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Abstract 

Developed economies depend on complex and extensive systems of infrastructure to maintain 

economic prosperity and quality of life. In recent years, the implementation of Structural Health 

Monitoring (SHM) systems on full-scale bridges has increased. The goal of these systems is to 

inform owners of the condition of structures, thereby supporting surveillance, maintenance and 

other management tasks. 

Data-driven methods, that involve tracking changes in signals only, are well-suited for analyzing 

measurements during continuous monitoring of structures. Also, information provided by the 

response of structures under moving loads is useful for assessment of condition. 

This paper discusses the application of data-driven methods on moving-load responses in order 

to detect the occurrence and the location of damage. First, an approach for using moving-load 

responses as time series data is proposed. The work focuses on two data-driven methods – 

Moving Principal Component Analysis (MPCA) and Robust Regression Analysis (RRA) – that 

have already been successful for damage detection during continuous monitoring. The 

performance of each method is assessed using data obtained by simulating the crossing of a 

point-load on a simple frame. 

Keywords: Bridges; Influence lines; Damage detection; Moving Principal Component Analysis; Robust Regression 

Analysis. 

1. Introduction

Complex infrastructure systems ensure economic prosperity and quality of life. Therefore, 

maintaining civil infrastructure so that it is safe and reliable for daily use is important to all 
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countries. However, existing infrastructure has suffered from decades of neglect and overuse, 

leading to accelerated deterioration of bridges, buildings, municipal and transportation systems, 

and resulting in a situation that has been described as "A global infrastructure crisis" [1]. Due to 

the age of existing bridges, increasing loads and changing requirements for use, maintenance 

and strengthening of bridges is becoming more and more important [2] [3] [4]. Often, the high 

costs of building new bridges are economically justifiable only through promise of longer service 

lives together with smaller maintenance costs compared with structures that are being replaced. 

Therefore, corrective maintenance of old structures is increasingly becoming a cost efficient 

alternative to the building of new structures [5]. 

Structural Health Monitoring (SHM) is a term that describes the use of a range of measurement 

systems on structures, including data interpretation.. The aim of these systems is to assist and 

inform owners of  continued “fitness for purpose” of structures under gradual or sudden changes 

to their state and to learn about loading and response mechanisms [6]. SHM has potential to 

identify structural damage before it becomes critical, and thus represents a promising strategy 

in the ongoing challenge to achieve sustainable infrastructure [7]. 

Today, many bridges are monitored using sophisticated measurement systems employing 

hundreds of sensors. These systems generate large amounts of data and it is often difficult to 

detect early damage [8].There is thus a need for data interpretation techniques that provide 

reliable information to assist engineers in structural management. The choice and 

implementation of algorithms to process the data and carry out the identification is arguably the 

most crucial ingredient of a SHM system. Before choosing the data-interpretation algorithm, it is 

necessary to choose between two complementary approaches to the challenge: model-based 

(inverse strategy) or data-driven (pattern recognition) [9]. Model-based methods require the 

development of detailed numerical models of the structure. Measurements are compared with 

those predicted by the model with the aim of discovering anomalies in the behaviour of the 

structure. However, for civil infrastructure, creating such models is often difficult and expensive 

and this approach may not be successful in identifying the right anomaly. Data-driven methods 

consist of looking for changes in a “signature” of the structure that is related to its structural 

response under excitation. Anomalous behaviour is detected without information of physical 

processes requiring only initial conditions (no-anomalies) for training. Thus, these methods are 

generally faster than model-based methods as they do not require the evaluation of 
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computation-intensive numerical models. Strengths and weaknesses of both classes have been 

summarized in [10]. 

Since data-driven methods involve only tracking changes in signals, they are appropriate for 

analysing measurements during continuous monitoring of the performance of structures. Moyo 

and Brownjohn [11] applied the wavelet analysis and Omenzetter and Brownjohn [12] used 

Auto-Regressive Integrated Moving Average (ARIMA) models to identify events and changes in 

the structural state in a bridge. Lanata and Del Grosso [13] applied the Proper Orthogonal 

Decomposition (POD) to identify in time and locate in space the initiation of damage. Posenato 

et al. [14] presented two statistical methods: Moving Principal Component Analysis (MPCA) and 

Robust Regression Analysis (RRA) for damage detection during continuous static monitoring of 

civil structures. Through a comparative study with other statistical analyses they observed 

superior performance of these methods for damage detection. 

Some methods have used the regular traffic responses to detect damage. Cardini and DeWolf 

[15] presented an approach based on determining the live load distribution factors for the 

girders, peak strains and the neutral axis locations from the strain data collected from normal 

truck traffic [16] to provide a continuous picture of the structural integrity of multi-girder steel 

bridges. Zaurin and Catbas [17] proposed a method in which video images and sensor data are 

correlated and used to create a series of unit influence lines (UIL) that are used as input 

features to detect and localize damage in the structure.  

When periodic static loading tests are available, damage may be detected by comparing either 

the deflection curves or the influence lines of displacements and rotations before and after 

damage. Choi et al. [18] derived and proposed an Elastic Damage Load Theorem (EDLT) and 

demonstrated that the variations of the displacement reach the maximum at the damaged 

location independent of the location. Stohr et al. [19] showed that the differences between the 

influence lines of inclination measured under original and under modified structural conditions 

indicate clearly the existence and locations of stiffness changes. However, the application of 

these methods involves periodic static-load tests under controlled conditions, requiring the 

interruption of regular traffic. Furthermore, they imply knowing precise load levels used in the 

tests. Thus, in order to detect damage using influence-line data, development of other strategies 

is necessary.  
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This work presents an approach to perform damage detection based on moving-load data of 

regular traffic. The exact load level that is crossing the structure does not need to be known. 

The approach consists of applying two data-driven methods – MPCA and RRA – that have 

already been shown to be successful in continuous monitoring, to another type of data, 

influence-line information. It is worth noting that only the quasi-static component of the response 

is taken into consideration in the study. The objective is to detect and to localize the damage. 

Section 2 presents the framework and the approach adopted in order to use these two methods 

on influence-line data. In Section 3 the use of each method for SHM is briefly described. Using 

numerically simulated data, Section 4 presents the results obtained with each method.   

2. Methodology

This section describes how influence-line data may be used for damage detection. The shape 

and magnitude of the influence line of a bridge load effect is representative of its static 

behaviour. However, the regular traffic response may contain a dynamic component. Dynamic 

components are particularly present in light-weight steel pedestrian bridges. In the case of a 

concrete medium-span bridge with smooth wear surface and joints, the dynamic component 

caused by a moving vehicle on the bridge response is generally negligible [20]. However, in 

some situations the dynamic component in the signal cannot be neglected. Therefore, the 

removal of the dynamic component of the signal prior to the application of this methodology is 

required. Paultre et. al [21] proposed the application of a digital low-pass filter to the measured 

time series whereas González and O’Brien [20] employed wavelet analysis to extract the total 

static component from the measured bridge response. Thus, considering these filtering 

techniques to remove the dynamic component of the signal, the present methodology takes into 

consideration the quasi-static response of the structure only. The damage detection procedure 

is illustrated by using a simple frame. The need for employing advanced methodologies to 

process the influence-line data obtained under different load levels is first demonstrated. Then, 

the approach proposed for using moving-load measurements for model-free interpretation is 

presented. 

2.1. Description of the frame 

The structure adopted to illustrate the employment of data-driven methods applied to moving-

load responses for damage detection was a simple frame, 1.50 m high and 3.20 m long, as 

shown in Fig. 1. The elements are 0.50 m wide and 0.20 m thick. The geometry of the frame’s 



5 

bases, 0.40 m long and 0.20 m thick, allow different positions for the supports. In normal 

operating conditions the supports are centred in the middle of the columns cross-section. The 

left support is a roller bearing, allowing horizontal displacements and rotations over the 

longitudinal direction. The right support is a pinned bearing, restraining the horizontal 

displacement but allowing the rotation over the longitudinal direction. Therefore, considering 

vertical loads only and ensuring this bearings configuration, the response of this frame is the 

same as that of a simply supported beam. 

This structure was chosen because of planned future research involving the experimental 

validation of the methodology. Through simple modifications, the study of several structural 

systems is possible. The structural response of the frame for the support conditions described 

above is equivalent to that of a simply supported beam. However, by replacing the roller bearing 

by a pinned one, this structure becomes a concrete rigid-frame that resembles a bridge which is 

typically used for either overpasses or underpasses. In addition, under these support conditions, 

the beam’s response is similar to that of the central span in a 3-span continuous beam.  Finally, 

considering once again the support conditions and loading illustrated in Fig. 1, it may be viewed 

as a model of a beam where the distance of the support bearings to the longitudinal axis of the 

beam is amplified.  This facilitates studies of bearing stiffness properties for investigations of the 

effects of bearing malfunction. Therefore, in the context of future research into the validation of 

this methodology in the laboratory as well as other studies, this very compact and versatile 

model enables testing of a wide variety of scenarios. 

The response is assumed to be linear and elastic, where the Young’s modulus has been 

assumed to be 15 GPa. This relatively low value was obtained through experimental testing.  

Using the numerical model, the structural response is estimated for a set of successive 

positions along the beam, which, for practical applications, is numerically equivalent to 

monitoring the structure while a point load moves across the frame at a slow speed. The results 

are presented graphically in the form of influence lines that represent the variation of response 

at a given point due to a load traversing the structure. As depicted in Fig. 1, the response of the 

structure is characterized through two displacements – the vertical deflection at mid-span (VDM) 

and the horizontal displacement at the roller support (HDR) – and two rotations – the rotation 

over the left support bearing (RLB) and the rotation over the right support bearing (RRB).  
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Fig. 1 – Frame model. 

In order to make the study more realistic, noise was added to the simulated data. Sensor noise 

was assumed to have a uniform probability density function. The range, assumed to be 

±0.01 mm for displacements and ±1°x10
-3

 for rotations, is based on observations made during 

preliminary laboratory testing that was aimed at quantifying the precision of the sensors as well 

as ambient electrical noise. 

2.2. The problem of detecting damage under different load levels 

Consider a damage scenario corresponding to a local crack in a pre-stressed and reinforced 

concrete element. For the sake of simplicity it will be represented as a 20% stiffness reduction 

in a 30 cm length beam element, as depicted in Fig. 1. This damage scenario leads to an 

increase of 2% in the vertical deflection at mid span under a point load placed at mid-span. For 

example, under a service load of 8.75 kN, the vertical deflection varies from 1.00 mm to 1.02 

mm before and after damage, respectively.  

Comparing the responses, under a given load value, before and after the stiffness reduction 

both the occurrence and the location of the damage can be detected. As shown in the plots of 

Fig. 2 (left), since the influence lines obtained before (black) and after (gray) damage are 

slightly different, comparing them can be a means of detecting changes in the structural 

condition. However, the location of the damage remains unknown. Nevertheless, as shown in 

[18] and [19], computing the differences between the influence lines, allows the determination of 

the damage location, which corresponds to the position of the highest difference. As depicted in 

the plots of Fig. 2 (right), the position of the largest differences corresponds to the region of the 

stiffness reduction. However, if the load crossing the structure is not exactly the same before 
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and after the occurrence of damage, no significant difference may be noticed and, thus, the 

occurrence of damage may not be detected. 

 

Fig. 2 – Comparison of the influence lines in the baseline condition (black) and in the damaged condition (gray), left, and 

the corresponding differences between the responses, right. 

Consider, for example, that the uncertainty in quantifying the load is ±10%. Fig. 3 presents the 

responses of the structure: i) under the reference moving load (ML), before damage (black); ii) 

under 1.10xML, before damage (light gray); iii) under 1.07xML, after damage (gray). The 

difference between the influence lines for a load 10% higher than the reference load before 

damage and for a load 7% higher than the reference load after damage is negligible (Fig. 3, 

left). Furthermore, the difference between these influence lines and those obtained before 

damage under the reference load is also small (Fig. 3, right). Therefore, when the load cannot 

be quantified accurately, and thus, is uncertain, the occurrence of damage may not be detected. 
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Therefore, in order to detect the occurrence of damage using influence-line data, the application 

of another strategy is necessary. 

 

Fig. 3 – Comparison of the influence lines in the: i) baseline condition, under the reference moving load – ML (black); ii) 

baseline condition, under 1.10xML (light gray); iii)  damaged condition, under 1.07xML (gray), left, and the differences 

between the responses ii-i (light gray) and iii-i (gray), right. 

2.3. Model-free interpretation of moving-load measurements 

The approach proposed in this paper regarding the application of data-driven methods to detect 

damage involves building time series using moving-load data. Consider a period in which n  

passages of vehicles were recorded and, in each passage, the response at m  equally spaced 

points was recorded. Two types of time series – type I and type II – can be built. 

A time-series type I involves the whole influence line. Whenever a load crosses the structure its 

response is collected and recorded in a time series that includes the previous crossings, leading 

to a time series containing l  measurements, in which  l n m  . The i th
 measurement in the 
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time series corresponds to the value recorded at the q th
 position on the structure during the k th

 

passage, as expressed in equation (1): 

  1i k m q   
 (1) 

Fig. 4 presents a time series containing 29 influence lines ( 29n  ) of the vertical displacement 

at mid-span (VDM), under a load uncertainty of ±10%, ranging from 0.90 to 1.10 times a service 

load of 8.75 kN, according to a uniform probability density function. Each influence line involves 

301 measurements ( 301m  ), leading to a total of 8729 observations. 

A time-series type II involves the response at a given load position (LP) for the successive 

crossings. Therefore, each time series contains n  measurements. Based on the response 

recorded by each sensor one can build as many time series as the number of load positions 

considered for the data acquisition. In Fig. 5 the time series of the vertical displacement at mid-

span (VDM) when the load was also at mid-span, load position 6 (see Fig. 1), is presented. 

Note that this time series is based on the same data presented in Fig. 4. 

Using these two types of time series, the damage detection procedure will be carried out using 

two data-driven methods: Moving Principal Component Analysis (MPCA) and Robust 

Regression Analysis (RRA). 

 

Fig. 4 – Time-series type I, of the vertical displacement at mid-span (VDM).  

 

Fig. 5 – Time-series type II, of the vertical displacement at mid-span (VDM) when the load is at mid-span, LP6. 
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3. Data Interpretation Methods 

3.1. Moving Principal Component Analysis (MPCA) 

The purpose of the Principal Component Analysis (PCA) is to identify dependencies behind a 

multivariate stochastic observation in order to obtain a compact description.  Consider a data 

set,  X , as expressed in equation (2), consisting of mN  observations on vN  variables. The 

rows are vN -dimensional vectors representing the measurements of the variables at a given 

instant, whereas the columns are mN -dimensional vectors corresponding to the time history of 

each variable. 

 
1,1 1,2 1,

2,1 1,2 2,

,1 ,2 ,

 
 
 

  
 
  

v

v

m m m v

N

N

N N N N

X X X

X X X
X

X X X

 (2) 

The goal of PCA is to reduce the dimensionality of the data matrix by finding rN  new variables, 

where rN  is less than   vN . Termed principal components, these rN  new variables together 

account for as much of the variance in the original vN  variables as possible while remaining 

mutually uncorrelated and orthogonal. Each principal component is a linear combination of the 

original variables, and so it is often possible to ascribe meaning to what the components 

represent. The first component corresponds to the direction in which the projected observations 

have the largest variance. The second component is then orthogonal to the first and again 

maximizes the variance of the data points projected on it. Continuing in this manner, it is 

possible to compute all the principal components [22]. Equation (3) expresses the matrix of the 

observations,  X , as a linear combination of a set of vN  orthogonal vectors, ju   . 

  
1

vN
T

j j

j

X Z u


         (3) 

jZ    is a vector containing the component scores of the j
th
 variable and ju    is the j

th
 

orthogonal vector. The component scores correspond to the coordinates of the original data in 

the new coordinate system defined by the orthogonal vectors, which are the eigenvectors 

computed from the covariance matrix ( )v vN N  of the data set. As the first eigenvalues 
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represent the most important terms, it is possible to choose only the first rN  eigenvectors so 

that the final data set can be rewritten without significant loss of information, as expressed in 

equation (4): 

  
1

rN
T

j j

j

X Z u


         (4) 

In the Structural Health Monitoring field, PCA may be used for three primary purposes: i) 

evaluation of patterns in the data; ii) data cleansing; iii) data compression [23]. 

In the context of this work, it is used to enhance the discrimination between features of 

undamaged and damaged structures. The analysis of the behaviour in terms of eigenvalues and 

eigenfunctions of the covariance matrix of the data set gives a good indication of the damage 

initiation and provides information about the severity of the damage [13]. However, as the 

observation period increases, and therefore, the number of measurements becomes high, the 

time to detect the structural change also increases. When damage occurs, the influence of 

measurements in the undamaged state is much higher than that of the new measurements, 

leading to an increase in the time required for the eigenvector values to change enough in order 

to indicate damage. 

To overcome this shortcoming, Posenato et al. [24] proposed Moving Principal Component 

Analysis (MPCA) that computes the principal components inside a moving window of constant 

size, containing wN  measurements    w mN N . For the k
th
 observation, the matrix X  of the 

measurements becomes the following: 

 
1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

( )

w w w v

w w w v

v

k N k N k N N

k N k N k N N

k k k N

X X X

X X X
X k

X X X

     

     

 
 
 

  
 
  

 (5) 

Then, monitoring is carried out by observing the evolution of the principal components – the 

eigenvectors that are related to the first few eigenvalues. Damage is identified when there is a 

change in the values of the principal components. Considering that each jZ    describes a 

major trend of the original data and that each component ,i ju  of the vector   ju    describes the 

influence of jZ    for the i
th
 sensor, MPCA can be applied for anomaly detection in the 
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continuous static monitoring of civil structures. If the group of sensors considered in the analysis 

are correlated and if the structure has not been damaged, then the main eigenvalues remain 

stable with time. When something occurs on or in the structure, the signal from some sensors 

may vary with respect to others. As a consequence, the eigenvector components ,i ju  of the 

sensors closest to the zone involved by the new situation should highlight the variation. This 

feature enables damage identification as well as damage localization [13] [24]. 

Application of MPCA for damage detection using continuous monitoring data involves two 

phases: training and monitoring. In the training phase, the structure is assumed to behave in an 

undamaged condition. The aim of this initialization period is to estimate the variability of the time 

series and to define the thresholds for detecting anomalous behaviour in the monitoring phase. 

To do this, each eigenvector ju  at every time step during the reference period is stored and 

values, in each coordinate, ,i ju , for mean, ,  i j , and standard deviation, ,  i j , are determined in 

order to define the corresponding thresholds. In the monitoring phase, the window continues 

moving along time series to compute new eigenvalues and eigenvectors at each time step. If 

there is no anomaly, the eigenvectors remain within these thresholds. When damage occurs, 

the components of covariance matrix change and as a consequence, so do values of 

eigenvalues. If the value of the c
th
 coordinate of the eigenvector  ju ( ,c ju ) exceeds the 

threshold bounds, an anomaly is flagged by sensor  c at time  k  [25]. 

A key issue of MPCA is the dimension of the window, wN . The value wN  should be sufficiently 

large so that it is not influenced by measurement noise and small enough to allow fast anomaly 

detection. Additionally, if the time series has periodic variability, the window size should be a 

multiple of the period, so that mean values are stationary and eigenvalues of the covariance 

matrix do not have periodic behaviour [26]. 

Comparing MPCA with PCA, the use of a moving window rather than all measurements has 

three main advantages. First, the calculation of process parameters is faster. Second, detection 

of anomalous behaviour is more timely because the old measurements do not bias the results.  

Finally, once new behaviour is identified, the definition of a new training phase corresponding to 

the new state of the structure allows detection of further anomalies [24]. 
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3.2. Robust Regression Analysis (RRA) 

Many problems in engineering and science involve exploring the relationships between two or 

more variables. Regression analysis is a statistical technique that is very useful for these types 

of problems [27]. It is normally used to detect anomalous behaviour in two ways. One method 

consists in evaluating how the distance between the points and the regression line change with 

time. The other consists of observing the evolution of the coefficients of the regression. 

Anomalies are identified whenever a significant variation is observed [26]. 

The algorithm involves the calculation of a robust regression line between two sensors for the 

reference period which is used to discover anomalies in the trends of the measurements. The 

linear relation between two variables, iX  and jX , can be written as: 

 ˆ
j iaX bX    (6) 

Where ˆ
jX  represents the value of jX  calculated according to the linear relation and a  and b  

are the coefficients of the robust regression line estimated from measurements in the training 

phase. The method used to compute the coefficients in equation (6) involves assigning a weight 

to each data point. Weighting is done automatically and iteratively using a process called 

iteratively reweighted least squares. In the first iteration, each point is assigned equal weight 

and model coefficients are estimated using ordinary least squares. At subsequent iterations, 

weights are recomputed so that points farther from model predictions in the previous iteration 

are given lower weight. Model coefficients are then recomputed using weighted least squares. 

The process continues until the values of the coefficient estimates converge within a specified 

tolerance [28]. An advantage of robust regression in comparison with traditional regression is its 

insensitivity to outliers. 

In this work damage detection is based on the first approach presented above, which involves 

the calculation of ˆ
jX  at every instant of observation and the corresponding 

differences   ˆ
j jX X . As in the MPCA, application of RRA for anomaly detection during 

continuous monitoring includes two phases: training and monitoring. In the training phase the 

structure is assumed to behave normally (no damage). During the reference period, the 

mean,   j , and the standard deviation,   j , of the differences ˆ
j jX X  are determined in order 



14 

to define the corresponding thresholds. In the monitoring phase, at each time step  k , the 

differences ˆ
j jX X  within a window ranging from time step testk N  to k ,  in which Ntest is 

the window size, are evaluated. If outN  measurements, in which out testN N , are out of the 

threshold bounds, the anomaly is detected by the variable pairs iX  and jX . 

In addition to the advantage of being insensitive to outliers and missing data, RRA is capable of 

adapting to the new state of a structure for identifying further anomalies by redefining a new 

training phase after an anomaly is identified. 

4. Application to numerically simulated data 

4.1. Simulated Data 

The proposed approach will be tested on data obtained through using the numerical model 

presented in Section 2.1. A load variability of ±10% around a service load of 8.75 kN and 

uniformly distributed noise in the measurements as described in Section 2.1 will be assumed. 

Consider a period of observation in which the response of 1500 crossings of the structure was 

collected. The first 1000 crossings are the baseline condition (undamaged) and the latest 500 

are the damaged condition. As described above, the damage scenario under consideration 

consists of a 20% reduction in the stiffness of a 30 cm length beam element (see Fig. 1). 

According to the two types of time series that can be built using the moving-load data presented 

above, the following two types of analysis are performed: 

i) 4 time histories of type I (4 transducers employed); 

ii) 44 time histories of type II (11 load positions, as depicted in Fig. 1, times 4 transducers). 

Fig. 6 and Fig. 7 present respectively, a time series of type I and type II, for the rotation over the 

left support (RLB). The former involves the whole influence line whereas the latter is for load 

position 3, which is the damage location (see Fig. 1). Fig. 6.b and Fig. 7.b are magnifications of 

parts of Fig. 6.a and Fig. 7.a respectively, considering 23 crossings before and after the 

occurrence of damage. No significant differences in the signals, indicating the occurrence of 

damage, can be observed. Although in Fig. 7 there is a slight difference between the response 

before and after damage, a small increase in the load variability would hide this difference and, 

thus, the occurrence of damage might not be detected. Therefore, the application of more 

sophisticated data processing is necessary. 
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In this section, using these two types of time series, two data-driven methods – Moving Principal 

Component Analysis (MPCA) and Robust Regression Analysis (RRA) – will be applied to detect 

both the occurrence and the location of damage. The capability of each method, as well as the 

time to detection will be evaluated. Throughout this paper the time to detection, also referred to 

as delay, corresponds to the number of crossings observed between the occurrence and the 

detection of the damage. 

 

 

Fig. 6 – Time-series type I, of the rotation over the left support (RLB): a:) Whole period; b) Expansion of part of the 

whole period. 

 

 

Fig. 7 – Time-series type II, of the rotation over the left support (RLB) for load position 3:. a) Whole period; b) Expansion 

of part of the whole period. 
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4.2. Moving Principal Component Analysis (MPCA) 

MPCA was applied to both data sets – type I and type II. To compare the performance of the 

method the parameters such as reference period, window size and thresholds, were assumed 

to have the same values for both types of analysis. 

As mentioned above, application of MPCA to Structural Health Monitoring involves an initial 

phase where the structure is assumed to behave normally and this is called the training phase. 

The aim of this reference period is to estimate the variability of the time series and to define 

thresholds for detecting anomalous behaviour. In this study, the training phase comprised 800 

crossings, in which both the mean, j , and the standard deviation, j , were computed in 

order to define thresholds for damage detection.  

During the monitoring phase, as soon as  q  consecutive points exceed the threshold a 

structural change is flagged. The requirement of q  consecutive points exceeding the thresholds 

in order to flag a structural change increases the reliability of the methodology by preventing 

false positive indications of damage. In this work, the thresholds were assumed to be 9   

and 10q  . These unusually high levels are necessary to avoid false positives arising from the 

response of a beam subjected to moving loads. The window size, wN , was defined by taking 

into account the features of the time series.  

The time-series type I presents periodic variability (Fig. 6), corresponding to the number of 

positions observed in each crossing ( 301m  ). Therefore, it should be a multiple of m . In 

addition, the time series type II does not present periodic variability (Fig. 7) given that each time 

series contains the response at a given position for the successive crossings. Therefore, the 

variability is due to both the measurement noise and the variability in the load. Thus, a window 

comprising 300 crossings, a multiple of the period in time series of type I, is used and this size 

means that calculations are not significantly influenced by measurement noise in time-series 

type II. The Window Size (Wind Size) and the Reference Period (Ref Per) are marked both in 

Fig. 6 and Fig. 7. 

The application of MPCA requires computing the principal components (PC) inside a moving 

window of constant size along the time series. In practice computing PC of a data set S  entails 

[29]: 
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i. subtracting off the mean of each measurement type, as expressed in equation (7) – 

denoted as normalization a – where iS  represents the time series of the variable i 

(which may be the time history of a given sensor in the data set of type I or the time 

history of a given sensor for a given load position in the data set of type II) and i  is 

the corresponding mean; 

 
i i iX S    (7) 

ii. computing the eigenvectors of the covariance matrix Σ  of the data set. 

As previously described, when something occurs on or in the structure, measurement data from 

some sensors may vary with respect to data from other sensors. As a consequence, the main 

eigenvalues change and the eigenvector components ,i ju  of the sensors closest to the zone 

involved by the new situation should highlight a variation. If the value of the c
th
 coordinate of the 

eigenvector  ju ( ,c ju ) exceeds the threshold bounds, an anomaly is flagged by sensor  c at 

time  k  and, thus, it is expected that damage is located close to sensor c. The figures presented 

below illustrate the results of the MPCA. They show the evolution of the coordinate of the first 

principal component (eigenvector) that first exceeds the thresholds, i.e., the coordinate that first 

flags the damage. As the sensors closest to the damage should highlight the variation, it is 

expected that the sensor related to this coordinate may be near the damage. In particular, for 

time series type II, as each time series is related to a load position, it may be seen as a time 

series of a sensor. Therefore, it is expected that damage may be localized by the time series 

related to LP3, placed over the damage, or LP2 or LP4, close to the damage. 

Fig. 8 presents the time series of the first component for the RLB of the first principal 

component given by MPCA using the time series of type I. Fig. 9 presents the time history of the 

first component for the HDR and load position 3 using the time series of type II. As can be seen 

in the figures, the data processing using MPCA allows the early detection of changes in the 

structural response and the location of damage. Using the time-series type I, the damage was 

detected 15 crossings after the occurrence of the damage (Fig. 8). Using the time-series type II, 

the first coordinate of the first principal component exceeding the thresholds (Fig. 9) 

corresponds to load position 3, which matches the location of the stiffness reduction (see Fig. 

1). In this case, the delay was 27 crossings. 
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However, as it will be shown, after performing several analysis adopting different random 

sequences, in terms of load variability and noise in the measurements, it was observed that the 

damage location is seldom correctly identified. 

 

Fig. 8 – Time history of the coordinate corresponding to the RLB of the first principal component applying  MPCA on 

time-series type I using normalization a. 

 

Fig. 9 – Time history of the coordinate corresponding to the HDR for load position 3 of the first principal component 

applying MPCA on time-series type II using normalization a. 

Consider an additional step prior to the calculation of the eigenvectors. After subtracting the 

mean of each measurement type, the data is divided by the standard deviation of each variable, 

i , as expressed in equation (8). This procedure will be denoted as normalization b. 

 
i i

i

i

S
X






  

(8) 

The results presented in Fig. 10 and Fig. 11 refer to the MPCA using pre-processed data 

through the normalization b. Fig. 10 presents the time history of the coordinate corresponding to 

RRB of the first principal component using the time-series type I. The time history of the 

coordinate corresponding to RLB at load position 3 of the first principal component using the 

time-series type II is depicted in Fig. 11. As in the normalization a procedure, the results 

adopting the normalization b procedure show that the occurrence and the location of the 

damage may be detected. Again, the coordinate of the principal component that first exceeds 

the threshold corresponds to the load position 3. The delay using time series of type I and II 

was, respectively, 79 and 32 crossings. 
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As previously noted, damage is detected when a principal component coordinate value exceeds 

the threshold bounds. Afterwards, as soon as the moving window contains data of the damaged 

condition only, a new state of the structure is defined. In Fig. 8 and Fig. 10, as after damage the 

value of the coordinate stabilizes in a different value than that before damage, the modification 

into a new state is clear. In Fig. 9, in spite of being very close, the new state is different from the 

old one. However, in Fig. 11 the two states are similar. This is due to the type of data and 

normalization used. As the data is divided by the standard deviation, the normalized data of the 

new state happens to be similar to that of the old state. The same does not happen in Fig. 10 

because it includes all the influence lines and as their shape change due to damage, the new 

state is different from the old one, even after normalization b. 

 

Fig. 10 – Time history of the coordinate corresponding to the RRB of the first principal component applying MPCA on 

time-series type I using normalization b. 

 

Fig. 11 – Time history of the coordinate corresponding to the RLB for load position 3 of the first principal component 

applying  MPCA on time-series type II using normalization b. 

Comparing Fig. 8 with Fig. 10, it is observed that the time to detect the damage occurrence is 

much more pronounced in the latter than in the former. Furthermore, in Fig. 8 the variation in 

the component is much clearer. Therefore, the normalization a is more suitable than 

normalization b to detect the occurrence of damage using time-series type I. Comparing  Fig. 9 

with Fig. 11 one observes the opposite. Although in this case the time to detect the occurrence 

of damage using the normalization a is smaller, as it will be shown, the normalization b leads to 

lower time to detection and to more reliable results regarding the localization of damage. 
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In order to validate the conclusions drawn above, 100 analyses adopting different random 

sequences, in terms of load variability and noise in the measurements, were performed. The 

study involved the two types of data sets – type I and II – and the two normalization procedures 

– a and b. The results are summarized in the tables 1 to 3. 

Using time-series type I, there is no false-positive indication of damage in either normalization 

procedures. This means that the occurrence of damage is correctly identified in every case. 

Table 1 presents the comparison in terms of time to detection, given by MPCA applied to the 

time-series type I, between both normalization procedures. It is observed that the normalization 

procedure a provides the best results regarding the time to detection of damage. The time to 

detection using the normalization a is significantly smaller than that using normalization b. 

The comparison in terms of damage location, given by MPCA applied to the time-series type II, 

between both normalization procedures is shown in Table 2. The false-positive indication of 

damage is similar in each normalization procedure – 2% and 3% in normalization procedures a 

and b, respectively. However, concerning the identification of the damage location, the results 

obtained using the normalization procedure b are significantly better. The damage location is 

correctly identified – LP3 – in more than 70% of the cases. Furthermore, considering that the 

identification of contiguous load positions (LP2 and LP4) is also acceptable regarding the 

location of damage (see Fig. 1), only in 15% of the cases the damage location is not correctly 

identified. On the other hand, using the normalization procedure a the location of damage is 

incorrectly identified in almost 40% of the cases. 

Table 3 presents the comparison in terms of time to detection, given by MPCA applied to the 

time-series type II, between both normalization procedures. The data presented in the table 

includes the true-positive damage detection cases associated with load positions 2, 3 and 4 

only. The time to detection using the normalization procedure b is smaller. Therefore, the 

normalization procedure b applied before the MPCA on the data set of type II provides the most 

reliable results in terms of damage location and lower times to detection. 
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Table 1 – Time to detection using time-series type I. 

Normalization a b 

Minimum 13 25 

Maximum 28 157 

Mean 18.4 58.6 

Standard deviation 3.2 23.9 

Table 2 – Damage location (load position that signalizes the occurrence of damage) using time-series type II. 

Normalization a b 

False-positives 2 3 

Load position 3 31 72 

Load positions 2 and 4 31 13 

Other load positions 36 12 

Table 3 – Time to detection using time-series type II. 

Normalization a b 

Minimum 13 16 

Maximum 92 63 

Mean 41.2 31.3 

Standard deviation 16.9 9.5 

 

4.3. Robust Regression Analysis (RRA) 

The procedure adopted to detect damage using RRA involves determining whether there are 

points lying far from the regression line estimated during a reference period. This requires 

calculation of ˆ
jX  and the differences ˆ  j jX X , denoted as residuals, during the training and 

monitoring phases.  As in the MPCA, the training phase involved 800 crossings, in which the 

mean, j , and the standard deviation, j , were computed in order to define thresholds for 

damage detection. During the monitoring phase, as soon as at least 9 points ( outN ) out of 10 

consecutive points ( testN ) exceeded the threshold, assumed to be 3  , a structural change 

is flagged. The procedure of flagging damage only when at least outN  points, out of testN  

consecutive points, exceed the threshold bounds improves the reliability of the method, 

preventing false positive  indications.  

In statistics the correlation coefficient is a measure of the correlation (linear dependence) 

between two variables X and Y. It is widely used as a measure of the strength of linear 

dependence between two variables. Consider a data set of type I containing one crossing only, 
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with noise in the measurements as described in Section 2.1. Table 4 presents the correlation 

coefficients for the influence lines of the four sensors.  

Table 4 – Correlation coefficients between the sensors (1 crossing). 

 VDM HDR RLB RRB 

VDM 1 0.997 0.953 -0.954 

HDR 0.997 1 0.956 -0.957 

RLB 0.953 0.956 1 -0.832 

RRB -0.954 -0.957 -0.832 1 

 

Although values for the correlation coefficients for all sensor pairs are relatively high (higher 

than 0.8), the relation between the sensors response is not linear. Fig. 12 presents the relation 

between the vertical displacement at mid-span (VDM) and the horizontal displacement at the 

roller support (HDR) during one crossing. Fig. 12 a) presents both the relation between the 

measurements and the corresponding regression line whereas Fig. 12 b) presents the residuals 

between the measurements and the predictions computed with the regression line. Although the 

correlation coefficient is very close to 1 ( 0,997  ), it is clear that the relationship between 

responses VDM and HDR is not linear, see Fig. 12 b). 

  

a) Values b) Residuals 

Fig. 12 – Relationship between  VDM and the HDR. 

Fig. 13 presents the relationship between the vertical displacement at mid-span (VDM) and the 

rotation over the left support bearing (RLB) during one crossing. Fig. 13 a) presents both the 

relationship between the measurements and the corresponding regression line whereas Fig. 13 

b) presents the residuals between the measurements and the predictions computed with the 

regression line. In both figures it is clear that the relationship between these responses (VDM 

and RLB) is not linear. Therefore it may not be appropriate to apply the RRA using time-series 

type I. 
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a) Values b) Residuals 

Fig. 13 – Relationship between  VDM and the RLB. 

Consider a dataset of time-series type II, 100 crossings, in the baseline condition, with load 

variability of ±10% around a service load of 8.75 kN and noise in the measurements as 

described in Section 2.1. Fig. 14 presents the relationship between the vertical displacement at 

mid-span (VDM) and the horizontal displacement at the roller support (HDR) when the load is, in 

both cases, at mid-span, LP6 (see Fig. 1). Fig. 14 a) presents both the relationship between the 

measurements and the regression line whereas Fig. 14 b) presents the residuals of taking the 

difference between  measurements and the predictions computed with the regression line. The 

relationship between these responses is linear. 

  

a) Values b) Residuals 

Fig. 14 – Relationship between the VDM and HDR when the load is at mid-span, LP6. 

Therefore the RRA will be applied using only the time-series type II. The results of the RRA 

applied on the data set of type II, containing 44 time histories, as described in Section 4.1, are 

presented below.  

Fig. 15 presents the residuals of measurements and predictions computed with the regression 

line using RRA obtained with the time series corresponding to the HDR response for load 

position 2 and the VDM for load position 5 – one of the pairs that present the smallest time to 
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detection. The damage is detected 9 crossings after its occurrence. The plot shows a clear 

change in the structural condition. 

 

Fig. 15 – Residuals obtained applying RRA to the relation between the time-series type II of the HDR for load position 2 

and the VDM for load position 5. 

Fig. 16 presents the relationship between the responses recorded by the HDR for load position 

2 and the VDM for load position 5 before (black) and after (gray) damage. The effect of the 

occurrence of damage is clearly flagged by the shift of the relationship between the responses 

before and after damage. 

 

Fig. 16 – Relationship between the time-series type II of the HDR for load position 2 and the VDM for load position 5 

before (black) and after (gray) damage. 

In order to validate the applicability of the RRA as a reliable damage detection procedure, using 

time-series type II, 100 analysis adopting different random sequences, both in terms of load 

variability and noise in the measurements, were performed. In every case, the occurrence of 

damage was correctly identified. Moreover, the time to detection in every situation was nine 

crossings. 

5. Conclusions 

This paper discusses the application of data-driven methods on moving-load data in order to 

detect the occurrence as well as the location of damage. The present methodology takes into 

account the quasi-static structural response only and thus, the dynamic component is not 

included. Using a damage scenario of a local crack in a reinforced concrete element, simulated 
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as a stiffness reduction in a beam element,  time series of moving-load data is useful input for 

behaviour-model-free (non-physics-based) methods. Based on the results described in this 

paper, the following conclusions are drawn: 

i. Data processing using MPCA allows the early detection of changes in the structural 

response and the location of damage. Two types of normalization of the data prior to 

the calculation of the principal components were tested. Normalization a consists of 

subtracting the mean prior to the calculation of the covariance matrix. In normalization 

b, the data is also divided by the standard deviation.  The results showed that: i) using 

time-series type I and normalization a, MPCA allows the earliest detection of damage; 

ii) using the time-series type II and normalization b locates damage the best.  

ii. Applying RRA on time-series type I was not appropriate because the response 

relationships are not linear. Using time-series type II, the occurrence of damage was 

detected. However, the method does not provide information related to damage 

location. 

iii. In general, the time to detection using RRA is smaller than MPCA. Therefore, the 

combination of both methods provides the most complete information on structural 

condition. 

 

Acknowledgements 

The first author acknowledges  FCT - Portuguese Foundation for Science and Technology for 

the financial support to PhD Grant SFRH/BD/42315/2007. The authors thank I. Laory for his 

support related to the application of  MPCA and RRA. 

References 

[1] L.A. Bisby, An Introduction to Structural Health Monitoring, ISIS Educational Module 5, ISIS Canada, 2004. 

[2] Z. Lounis, Aging highway bridges, Canadian Consulting Engineer, 48 (2007) 30-34. 

[3] L. Shoup, N. Donohue, M. Lang, The Fix We're in For: The State of Our Nation's Bridges, Transportation for America 
(T4 America), 2011. 

[4] R. Kaschner, C. Cremona, D. Cullington, Review of current procedures for assessing load carrying capacity, Bidge 
Management in Europe (BRIME), 1999. 

[5] G. Sedlaccek, O. Hechler, A. Losche, B. Kuhn, Guidelines for monitoring of steel railway bridges, Sustainable 
Bridges, 2007. 

[6] J.M.W. Brownjohn, Structural health monitoring of civil infrastructure, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 
365 (2007) 589-622. 



26 

[7] C.R. Farrar, K. Worden, An introduction to structural health monitoring, Philos. Trans. R. Soc. A-Math. Phys. Eng. 
Sci., 365 (2007) 303-315. 

[8] Q. Zhang, Y. Zhou, Investigation of the applicability of current bridge health monitoring technology, Struct. Infrastruct. 
Eng., 3 (2007) 159-168. 

[9] K. Worden, J.M. Dulieu-Barton, An overview of intelligent fault detection in systems and structures, Struct. Health 
Monit., 3 (2004) 85-98. 

[10] ASCE SEI Comittee on Structural Identification of Constructed Systems, Structural Identification (St-Id) of 
Constructed Facilities - Approaches, Methods and Technologies for Effective Practice of St-Id, 2011. 

[11] P. Moyo, J.M.W. Brownjohn, Detection of anomalous structural behaviour using wavelet analysis, Mech. Syst. 
Signal Proc., 16 (2002) 429-445. 

[12] P. Omenzetter, J.M.W. Brownjohn, Application of time series analysis for bridge monitoring, Smart Mater. Struct., 
15 (2006) 129-138. 

[13] F. Lanata, A. Del Grosso, Damage detection and localization for continuous static monitoring of structures using a 
proper orthogonal decomposition of signals, Smart Mater. Struct., 15 (2006) 1811-1829. 

[14] D. Posenato, P. Kripakaran, D. Inaudi, I.F.C. Smith, Methodologies for model-free data interpretation of civil 
engineering structures, Comput. Struct., 88 (2010) 467-482. 

[15] A.J. Cardini, J.T. DeWolf, Long-term structural health monitoring of a multi-girder steel composite bridge using 
strain data, Struct. Health Monit., 8 (2009) 47-58. 

[16] S. Chakraborty, J.T. DeWolf, Development and implementation of a continuous strain monitoring system on a multi-
girder composite steel bridge, J. Bridge Eng., 11 (2006) 753-762. 

[17] R. Zaurin, F.N. Catbas, Structural health monitoring using video stream, influence lines, and statistical analysis, 
Struct. Health Monit., 10 (2011) 309-332. 

[18] I.-Y. Choi, J.S. Lee, E. Choi, H.-N. Cho, Development of elastic damage load theorem for damage detection in a 
statically determinate beam, Comput. Struct., 82 (2004) 2483-2492. 

[19] S. Stohr, M. Link, R. Rohrmann, W. Rucker, Damage detection based on static measurements on bridge structures, 
in: IMAC XXIV - 24th Conference and Exposition on Structural Dynamics, St. Louis, Missouri, USA, 2006, CD format, 12 
pages. 

[20] A. González, E.J. OBrien, Calculation of the influence line of a bridge using a moving vehicle, in: IABMAS'08 - 4th 
International Conference on Bridge Maintenance, Safety and Management, H.-M. Koh, D.M. Frangopol (Eds.), Seoul, 
Korea, 2008, pp. 3191-3198. 

[21] P. Paultre, J. Proulx, M. Talbot, Dynamic testing procedures for highway bridges using traffic loads, J. Struct. Eng.-
ASCE, 121 (1995) 362-376. 

[22] M. Hubert, P.J. Rousseeuw, K. Vanden Branden, ROBPCA: a new approach to robust principal component 
analysis, Technometrics, 47 (2005) 64-79. 

[23] E. Figueiredo, G. Park, J. Figueiras, C. Farrar, K. Worden, Structural Health Monitoring Algorithm Comparisons 
Using Standard Data Sets, Los Alamos National Laboratory, 2009. 

[24] D. Posenato, F. Lanata, D. Inaudi, I.F.C. Smith, Model-free data interpretation for continuous monitoring of complex 
structures, Advanced Engineering Informatics, 22 (2008) 135-144. 

[25] I. Laory, T.N. Trinh, I.F.C. Smith, Evaluating two model-free data interpretation methods for measurements that are 
influenced by temperature, Adv. Eng. Inform., 25 (2011) 495-506. 

[26] D. Posenato, Model-Free Data Interpretation for Continuous Monitoring of Complex Structures, Ph.D. Thesis, École 
Polytechnique Fédérale de Lausanne, 2009. 

[27] D.C. Montgomery, G.C. Runger, Applied Statistics and Probability for Engineers, John Wiley, New York, 1999. 

[28] MatLab, MATLAB R2012.a Statistics Toolbox: Robust Regression, The MathWorks. 

[29] J. Shlens, A tutorial on principal component analysis, 2009, www.snl.salk.edu/~shlens/pca.pdf. 
 

 

http://www.snl.salk.edu/~shlens/pca.pdf


List of Tables 

Table Caption 

1 Time to detection using time-series type I 

2 Damage location (load position that signalizes the occurrence of damage) using time-series type II 

3 Time to detection using time-series type II 

4 Correlation coefficients between the sensors (1 crossing) 

 
 

List of Tables



 

Normalization a b 

Minimum 13 25 

Maximum 28 157 

Mean 18.4 58.6 

Standard deviation 3.2 23.9 

 

 

 

 

Table 1



 

Normalization a b 

False-positives 2 3 

Load position 3 31 72 

Load positions 2 and 4 31 13 

Other load positions 36 12 

 

 

 

Table 2



 

Normalization a b 

Minimum 13 16 

Maximum 92 63 

Mean 41.2 31.3 

Standard deviation 16.9 9.5 

 

 

 

Table 3



 

 VDM HDR RLB RRB 

VDM 1 0.997 0.953 -0.954 

HDR 0.997 1 0.956 -0.957 

RLB 0.953 0.956 1 -0.832 

RRB -0.954 -0.957 -0.832 1 

 

 

 

Table 4



List of Figures 

Fig. Caption Format 
Width 
[mm] 

Height 
[mm] 

Resol 
[dpi] 

1 Frame model. pdf 120 80 1000 

2 
Comparison of the influence lines in the baseline condition 
(black) and in the damaged condition (gray), left, and the 
corresponding differences between the responses, right. 

tiff 150 150 1000 

3 

Comparison of the influence lines in the: i) baseline 
condition, under the reference moving load – ML (black); ii) 
baseline condition, under 1.10xML (light gray); iii)  damaged 
condition, under 1.07xML (gray), left, and the differences 
between the responses ii-i (light gray) and iii-i (gray), right. 

tiff 150 150 1000 

4 
Time-series type I, of the vertical displacement at mid-span 
(VDM). 

tiff 150 38 1000 

5 
Time-series type II, of the vertical displacement at mid-span 
(VDM) when the load is at mid-span, LP6. 

tiff 150 38 1000 

6 Time-series type I, of the rotation over the left support (RLB): - - - - 

6.a Whole period; tiff 150 38 1000 

6.b Expansion of part of the whole period. tiff 150 38 1000 

7 
Time-series type II, of the rotation over the left support (RLB) 
for load position 3. 

- - - - 

7.a Whole period; tiff 150 38 1000 

7.b Expansion of part of the whole period. tiff 150 38 1000 

8 
Time history of the coordinate corresponding to the RLB of 
the first principal component applying  MPCA on time-series 
type I using normalization a. 

tiff 150 38 1000 

9 
Time history of the coordinate corresponding to the HDR for 
load position 3 of the first principal component applying 
MPCA on time-series type II using normalization a. 

tiff 150 38 1000 

10 
Time history of the coordinate corresponding to the RRB of 
the first principal component applying MPCA on time-series 
type I using normalization b. 

tiff 150 38 1000 

11 
Time history of the coordinate corresponding to the RLB for 
load position 3 of the first principal component applying  
MPCA on time-series type II using normalization b. 

tiff 150 38 1000 

12 Relationship between the VDM and the HDR. - - - - 

12.a Values tiff 70 45 1000 

12.b Residuals tiff 70 45 1000 

13 Relationship between the VDM and the RLB. - - - - 

13.a Values tiff 70 45 1000 

13.b Residuals tiff 70 45 1000 

14 
Relationship between the VDM and HDR when the load is at 
mid-span, LP6. 

- - - - 

14.a Values tiff 70 45 1000 

14.b Residuals tiff 70 45 1000 

15 
Residuals obtained applying RRA to the relation between 
the time-series type II of the HDR for load position 2 and the 
VDM for load position 5. 

tiff 150 38 1000 

16 
Relationship between the time-series type II of the HDR for 
load position 2 and the VDM for load position 5 before 
(black) and after (gray) damage. 

tiff 70 45 1000 

 
 

List of Figures



Figure 1



Figure 2
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234746&guid=a499e186-272e-4e1a-ba2f-ce03affdb985&scheme=1


Figure 3
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234747&guid=86901154-07cd-451d-9624-c2b43faf67fc&scheme=1


Figure 4
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234748&guid=b441a826-ff5d-4bac-ac92-f724a3198726&scheme=1


Figure 5
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234749&guid=2b17a106-7430-4596-8c1d-e62e7bc806d3&scheme=1


Figure 6.a
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234750&guid=b849aec6-8001-452c-b0ce-499e59227844&scheme=1


Figure 6.b
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234751&guid=ccfe5871-60e3-41f8-a994-63a15f65bc94&scheme=1


Figure 7.a
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234752&guid=caf76e59-4051-40ef-a9dd-78d5688c658f&scheme=1


Figure 7.b
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234753&guid=91f8cbb3-5e4b-4b0c-a030-637aca2d92f2&scheme=1


Figure 8
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234754&guid=e8168549-2c34-4842-9582-2033a77f058f&scheme=1


Figure 9
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234729&guid=baf6bc4f-19bc-4aaf-bc5a-6fea45fdd763&scheme=1


Figure 10
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234730&guid=03f7f221-e425-4be7-a478-63f3e0b51b67&scheme=1


Figure 11
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234731&guid=f56d9de1-d16f-4e90-ade3-216d69cac45c&scheme=1


Figure 12.a
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234732&guid=b531d905-bfa0-4ef1-8093-b59d25033f83&scheme=1


Figure 12.b
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234733&guid=cdc951ab-faae-4502-a362-aa15a839e757&scheme=1


Figure 13.a
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234734&guid=894acacf-2d39-4260-9c6b-a36d717c6dcd&scheme=1


Figure 13.b
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234735&guid=589c53ca-f64e-4147-89a7-b7c7c3cbd1c8&scheme=1


Figure 14.a
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234736&guid=0d0ccb91-aff1-415a-bc78-5d533b698d53&scheme=1


Figure 14.b
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234737&guid=912e328c-260a-4ac1-a987-fddeb7035b1c&scheme=1


Figure 15
Click here to download high resolution image

http://ees.elsevier.com/ymssp/download.aspx?id=234738&guid=bd0ee7e3-eb79-4815-b097-305798764c0b&scheme=1


Figure 16
Click here to download high resolution image

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

http://ees.elsevier.com/ymssp/download.aspx?id=234728&guid=e9cbf134-9011-4820-89c9-7b4f2ce40040&scheme=1



