewas always one (not shown), which shows that the leader
is not able to start additional consensus instances. The cause is the relatively slow CPU by comparison to the network. During
each run the average CPU utilization of the leader’s CPU is above 90%, suggesting that the leader is CPU-bound and, therefore,
is not able to execute additional instances in the time it waits for the answers for the previous instances.

Note that the performance does not drop if BSZ or WND are increased past their optimal values. This is a desirable
behavior, because the system will perform optimally with a wide range of configuration parameters, making it easier to
tune. As Section 5.2 shows, this is not always the case.

Fig. 4 shows the effects of batching in several other metrics with request size of 128 bytes. The results show that even
small levels of batching have a dramatic effect on performance. The client latency (Fig. 4(a)) goes fromalmost 500mswithout
batching to under 100 ms just by increasing BSZ to 2 KB. Further increases in batch size provide only small additional
improvements in response time, as the bottleneck shifts from the CPU required to process each instance of the ordering
protocol to the cost of handling each individual client request.

The instance latency (Fig. 4(b)) increases linearlywith the size of the batch, which shows clearly that its time is composed
of a fixed constant time (≈0.35 ms in this case) plus a variable time that depends on the amount of data that has to be
transmitted. The only exception is for the smallest batches sizes with window sizes of 2 and 5, where the instance time is
up to eight times higher that what would be expected from that rule above. As the batch sizes are too small to handle the
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Fig. 5. Experimental versus model results for the CPU time of an instance in the cluster. Fit values: φcli(x) = 0.005x + 0.08, φrep(x) = 0.0035x + 0.22.

Table 2
Analytical results for the cluster scenario, with request size of
128 bytes (Sreq = 128). Results for different batch sizes (S2a , see
Table 1). Times in ms.

S2a φcpu
req φcpu

inst φnet
inst Tinst wcpu wnet

128 0.52 0.52 0.00 0.52 1.00 211.73
256 0.30 0.60 0.00 0.60 1.00 124.18
512 0.19 0.77 0.01 0.77 1.00 79.52
1 KB 0.14 1.09 0.02 1.10 1.00 56.97
2 KB 0.11 1.75 0.04 1.76 1.01 45.63
4 KB 0.10 3.06 0.08 3.07 1.01 39.95
8 KB 0.09 5.67 0.15 5.71 1.01 37.11
16 KB 0.09 10.90 0.31 10.98 1.01 35.68
32 KB 0.08 21.36 0.62 21.51 1.01 34.97
64 KB 0.08 42.28 1.23 42.58 1.01 34.62

incoming client load, the leader attempts to compensate by executing parallel instances. But with a slow CPU (recall that
the nodes are single-core, single-CPU Pentium 4 at 3 GHz), the additional instances cause instability resulting in a spike in
the consensus execution time.

Finally, Fig. 4(c) shows that, as expected, by using larger batches the leader can execute fewer instances to order higher
number of requests. Note that without batching, the leader executes 2000 instances per second, corresponding to 2000
requests (Fig. 3(a)). As the batch size increases, the number of instances drops to under 200, but the throughput in requests
increases to 12000, because the number of requests per batch increases faster than the reduction in the number of instances.

5.1.2. Setting model parameters
To estimate the parameters φcli and φrep we used the Java Management interfaces (ThreadMXBean) to measure the total

CPU time used by the leader process during a run. Dividing this value by the total number of instances executed during
the run gives the average per-instance CPU time. To prevent the JVM warm-up period from skewing the results, we ignore
the first 30 s of a run (for a total duration of 3 min). We repeat the measurements for several request and batch sizes, and
then adjust the parameters of the model manually until the model’s estimation for the CPU time (φcpu

inst ) fits the training
data. Fig. 5 shows the training data together with the results of the model, for the final fit of φcli(x) = 0.005x + 0.08 and
φrep(x) = 0.0035x+0.22. The Figure shows that the CPU timemeasured experimentally increases roughly linearly with the
size of the batch, which validates our choice of a linear model.

5.1.3. Comparison of analytical and experimental results
All the analysis below is done with φexec = 0, since the request execution time of the service used in the experiments is

negligible (recall that the service simply answers with a 8 byte array). Table 2 shows detailed results for the case Sreq = 128,
while Table 3 shows a summary of the analytical results for all request sizes and compares them with the experimental
results.

With Sreq = 128 (Table 2), the CPU time used by an instance (column φcpu
inst ) is an order of magnitude larger than the

network busy time (column φnet
inst ). As a result, the wall-clock time of an instance (column Tinst ) is dominated by the CPU

time. Although the network could sustain a large number of parallel instances (column wnet), the CPU cannot sustain more
than one (columnwcpu) and therefore the system as a whole has no capacity to execute additional instances. The situation is
similar for larger requests sizes (columnswnet andwcpu in Table 3(b) and (c)), although the CPU becomes less of a bottleneck
as the size of the requests increases. A similar pattern occurs as the batch size increases, with the load shifting from the CPU
to the network. But even with the largest messages tested, i.e., Sreq = 8 KB and S2a = 512 KB, the CPU is still the bottleneck,
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Table 3
Cluster: comparison of analytical and experimental results
for different batch sizes (S2a). Prediction of optimal w [=
min(wcpu,wnet)] is in bold. The column w shows the range that
was determined experimentally to contain the smallest value of
WND that produces the maximum throughput.

S2a Model Experiments
wcpu wnet Max Thrp w Max Thrp

Sreq = 128

128 1 211.73 1916 1 ≈1895
256 1 124.18 3313 1 ≈3126
1 KB 1 56.97 7313 1 ≈7745
32 KB 1 34.97 11983 1 ≈12488
64 KB 1 34.62 12108 1 ≈12100

Sreq = 1 KB

1 KB 1.01 31.54 1878 1 ≈1850
2 KB 1.01 18.64 3202 1 ≈3380
8 KB 1.03 8.93 6791 1 ≈7050
256 KB 1.04 5.79 10644 1 ≈10680
512 KB 1.05 5.74 10742 1 ≈10400

Sreq = 8 KB

8 KB 1.05 4.92 1625 1 ≈1634
16 KB 1.08 3.25 2530 1 ≈2687
64 KB 1.14 2 4344 1 ≈4328
256 KB 1.17 1.68 5293 1–2 ≈4900
512 KB 1.17 1.63 5493 1–2 ≈4900

Fig. 6. Topology used for Emulab experiments.

being able to sustain only 1.17 parallel instances as compared to 1.63 of the network. Such a situation is typical of systems
where the network is comparatively faster than the process,4 which is typical in a cluster environment.

Themodel also captures the effect of batching on performance. As the size of the batches increases, the total instance time
increases reflecting the larger size, but the average time per request (φcpu

req ) decreases. This is very noticeable for 128-byte
requests, with the average time per request dropping from 0.52 ms down to 0.08 ms for the largest batches.

The results also show that the predicted optimal window size matches closely the value obtained in the experiments.
Furthermore, the predicted throughput is close to the experimental results, with less than 5% error for 128 bytes and 1 KB
requests, and at most 20% for 8 KB requests 512 KB batch size.

5.2. Emulab

Fig. 6 shows the topology used for the Emulab experiments, which represents a typical WAN environment with the
geographically distributed nodes. The replicas are connected point-to-point by a 10-Mbit link with 50 ms latency. Since the

4 The speed of the process depends not only on the CPU speed but also on the efficiency of the Paxos implementation.
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(a) Sreq = 128. (b) Sreq = 1 KB. (c) Sreq = 8 KB.

Fig. 7. Experimental results in Emulab: throughput with increasing batch size.

(a) Sreq = 128. (b) Sreq = 1 KB. (c) Sreq = 8 KB.

Fig. 8. Experimental results in Emulab: throughput with increasing window size. K represents the number of requests that fit on a batch, i.e., K =

⌊BSZ/reqSize⌋.

goal is to keep the system under high load, the clients are connected directly to each replica and communicate at the speed
of the physical network. The physical cluster used to run the experiments consisted of nodes of Pentium III at 850MHzwith
512 MB of memory, connected by a 100 Mbps Ethernet.

5.2.1. Experimental results
Fig. 7 shows the throughput in requests per second for increasing values of BSZ , while Fig. 8 shows similar data but plotted

against the values of WND. Both figures include results for requests sizes of 128, 1 KB and 8 KB. Fig. 9 gives more detail on
the tests with request size of 128 bytes, showing the client latency, instance latency and instance throughput.

The results show that, contrary to the cluster experiments, batching alone does not suffice to achieve maximum
throughput. Although using only batching (Fig. 7, WND = 1) improves performance significantly, it falls short of the
maximum that is achieved with larger window sizes. The difference is greater with large request sizes (1 KB and 8 KB),
where batching alone achieves only half of the maximum throughput, than for small sizes (128 bytes), where it reaches
almost the maximum. The reason is that with small request sizes the leader is CPU-bound, so it cannot execute more than
one parallel instance, while with larger requests the bottleneck is the network latency. Increasing the window size to 2 is
enough for the system to reachmaximum throughput in all scenarios if the batch size is large enough (40 KBwith Sreq = 128
and around 140 KB with Sreq = 1 KB and Sreq = 8 KB). If the window size is further increased, the maximum throughput is
achieved with smaller batch sizes.

Using pipelining alone (Fig. 8, K = 1, where K is the maximum number of requests that fit in a batch, i.e., K = ⌊BSZ/
reqSize⌋) is not enough to achieve the best performance with small and medium request sizes (128 bytes and 1 KB), but
is enough for large request sizes (8 KB). With small request sizes, the performance gains are quite modest, as it does not
even reach 500 requests per second, far from themaximum of 3000. With large request sizes, however, withWND ≥ 15 the
system reaches themaximumperformance. The difference in behavior is once again due to different bottlenecks; with small
request sizes the bottleneck ismainly theCPU, so batchingprovides themost gains bydecreasing the averageper request CPU
utilization. On the other hand, with large requests the bottleneck is the network, either the latency or the bandwidth, and in
this case batching does not help. When the limitation is the network latency, pipelining improves throughput significantly,
as seen in Fig. 8(c) until WND = 15. After this point, the system is limited by the network bandwidth, so neither batching
nor pipelining can improve the results further.

The experiments also show that increasing the window size toomuch results in a performance collapse, with the system
throughput dropping to around 10% of themaximum. This happenswhen the leader tries to sendmore data than the capacity
of the network, resulting in packet loss and retransmissions. The point where it happens depends on the combination of Sreq,
WND and BSZ , which indirectly control howmuchdata is sent by the leader; larger values increase the chance of performance
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(a) Client latency. (b) Instance latency. (c) Instances/sec.

Fig. 9. Emulab, experimental results with Sreq = 128.

Fig. 10. Experimental versus model results for the CPU time of an instance. Fit values: φcli(x) = 0.28x + 0.2, φrep(x) = 0.002x + 1.5.

collapse. With Sreq = 128 there is no performance degradation, because the CPU is the bottleneck limiting the throughput.
With larger request sizes, the network becomes the bottleneck and there are several cases of performance collapse. With
WND = 5, there is a sharp drop at BSZ = 256 KB (Fig. 7(b)). For largerWND, the performance collapse happens with smaller
values of BSZ: withWND = 10 at 130 KB, and at less than 64 KB for largerwindow sizes. Similarly, as the batch size increases
performance collapse occurs at smaller and smaller window sizes.

These results show that CPU and networkmay react to saturation very differently. In this particular system, the CPU deals
gracefully with saturation, showing almost no degradation, while the network saturation results in a performance collapse.
The behavior may differ significantly in other implementations, because the behavior of the CPU or network when under
load (graceful degradation or performance collapse) depends on the implementation of the different layers of the system,
mainly application and replication framework (threadingmodel, flow-control) but also operating system and network stack.

To conclude the analysis of the experimental results, we look in more detail at the experiments with request size of
128 bytes (Fig. 9). As the batch size increases the client latency goes from a maximum of over 10 s down to less than
0.5 s (Fig. 9(a)). This is a indirect consequence of the batch size. Recall that larger batch sizes result in higher throughput
(Fig. 7(a)). Since the experiments were performed with a fixed request load, then higher throughput reduces the time that
client requests spend waiting in queues, which dramatically decreases the client latency.

The instance latency (Fig. 9(b)) increases with BSZ , with the minimum being the round-trip time (100 ms). For values
of WND other than 1, the increase is not linear. The reason is that the instance latency depends on the effective batch size,
which may be smaller than the maximum batch size (BSZ). This is the case with values ofWND greater than one, because as
the leader is allowed to execute parallel instances, it does not always fill the batches completely before the batch timeout
expires.

The throughput in instances (Fig. 9(c)) is the highest when WND is large and BSZ small, as the leader is able to fill up
batches and start new instances before the previous ones finish. However, since each batch is small, the throughput in
requests is low. As BSZ increases, the leader will wait more to start a batch, therefore resulting in a smaller throughput in
instances. When WND is small the throughput in instances is small because the leader is restricted in how many instances
it can execute in parallel, so even if it has batches ready, it must wait for the previous instances to finish.

5.2.2. Setting model parameters
Following the same procedure as in the case of the cluster, we have determined the following parameters for the Emulab

model: φcli(x) = 0.28x + 0.2, φrep(x) = 0.002x + 1.5. Fig. 10 shows the training data and the corresponding model results
when parametrized with the values above.



182 N. Santos, A. Schiper / Theoretical Computer Science 496 (2013) 170–183

Table 4
Emulab: comparison of analytical and experimental results for dif-
ferent batch sizes (S2a). Prediction of optimal w [= min(wcpu,wnet)]
is in bold. The column w shows the range that was determined ex-
perimentally to contain the smallest value ofWND that produces the
maximum throughput.

S2a Model (predictions) Experiments
wcpu wnet Max Thrp w Max Thrp

Sreq = 128

128 30.88 833.48 308 30–35 ≈330
256 28.77 422.94 574 25–30 ≈550
1 KB 20.45 107.58 1620 20–25 ≈1800
16 KB 3.38 7.68 3765 2–5 ≈3100
32 KB 1.47 3.12 4032 1–2 ≈3300

Sreq = 1 KB

1 KB 28.89 119.01 286 30–40 ≈310
2 KB 25.54 60.12 502 30–40 ≈600
8 KB 15.42 15.8 1155 15–20 ≈1030
128 KB 3.16 1.93 1184 1–2 ≈1120
256 KB 2.68 1.6 1184 1–2 ≈1100

Sreq = 8 KB

8 KB 19.47 16 150 15–20 ≈144
16 KB 14.24 8.5 150 5–10 ≈144
64 KB 6.72 2.88 150 2–5 ≈144
128 KB 4.84 1.94 150 1–2 ≈144
256 KB 3.8 1.47 150 1–2 ≈144

5.2.3. Comparison of analytical and experimental results
Table 4 shows the results of the model for the optimal window size of the CPU and network for several batch sizes, and

compares them with the experimental results.
The analytical results show that the bottleneck with 128-byte requests is the CPU (wcpu is smaller than wnet) while for

8 KB requests it is the network.With 1KB requests, the behavior ismixed,with the CPUbeing the bottleneckwith small batch
sizes and the network with larger batch sizes. These results quantify the common sense knowledge that smaller requests
and batches put a greater load on the CPU in comparison to the network. Moreover, as the request size or batch size increase,
the optimal window size decreases, because if each instance contains more data, the network will be idle for less time.

The experimental results in Table 4 are obtained by determining for each batch size the maximum throughput and the
smallest wwhere this maximum is first achieved.

In all cases the prediction for w is inside the range where the experiments first achieve maximum throughput, showing
that themodel provides a good approximation. Concerning the throughput, themodel is accurate with Sreq = 8 KB across all
batch sizes. With Sreq = 128, it is accurate for the smallest batches but overestimates the throughput for the larger batches.
The reason is that the network can be modeled more accurately than the CPU, as it tends to behave in a more deterministic
way.5 The CPU exhibits a more non-linear behavior, especially when under high load. This in turn requires carefully tuning
of the maximum number of parallel instances, as higher values increase CPU utilization.

6. Discussion

In this paper we have studied two important optimizations to Paxos, batching and pipelining. The analytical model
presented in the paper is effective at predicting the combinations of batch size and number of parallel instances that result
in optimal throughput in a given system.

The experiments show clearly that batching by itself provides the largest gains both in high and low latency networks.
Since it is fairly simple to implement, it should be one of the first optimizations considered in Paxos and, more generally, in
any implementation of a replicated state machine.

Pipelining is useful only in some systems, as its potential for throughput gains depends on the ratio between the speed
of the nodes and the network latency: the more time the leader spends idle waiting for messages from other replicas, the
greater the potential for gains of executing instances in parallel. Thus, in general, it will provide minimal performance gains
over batching alone in low latency networks, but provides substantial gains when latency is high.

While batching decreases the CPU overhead of the replication stack, executing parallel instances has the opposite effect
because of the overhead associated with switching between many small tasks. This reduces the CPU time available for the

5 This is true only until reaching a level of saturation where packets are dropped, after which it becomes difficult to model.
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service running on top of the replication task and, in theworst case, can lead to a performance collapse if toomany instances
are started simultaneously (see Emulab experiments). The experiments were performed with a null service in order to put
more stress on the ordering protocol. With a non-null service, the maximum throughput of the system would be inversely
proportional to the execution time of the requests. Hence, as the execution time increases, the impact of the optimizations
would become less and less pronounced. The analytical model can be used to predict what would happen in this case, by
setting the φexec parameter to the appropriate value.

The model can be used in the following way to tune batching and pipelining: (i) choose the largest batch size that for a
given workload satisfies the response time requirements, then (ii) use the model to determine the corresponding number
of parallel instances that maximize throughput. The rationale for this heuristic is the following. As batching provides larger
gains than pipelining, the batch size should be the first parameter to be maximized. However, there is a limit on howmuch
it can be increased, because large batches take longer to fill up with requests leading to an higher response time. Given the
expected request rate and the desired response time, we can easily compute the largest batch size that satisfies the response
time. The model then provides the corresponding window size that maximizes throughput. As an example, consider the
Emulab environment. If the average request size is 1 KB and we have determined that the batch size should be 8 KB, then
the window size should be set to 16 (Table 4(b)).

The paper has focused on throughput rather than latency because as long as latency is kept within an acceptable range,
optimizing throughput provides greater gains in overall performance. A system tuned for high-throughput will have higher
capacity, therefore being able to serve a higher number of clients with an acceptable latency, whereas a system tuned for
latencywill usually reach congestionwith fewer clients, at which point its performance risks collapsing to valueswell below
the optimal.
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