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Abstract—We present and validate a finite-element model for
coupled charge and heat transport in monolithically intercon-
nected thin-film solar modules. Using measured current–voltage
(I–V) and lock-in thermography (LIT) measurements of amor-
phous silicon minimodules, we experimentally validate our model.
The entire module volume is represented by two planes (front and
back electrodes) which are coupled in vertical direction using 1-D
models, leading to a large reduction of the degrees of freedom in
the numerical model and contributing to an efficient solution ap-
proach. As compared to 3-D models, the vertical coupling of the
charge transport is represented by local temperature-dependent
I–V curves. These can be obtained by drift–diffusion calculations,
single-cell measurements or, as presented here, by an analytical so-
lar cell diode model. Inhomogeneous heat sources such as Joule’s
heating in the electrodes lead to nonuniform temperature distribu-
tions. The explicit temperature dependence in the local I–V curve,
therefore, mediates the feedback of the thermal transport on the lo-
cal electrical cell characteristics. We employ measured I–V curves
under partial illumination and analytical solutions for the po-
tential distribution to validate this approach. Further, with LIT
measurements of the same modules with and without artificially
induced electrical shunts, we verify the computed temperature
distributions.

Index Terms—Amorphous silicon, artificial shunt generation,
characterization, defects, finite-element modeling (FEM), photo-
voltaic systems, simulation, thin-film devices.

I. INTRODUCTION

WORLDWIDE installed photovoltaic capacity has under-
gone rapid growth over the past few years and solar

electricity remains a very strong candidate for the large-scale
deployment of renewable energy sources. Silicon thin-film solar
cells and modules may be fabricated from abundant materials
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and are, therefore, viable for large-scale deployment [1]. Current
developments include the tailoring of surface textures of trans-
parent electrodes [2]–[4] and the associated processing steps [5].
Recently, dedicated manufacturing and modeling methods for
the creation and tuning of diffractive and plasmonic structures
have been proposed to increase the absorption in active lay-
ers [5]–[10]. Diminishing the conversion efficiency gap between
current lab-scale solar cells and large-area solar modules ne-
cessitates a comprehensive understanding of the macroscopic
device physics. Numerical modeling may assist in developing
this understanding [11] and has attracted interest from device
engineering. The characterization and design of electrical po-
tential and temperature distributions in thin-film solar modules
is an important task in view of nonideal operating conditions or
defects such as partial shading, shunts, and local heat sources.

SPICE and its derivatives are well suited for the elec-
trical characterization and optimization of solar modules.
Typically representing the solar module by a network of equiv-
alent circuit macromodels, it allows including the entire mod-
ule area and quantitative electrical analyses [12]–[20]. While
these approaches are able to reproduce measured current–
voltage curves, they have some drawbacks: a refinement of the
network—at a local defect for instance—requires a change in
the network topology and not a mere refinement of the dis-
cretization. Furthermore, a current density distribution has to be
mapped to a set of ideal resistors requiring a fine mesh to avoid
changing the direction of the current. If thermal transport effects
are to be considered, the thermal problem has to be translated
into an additional equivalent electrical circuit, such that it can
be solved by SPICE. The difficulty in mapping the simulation
volume onto a network of discrete components in equivalent
circuit modeling is circumvented in finite-element modeling
(FEM) approaches, where the entire simulation domain may be
represented by and discretized into smaller volumes [21], [22].
However, 3-D finite-element approaches are challenged by the
large geometric aspect ratio found in thin-film solar modules.
This necessitates a fine mesh leading to a large number of nodes
and long computation times.

Experimentally, current–voltage (I–V) measurements and
lock-in thermography (LIT) are commonly used for the char-
acterization of solar cells and modules. LIT is a powerful tool
in detecting and characterizing defects in solar cells and mod-
ules [20], [23], [24]. A physical model for the measured am-
plitude and phase information allows, e.g., extracting the local
diode characteristics [25]. A quantitative understanding of the
extracted temperature information requires a quantitative model
for the charge and heat transport (coupled by Joule heat [26])
inside the solar cell or the module.
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In this contribution, we present a new approach to the spatial
modeling of the electrical and thermal transport in monolithi-
cally interconnected thin-film solar modules. Our model frame-
work allows quantifying the detrimental effects that localized
defects and small inhomogeneities have on the module level.
Considering the very large aspect ratio of thin-film solar mod-
ules and their specific module topology, we project the volumes
of the electrodes and active layers onto three distinct simula-
tion domains, thus accounting for the entire module volume.
This allows circumventing the aforementioned limitations for
other simulation methods. This paper is organized as follows.
Section II presents the numerical method and introduces the
analytical and experimental means to validate it. Section III
presents and discusses the experimental validation. Section IV
concludes this paper.

II. METHODS

A. Boundary-Value Problem for Thin-Film Modules

Careful convergence analyses such as in [17] emphasize that
localized defects require a fine mesh to obtain accurate re-
sults. Concurrently, a fine mesh leads to large system equations
and, therefore, requires efficient solvers. Our solution method
is implemented in the finite-element multiphysics framework
NM-SESES [27], [28], which allows the coupling of differ-
ent physical fields and provides efficient numerics. NM-SESES
computes the numerical solution of the equations of both elec-
trical and thermal transport which, in our case, are coupled
via Joule’s heating and temperature-dependent local current–
voltage curves. A Newton iteration scheme is used to obtain
convergence for the coupled system. Our basic finite-element
grid contains 48 960 nodes. On each node, we compute the
electrical potential and the absolute temperature. Based on the
constitutive material laws, we can then extract the charge and
heat current distributions. The grid is predominantly rectangular
except for the contacts of the artificial shunts where the grid is
adjusted to the circular footprint of the solder points. The de-
composition of the simulation volume into two parallel planes
and a vertical coupling in between has already been applied to
fuel cell modeling [29]. A sketch of the simulated thin-film min-
isolar module is presented in Fig. 1. We thus neglect the lateral
charge transport in the amorphous silicon. This is justified, as
the resistance of the amorphous silicon is by several orders of
magnitude larger than the resistance of the ZnO. We restrict our
numerical analysis to the steady state, i.e., we compute the equi-
librated temperature and voltage distributions. The model may,
thus, only be applied to measurements where a quasi-steady-
state approximation is justified.

The electric transport in the plane electrodes is governed by
the conservation of the current density J

[
A · m−2

]

∇ · J = q0G (1)

with q0 = 1.602 × 10−19C the elementary charge and G the
generation rate in

[
s−1 · m−3

]
. Using Ohm’s law J = −σ · ∇ψ,

we obtain

−∇(σ · ∇ψ) =
J1D

d
(2)

Fig. 1. Schematic illustration of the simulation domains used to represent the
investigated thin-film minisolar module. The module consists of ten monolith-
ically interconnected single junction cells with an area of 6.8 cm × 1 cm each.
We refer to individual cells by their numbering as presented in the figure. Ex-
ternal contacts are established on rear electrodes 1 and 10 with solder paste and
aluminum stripes. Top: cross section of the unit cell of the two 2-D simulation
domains representing the front and rear transparent conducting oxide (TCO)
electrode. Note that these planes are perpendicular to the plane of the figure at
bottom. The interconnection area is represented by six domains: TCO(f/b)(l/s)
and IC(f/b), f and b denote front and back, l and s denote lateral and vertical, and
IC interconnection, where no transport occurs. Bottom: layout of the bottom
electrode and contacting scheme.

where σ
[
S·m−1

]
is the conductivity, ψ([V]) the electric po-

tential, and J1−D the current coupled in by the 1-D coupling.
Assuming invariance in the vertical z-direction, this amounts
to a source term q0G = J1−D/d, where d [m] is the thick-
ness of the transparent electrode. As there is no dependence in
z-direction, we may integrate the equation over the thickness
of the electrode, which yields a factor of d and results in the
2-D formulation of the problem. We thus solve the equivalent
problem of (2) multiplied by the thickness d and may write

σ2D = σ · d =
1

Rsheet
(3)

as the sheet resistance Rsheet
[
S−1] is given by

Rsheet =
ρ

d
=

1
σ · d (4)

with ρ [m/S] being the resistivity. The electrical coupling be-
tween top and bottom electrode is given by a local I–V curve
(see Fig. 1) parameterized as follows:

j1(V ) = j0

[
exp

(
q0V

nkT

)
− 1

]
− jphoto

+GshuntV

(

1 + b

(
1 − V

Vbreakdown

)−m
)

(5)
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with n [1] being the ideality factor, k = 1.381 × 10−23 [J·K−1 ]
the Boltzmann constant, T [K] the temperature, jphoto

[
A·m−2

]

the photocurrent, Gshunt [S] the shunt conductance, and b,m
(both [1]) and Vbreakdown [V] the breakdown parameters. The
dark saturation current j0 is given by [30]

j0 = 1.5 × 109 exp
(
−Eg

kT

)
in

[
A·m−2] (6)

where Eg [J] is the bandgap energy. The above parameterization
is our choice among many options that have been discussed in
the literature (see, e.g., [1]) and we expect that our findings are
largely robust against a change in this choice. In our parame-
terization, we allow for a linear shunt and a breakdown. The
electrical coupling within the cell interconnection is ohmic and
represented by an equivalent conductivity Gequiv

j2(V ) = GequivV. (7)

Similarly, for the thermal transport, we write

−∇(κ · ∇T ) = qJoule −
∑

i

F i
ext

d
(8)

where κ
[
W·m−1 ·K−1] is the thermal conductivity, qJoule[

W·m−3
]

denotes the source term for Joule heating, and the
external heat fluxes F i

ext
[
W·m−2

]
consist in convection, radi-

ation transfer, parasitic absorption, and heat exchange between
the upper and lower electrode. The coupling between the elec-
trical and the thermal transport is given by Joule’s heating

qJoule = σ|∇ψ|2 . (9)

With Ohm’s law

j = σE = −σ∇ψ (10)

where E
[
V·m−1

]
denotes the electric field, we obtain

qJoule = j · E. (11)

B. Analytical Solution and Validation of the FEM Approach

To validate our numerical approach and determine the re-
quired mesh density, we consider a case where we may derive
the analytical expression for the potential distributions in the
electrodes and the extracted current. To this end, we consider a
single cell that is interconnected as in a module, as depicted in
Fig. 1, however without the interconnection domains. We thus
model the potential in domains TCOf and TCOb. We do not
assume a homogeneous potential distribution in either the back
or the front contact. The continuity equation for the current in
the top electrode [see (1)] can be written as

∂jx

∂x
=

j1D(x)
d

. (12)

We thus assume jy = 0 due to the symmetry of the problem and
jz = 0, as we approximate the current density by transport in
a plane. The generation is given by G = j1D(x)/(q0d), where
j1D(x) is the local solar cell current and d the thickness of the
electrode. In the bottom electrode, j1D(x) appears as a sink.

Using Ohm’s law J = −σ · ∇ψ, we obtain

∂

∂x

(
−σ

∂

∂x
ψT (x)

)
=

j1D(x)
d

. (13)

To make our problem accessible to an analytical derivation, we
linearize the local solar cell current according to

j1D(x) = jph − ψT (x) − ψB (x)
Voc

jph . (14)

We now substitute the dimension-less quantity 1/θ2 =
jph/(σdVoc) whereby we assume an isotropic conductivity. We
now state the system of equations with boundary conditions:

− ∂2

∂x2 ψT (x) =
Voc − (ψT (x) − ψB (x))

θ2 (15)

− ∂2

∂x2 ψB (x) = −Voc − (ψT (x) − ψB (x))
θ2 (16)

ψT (−L/2) = Vapp/2 ψB (L/2) = −Vapp/2 (17)

∂ψT (L/2)
∂x

= 0
∂ψB (−L/2)

∂x
= 0. (18)

We have now obtained an inhomogeneous system of linear dif-
ferential equations of second order. For a given potential distri-
bution, the extracted current is implicitly given by Ohm’s law:

J(Vapp) = −σ
∂ψT (−L/2)

∂x
. (19)

We note that one trivial particular solution for the potential
distributions is given for Vapp = Voc by ψT (x) ≡ −ψB (x) ≡
Voc/2.

We now turn to calculate the error between the analytical
and the numerical solution. For this, we consider the nontrivial
case Vapp = Voc/2 = 1/2 V. For simplicity and without loss of
generality, we set L = jph = d = σ = 1, and therefore, θ = 1.
For these constants and boundary conditions, the solution is
given by

ψT (x) =
1
2

⎛

⎝

√
2x sinh

(
1√
2

)
− cosh

(√
2x

)

√
2 sinh

(
1√
2

)
+ 2 cosh

(
1√
2

) + 1

⎞

⎠ (20)

ψB (x) =
1
2

⎛

⎝

√
2x sinh

(
1√
2

)
+ cosh

(√
2x

)

√
2 sinh

(
1√
2

)
+ 2 cosh

(
1√
2

) − 1

⎞

⎠ (21)

J(Voc/2) = − 1

1 +
√

2 coth
(

1√
2

) ≈ 0.3 A. (22)

In Fig. 2, we plot the solution for the top (ψT (x)) and the
bottom (ψB (x)) contact. The numerical accuracy of the solution
increases by refining the mesh, as illustrated in Fig. 3, where we
plot the numerical error as a function of the number of nodes
that we use to discretize the simulation domain. Note that we
determine the error between the analytical and the numerical
solutions of the potential distributions, and the external current
[see (20)–(22)]. As the external current is implicitly determined
by the potential distribution, we obtain the same convergence
rate as for the potential.
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Fig. 2. Analytical solution of the potential distribution in the top and bottom
electrode for Vapp = Vo c/2, L = 1, and θ = 1.

Fig. 3. Numerical error in the computed potential distribution and extracted
current through the top electrode as a function of the number of nodes for
Vapp = Vo c/2, L = 1, and θ = 1.

TABLE I
ELECTRICAL CELL PARAMETERS EXTRACTED FROM THE CURRENT–VOLTAGE

MEASUREMENTS UNDER FULL AND PARTIALLY SHADED AM1.5 ILLUMINATION

C. Experimental Methods

1) Amorphous Silicon Minisolar Modules: For the experi-
mental verification of our modeling results, we use amorphous
silicon minimodules that are cut out of an industrial size module.
The modules were produced in an industrial reactor; however,
no back reflector or encapsulation was realized. This allows for
direct access to the rear electrode. Both front and back electrode
materials are low-pressure chemical vapor deposition ZnO. The
active cell consists of a p-i-n superstrate structure, which is de-
posited on the ZnO-Glass substrate. The module contains ten
cells (of which only cells 2–10 are connected) with an area of
6.8 cm × 1 cm each. Contacts on the modules are established
using solder paste on the rear electrodes of the first and the

Fig. 4. Numerical solution and measured I–V curves for a-Si minimodule with
shading.

last serially connected cell; the last cell, cell 1, is thus isolated.
Therefore, only cells 2–10 remain active.

2) Current–Voltage Curves Under Partial Illumination:
Current–voltage curves are obtained under AM1.5 illumination
(Wacom 4-source sun simulator, AAA rating) with a controlled
voltage source (Keithley 2601A). Shading was realized using
wire mesh equal density filters with a transmission of T = 58%.
Artificial shunts were realized using aluminum stripes that we
soldered onto the accessible back contacts.

3) Lock-in-Thermography: In this study, an experimental
LIT setup has been custom designed in our laboratory in
Winterthur, Switzerland. The solar cell contacts are connected to
an ac/dc power supply (VSP 1410, Voltcraft). The cover glass is
directly sucked to a thick metallic heat sink. A highly sensitive
microbolometer camera (PI450, Optris GmbH) synchronized
with the voltage modulation signal records the thermal emis-
sion of the solar cell surface. Thermal images are recorded with
the camera facing the rear transparent electrode. The infrared
images are demodulated by a computer according to the standard
lock-in method (SLIM [23]). The amplitude and phase images
resulting from this demodulation are displayed in pseudocolors.
The ac modulation frequency is chosen high enough to ensure
a proper rejection of the signal dc part, and it compensates for
the lateral heat spreading. The number of modulation cycles is
chosen to achieve the desired sensitivity S (in Kelvins) [23]:

S =
NETD

√
frame rate × tacquisition

. (23)

In our case, the noise equivalent temperature differ-
ence NETD = 40 mK, frame rate = 80 Hz, and tacquisition =
150 s. The temperature sensitivity in our setup, thus, amounts to
S ≈ 0.4 mK, and we thus scale the obtained lock-in amplitude
to this value.

III. RESULTS AND EXPERIMENTAL VALIDATION

A. Electrical Model: Partially Shaded Amorphous
Silicon Minimodules

In Fig. 4, we present the current–voltage measurements of
the studied amorphous silicon solar minimodule under full and



4000308 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2013

Fig. 5. Reverse bias dark lock-in amplitude image of the amorphous silicon
minimodule measured at −4 V dc and scaled to 0.35 mK. AC modulation am-
plitude is 8 V, modulation frequency is 1 Hz, and integration over 150 periods.

partially shaded AM1.5 illumination. The blue-dotted line
shows the current–voltage curve as measured under standard
test conditions, i.e., revealing photocurrent, fill factor, and open-
circuit voltage of the module. The blue solid line shows our
model calculation, accurately reproducing the measured curve.
The upper black-dotted line shows the I–V measurement under
partial illumination: we shade cell number 10 (for cell num-
bering, see Fig. 1) using an equal density wire mesh filter with
a partial transmission of T = 58%. We simulate this measure-
ment (black solid line) by scaling the photocurrent of the shaded
cell by 58%. As is apparent in Fig. 4, the shaded cell is operated
at reverse and its reverse characteristic is revealed in the (−2, 1)
voltage range producing the well-known S-shaped voltage curve
of modules containing shaded or shunted cells. The numerical
model also accurately reproduces the measurement under partial
illumination. In principle, the analysis for such a well-defined
shading pattern can also be done analytically (see, e.g., [1]), and
hence, we expect to obtain a quantitative agreement. Given our
model simplifications, such as the parameterization of the 1-D
coupling, the numerical correspondence and accuracy between
experiment and simulation will be harder to obtain for more
complicated shading patterns.

B. Electrothermally Coupled Model: Shunts and
Inhomogeneous Conductivity

Partially shading an entire cell is a well-controllable experi-
ment and does not require a spatial charge transport model. The
above result of Section III-A could also be achieved with a sim-
ple equivalent circuit model containing macromodels for each
cell. To motivate and validate our multiphysics spatial model,
we now turn to the case of localized defects. To this end, we
introduce two artificial defects in the minimodule, as can be
seen in Fig. 5 (experimental details below).

Fig. 6. Reverse bias dark lock-in phase image of the amorphous silicon mini-
module measured at −4 V dc. The phase image corresponds to the wavefronts
of the temperature response of the module. Experimental parameters identical
to Fig. 5.

To validate the thermal transport model in the solar mod-
ule model, we use LIT measurements as described previously.
As we intend to simulate the measurement with a steady-state
model, we choose a low excitation frequency of 1 Hz. As the
studied minimodule contained no severe shunts, we introduced
two artificial defects. First, a short aluminum stripe was soldered
to the back contacts of two neighboring cells, creating a short
circuit. Second, again using solder paste, we created a small
patch of solder paste on the back contact of cell number 5 (cf.,
Fig. 1), thus changing the local effective sheet conductivity of
the back contact. We chose to introduce the shunts in this way
to obtain defects that can be implemented straightforwardly in
the model (for other possibilities, see, e.g., [11] and [20]). We
positioned the defects to avoid a symmetrical configuration; oth-
erwise, we did not study in detail the specific influence of the
shunt position (cf., e.g., [19]). Both defects are clearly visible in
the LIT measurements, in both amplitude, as presented in Fig. 5
(where we have highlighted the defects with yellow circles) and
in phase, as presented in Fig. 6. The bright spot on cell 2 on
the left in Fig. 5 is a result of the manually applied silver paste
whose width narrows at this spot and was not considered in the
FEM model. Representing these engineered defects in our nu-
merical model of the solar module again requires a projection
onto the simulation domains. We effectively model both defects
by a locally increased electrical and thermal conductivity of
the rear simulation plane representing the back electrode and,
within the domains of the shunts, the solder paste. As the lower
simulation domain represents the entire device volume below
the absorber layer, the model equations are formulated in terms
of effective or sheet conductivities, as discussed in (4).

The numerical results are presented in Figs. 7 and 8. In the
model, we include the two outer solder stripes that establish
the external contacts and the two soldered defects that are
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Fig. 7. Calculated steady-state temperature distribution for Vapp = −4 V.
Geometry and model parameters in Fig. 1 and Table I. In Fig. 9, we plot the
computed electrical potential distribution along the blue line in the figure.

Fig. 8. Calculated steady-state heating distribution for Vapp = −4 V. Geom-
etry and model parameters in Fig. 1 and Table I.

highlighted in Fig. 5. Our model—so far—solves for the sta-
tionary solution of the equations for a constant voltage bias. The
thus obtained temperature distribution is presented in Fig. 7. The
increased local temperature in the vicinity of the shunt across
the cell boundary is clearly visible. Furthermore, this tempera-
ture increase, around 0.1 mK, is in the same order of magnitude
as the measured temperature increase; cf., Fig. 5, where we ob-
tain around 0.3 mK. LIT reveals the shunt-induced heating [23].
Our numerical model also computes the local heat divergence,
or heating [cf., right side of (8)].

In Fig. 8, we present this numerically determined heating
distribution which, just as in the electrical case, is deduced from

Fig. 9. Plot of the computed steady-state electrical potential distribution
across all stripes in the back contact for Vapp = −4 V along the line
[x = 0 − 6 cm, y = 4.2 cm] (cf., Fig. 7), similar as in Fig. 2. Solid black line:
with shunts as described in the text, dashed blue line: without shunts, dotted red
line: ψB ,with shunts (x) − ψB ,no shunts (x).

the temperature distribution and the associated material laws.
Close inspection of Fig. 8 reveals the influence of both soldered
defects on the heating distribution. On the bottom of Fig. 8, the
solder point appears slightly brighter as its local neighborhood.
On the top of Fig. 8, the immediate vicinity of the short circuit
is shown to be heated by a large current that flows between
the two back contacts. The shunt across the cell boundary itself
acts as a heat dissipator with a corresponding negative heating
rate. To illustrate the extended effect of the shunts, we plot in
Fig. 9 the computed electrical potential distribution along the
line [x = 0 − 6 cm, y = 4.2 cm], similar as in Fig. 2.

IV. DISCUSSION AND CONCLUSION

We have presented our recently developed FEM of the spa-
tial electrical and thermal transport in thin-film solar modules.
This model has been validated on the example of an amorphous
silicon solar minimodule that consists of nine monolithically in-
terconnected solar cells. Using current–voltage measurements
with and without partial shading and LIT measurements in the
dark, we experimentally characterize the detrimental effects of
artificially created shunts that are electrically and thermally ac-
tive. Using our numerical model, we successfully reproduce the
measured I–V curves. Further, the model qualitatively correctly
accounts for the thermal signal of shunts obtained by LIT in the
dark.

Our numerical results and their comparison with experimen-
tal data support our claim of correctly including the relevant
physics for the coupled problem of electrothermal transport in
defect-affected thin-film solar modules. Furthermore, having
both electrical potential and temperature distribution at hand al-
lows for advanced investigations such as computing the locally
produced or dissipated power. This may be used to quantita-
tively characterize the detrimental nonlocal effect of inhomo-
geneous conductivities and localized shunts. So far, we cannot,
however, reproduce the experimentally obtained amplitude and
phase information that we get from LIT. This will be possible
once we solve the time-resolved equations with ac bias. We now
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intend to use our model for the analysis and characterization of
degradation phenomena in thin-film solar modules. Thanks to
the underlying efficient numerical framework, the model-based
study of the detrimental long-term effects of nonuniform layer
thicknesses and water ingress, e.g., is within reach using our
model.
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