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Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning)
or due to various neurological disorders.We testedwhether real-time fMRI-based neurofeedback can be a tool to
voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related
effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and
subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer
phase without learning).
Using independent component analysis (ICA), we found network reconfigurations (increases in functional
network connectivity) during the neurofeedback training phase between the auditory target region and
(1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to intro-
spection and self-regulation and (4) working memory and high-level visual attention areas related to cogni-
tive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional
networks without a-priori assumptions. During the transfer phase, we again found specific functional connectiv-
ity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on
functional connectivity. Functional connectivity toworkingmemory relatednetworkswas no longer altered con-
sistent with the absent demand on working memory.
We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity.
In contrast, applying learned self-regulation involves more limited and specific network changes in an audi-
tory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recov-
ery from neurological disorders that are linked to abnormal patterns of brain connectivity.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Studying how different brain areas interact may hold the key to un-
derstand how information is processed in the human brain. Recent de-
velopments in data analysis techniques have opened up exciting
opportunities to investigate such functional connectivity with functional
magnetic resonance imaging (fMRI). The techniques to study large-scale
networks using fMRI can be divided into two main approaches.
According to the first approach, functional connectivity is measured by
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rights reserved.
interregional temporal correlations of the fMRI blood oxygenation level
dependent (BOLD) signal (Biswal et al., 1995). This approach requires
the choice of a seed region, for which correlation maps can be built.
Among other findings, seed-region based approaches lead to the discov-
ery of resting-state functional networks (Fox and Raichle, 2007). The
second approach relies on multivariate and data-driven techniques
such as independent component analysis (ICA) (Calhoun et al., 2001b;
McKeown et al., 1998a, 1998b). ICA can be used to decompose the data
into a set of spatial maps and associated time-courses without using
pre-defined seed regions (Daubechies et al., 2009). Group-level ICA is
a powerful technique to investigate distinct functional networks
(Beckmann et al., 2005; Damoiseaux et al., 2006; Greicius et al., 2003).

Many fMRI studies exploring functional connectivity intrinsically
assume a static organization. However, recent evidence suggests that
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functional connectivity can be modulated spontaneously (Raichle,
2010), by exogenous stimulation (Buchel et al., 1999), and by learning
(Bassett et al., 2011; Lewis et al., 2009). Importantly, changes in
functional connectivity have also been linked with the course of a vari-
ety of neurological diseases (Fox and Greicius, 2010) as well as the re-
covery from certain neurological diseases (Wang et al., 2010). Such
observations raise the possibility that learning-related changes in func-
tional connectivity can help to accelerate the recovery. This is especially
the case if the learning-related changes in functional connectivity can
be targeted at the networks involved in the recovery.

A new and promising approach that allows targeting specific regions
and networks directly is real-time fMRI (rt-fMRI) neurofeedback
(deCharms, 2008; Weiskopf et al., 2004b). The basic principle of rt-fMRI
neurofeedback is to present a biofeedback signal extracted online from
fMRI BOLD measurements. With the help of such a signal, participants
can learn self-regulation of BOLD activity by means of operant condition-
ing. Several studies have demonstrated the feasibility of self-regulating
activity in specific brain areas using rt-fMRI neurofeedback (e.g.,
deCharms et al., 2004; Posse et al., 2003; Weiskopf et al., 2003,
2004a; Yoo and Jolesz, 2002). Some studies have even shown that
self-regulation results in clinical benefits for specific neurological condi-
tions such as chronic pain (deCharms et al., 2005), tinnitus (Haller et al.,
2010), and Parkinson's disease (Subramanian et al., 2011). Further,
there is preliminary evidence that learning self-regulation of brain activity
can lead to changes in functional connectivity (Horovitz et al., 2010; Lee et
al., 2011; Rota et al., 2011). However, the studies looking into changes in
functional connectivity are limited for two reasons. Firstly, they applied
seed-region approaches that limit the investigation of connectivity
changes to pre-defined region of interests (ROIs). Secondly, they only in-
vestigated connectivity changes during the neurofeedback training phase
but theydid not look into such changeswhenparticipants applied learned
self-regulation; i.e., when participants performed previously learned
self-regulationwithout feedback. Especially with respect to clinical appli-
cations the transfer condition is more important than the training phase
because learned self-regulation along with the accompanying changes
in functional connectivity can be voluntarily applied by the patient.

Here we significantly extend the previous investigations of changes
in functional connectivity due to neurofeedback by using data-driven
techniques that do not require defining a seed region a priori. Because
changes in functional connectivity during the neurofeedback training
phase might be related to the neurofeedback per se, to learningmecha-
nisms, or both, we included a transfer phase during which participants
applied the previously learned strategy in the absence of feedback
and hence absence of learning. We hypothesize that our data-driven
approach—i.e., independent component analysis (ICA)—can identify
changes in functional networks that are related to the neurofeedback
target region, in particular, the auditory cortex. Further, we hypothesize
that the functional connectivity changes during neurofeedback learning
will differ from the changes during applied self-regulation; e.g., only the
former will include changes in networks related to feedback processing
and reinforcement learning while the latter will demonstrate changes
in functional connectivity related to self-regulation.

Materials and methods

The setup and the experimental procedure were similar to a previ-
ously published study (Haller et al., 2010). For readability, the main
points are repeated here. For further details, please see Haller et al.
(2010). The data used in this study were collected for a previous exper-
iment examining the impact of rt-fMRI on the default-mode network
(Van De Ville et al., 2012).

Participants

Twelve healthy, right-handed individuals (mean age 28.4 years;
range 24–33) with normal audition gave written informed consent
to participate in the experiment, which was approved by the local
ethics committee. Before the experiment, they received written in-
structions describing that they will learn to regulate their auditory
cortex activity with the help of neurofeedback. The instructions in-
cluded an explanation of the neurofeedback display and recom-
mended as potential regulation strategies to direct attention away
from the auditory perception. Further, we explained to the participants
that the feedback was delayed by approximately 8 s (the hemodynamic
delay plus the real-time analysis processing time).

fMRI data acquisition

All experiments were performed on a 3 T Magnetom Verio
whole-body MR scanner, using a standard 12-channel receive head
coil (Siemens Healthcare, Erlangen, Germany). Functional data were
acquired with a single-shot gradient echo planar imaging sequence
(matrix size: 64 × 64; isotropic resolution: 3 × 3 × 3 mm; echo time
TE: 40 ms, repetition time TR: 2000 mswith 130 repetitions for the au-
ditory localizer runs, 195 repetitions for the training runs and 210
repetitions for the transfer runs). Additionally, we acquired an anatom-
ical T1-weighted structural scan of the whole brain (MPRAGE; 1 mm
isotropic resolution; matrix size 256 × 256; 176 sagittal partitions, TE:
3.4 ms, repetition time TR: 2000 ms, TI: 1000 ms).

The neurofeedback setup used Turbo BrainVoyager (Brain Innova-
tions, Maastricht, The Netherlands) and custom scripts running on
MATLAB (MathWorks Inc., Natick MA, USA). It allowed participants to
observe BOLD signal changes in specific brain regions with a delay of
less than 2 s from the acquisition of the image. Head motion was
corrected in real-time using Turbo-BrainVoyager.

Experimental procedure

In the first scanning session, a standard fMRI auditory block-design
paradigmwas performed to identify each participant's primary auditory
cortices. For this, we presented participants with 5 repetitions of 20 s bi-
lateral auditory stimulation interleaved with 20 s resting baseline. The
auditory stimulus was a sine tone of 1000 Hz and pulsating at 10 Hz,
which is known to induce a strong and long-lasting BOLD response
(Haller et al., 2006; Seifritz et al., 2002).

Next, participants took part in 4 rt-fMRI neurofeedback training runs
per day repeated over 4 days (with approximately 1 week intervals be-
tween training sessions). The training runs were composed of a 30 s
baseline block, followed by 4 repetitions of alternating blocks of 60 s
down-regulation and 30 s baseline blocks. During the down-regulation
blocks, the same pulsating sine tone of 1000 Hz as in the localizer runs
was presented. Participants were presented feedback about their suc-
cess, which indicated the percentage of signal change compared to the
previous baseline block. The visual feedback display was continuously
presented during the entire run.

After the neurofeedback training sessions, each participant
performed a single self-regulation in the absence of feedback (transfer
phase). While changes in connectivity during the training phase might
conflate regulation and learning effects, the transfer runs allow
assessing the effect of regulation without feedback and thus no further
learning-related effects. In the transfer phase, we also included a
counting-backwards condition; i.e., the participantswere asked tomen-
tally count backwards from 100 in steps of−7. The purpose of this task
was to ascertain a control task with cognitive and working memory
load, without the specific application of the previously learned
self-regulation strategy. The transfer runs were composed of five 20 s
down-regulation (D) blocks interleaved with five counting (C) back-
wards blocks and eleven rest (R) blocks of the same duration in a
RDRCR… design. The block length during the transfer runs was 20 s as
compared to 60 s during the training runs. During the training runs,
participants were asked to try out different down-regulation strategies
in the presence of neurofeedback. Therefore, we opted for regulation



Table 1
Overview of the 20 independent components. The functionally-relevant networks
were named and classified in agreement with Laird et al. (2011). A detailed description
of the activation clusters is available as online supplement.

IC number Anatomy/function Corresponding IC
(Laird et al., 2011)

1 Auditory network ICN 16
2 Artifactual/noise NA
3 Frontal DMN ICN 2
4 Pre-motor ICN 17
5 Auditory pathway No correspondence
6 Basal-ganglia ICN 3
7 Artifactual/noise NA
8 Artifactual/noise NA
9 High-level visual system and attention Partly ICN 7 and ICN 10
10 Insula Partly ICN 4
11 DMN Partly ICN 13
12 DMN Partly ICN 13
13 Peri-hippocampus No correspondence
14 Working-memory network No correspondence
15 Primary visual V1 ICN 12
16 Primary visual V2 ICN 11
17 DMN Partly ICN 13
18 DMN Partly ICN 13
19 Right parietal Partly ICN 15
20 DMN Partly ICN 13
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epochs of 60 s. In contrast, as we expect participants to regulate faster
during the transfer runs without feedback and further ability to learn,
we opted for shorter regulation epochs of 20 s in agreement with stan-
dard block-design fMRI studies (Amaro and Barker, 2006).

Data preprocessing and GLM analysis

Preprocessing was performed using the SPM8 software (Wellcome
Trust Centre for Neuroimaging, Queen Square, London, UK; http://
www.fil.ion.ucl.ac.uk/). The images were corrected for slice time
acquisition differences, spatially realigned to the first scan of each
run, normalized into MNI space (Montreal Neurological Institute,
resampled voxel size: 2 × 2 × 2 mm) by using the cubic B-spline in-
terpolation, and smoothed with an isotropic Gaussian kernel with
4 mm FWHM.

To assess if down-regulation was successfully learned, we specified
general linearmodels (GLMs)with regressors for the experimental con-
ditions (i.e. a boxcar function representing down-regulation and base-
line blocks convolved with the canonical hemodynamic response
function in SPM8). Data of the training runs were high-pass filtered
with a cut-off of 1/128 Hz and serial correlations were modeled by
the autoregressive model of order 1. The group level analysis included
the main effect of down regulation in the primary auditory cortex, as
well as the linear modulation as a function of training days. Statistical
maps for the modulation were obtained using a t-test for the corre-
sponding contrast and corrected for multiple comparisons using
family-wise error (FWE) at p b 0.05.

Independent component analysis

We used group spatial ICA (Calhoun et al., 2001b) to decompose the
training run data into independent components using the GIFT toolbox
(http://icatb.sourceforge.net/). We applied ICA to the complete training
data by concatenating all runs of all training days and all subjects. ICA
then decomposed the data into several temporally-coherent functional
networks (independent components, ICs). These maps were extracted
for each run along with their associated timecourses. We evaluated
the number of ICs and the “quality index” (i.e., so-called IQ measure)
of the ICASSO algorithm, which runs ICA multiple times and retains
the most reproducible centroids of the ICs. We found that 20 ICs
resulted in good reproducibility of all components as indicated by the
IQ measure, which warrants a stable and robust decomposition by
ICA. We also note that group-level ICA by concatenation of runs and
subjects is blind to any ordering.

We scaled the intensities at each voxel to spatial z-scores and
then performed a one-sample t-test over all runs/sessions/subjects
to determine the significant contributions for each IC (p b 0.05,
Bonferroni-corrected). Artifactual non-neurological ICs were identi-
fied using manual selection. In particular, three out of the 20 compo-
nents were excluded from further analyses because they reflected
artifacts due to head movement or physiological noise (see Table 1,
online Supplementary Table 1). We excluded component IC 7 due to
the fact that the majority of voxels are in the venous drainage system,
despite some “meaningful” voxels in the parieto-occipital region. We
repeated analyses with and without the inclusion of this IC, and there
was no significant modification of the results.

Functional network connectivity

We submitted the associated timecourses of the ICs (for each run) to
a connectivity analysis similar to Jafri et al. (2008); i.e., Pearson's corre-
lation coefficients were computed for all pairwise combinations of ICs,
leading to a 17 × 17 connectivity matrix for each of the 192 runs (4
runs per session × 4 sessions × 12 subjects). For every pair, we then
performed a linear regression of the session effect per subject, followed
by a second level analysis of the slopes. For each connection, a non-zero
gradual change over sessions was tested using a one-sample t-test of
the fitted slopes at p b 0.05 (Bonferroni-corrected for all possible con-
nections between the 17 ICs).

Instantaneous connectivity changes during applied self-regulation

To analyze the transfer runs, we performed “back-reconstruction”
(Calhoun et al., 2009) of the ICA networks; i.e., for each time point, all
the group-level IC spatial maps were fitted to the measured volumes.
This way, we obtained 20 timecourses for each transfer run, which we
detrended using cubic polynomial fitting. Next, we extracted the
timecourses of the ICs that showed changes in connectivity during
the neurofeedback training.

Direct comparison of functional connectivity for different conditions

For all the time courses of the selected ICs, we concatenated the
epochs corresponding to the same condition (i.e., baseline and
self-regulation for training runs; baseline, self-regulation, and counting
backwards for transfer runs); the hemodynamic lag was accounted for
by shifting the time courses by 6 s. Then, for the five functional network
connections that showed learning effects, we computed the correlation
between the ICs' timecourses for corresponding conditions, which
resulted in 24 correlation coefficients for training (2 conditions, average
correlation over 16 runs, 12 subjects) and 36 correlation coefficients for
transfer (3 conditions, 12 subjects). We performed a Fisher z-transform
followed by a) paired t-test to confirm the changes in functional net-
work connectivity between baseline and regulation during training;
b) paired t-test between change in connectivity baseline-regulation
during training versus transfer, and c) paired t-tests between the differ-
ent conditions during transfer. The confidence level of these tests was
set to p b 0.05 (Bonferroni-corrected for the number of functional net-
work connections).

Results

Rt-fMRI allows reducing BOLD activity in primary auditory cortex

Over the course of the four neurofeedback training days, partici-
pants learned to reduce activity in the neurofeedback target region
(see a previous publication of the same data for a detailed description
of the down-regulation over time (Van De Ville et al., 2012)). Please
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note that in the neurofeedback training runs, we actually presented
an auditory stimulus during the down-regulation blocks, which was
not present during the baseline blocks. Hence, participants are not ac-
tually down-regulating spontaneous activity in their auditory cortex,
but they are learning to reduce stimulus-induced activity. These re-
sults confirm our earlier report that voluntarily reducing auditory
cortex activity can be learned with the help of neurofeedback
(Haller et al., 2010).

Changes in functional network connectivity due to neurofeedback training

Using group-level ICA, we identified 17 temporally-coherent func-
tional networks that can be related to neurologically related processes
such as visual, auditory, and working memory (Laird et al., 2011);
i.e., we excluded 3 artifactual and vascular components out of the 20
ICs (Fig. 1). We next investigated the modifications in functional con-
nectivity between these functional networks. We found a significant
gradual change over neurofeedback training sessions in 5 connections
(p b 0.05, Bonferroni corrected for 17 IC components; inset of Fig. 2).
The changes in network connectivity as a function of neurofeedback
training are summarized in Fig. 3A. The auditory networkwas identified
as the hub of the training related changes; i.e., the connectivity with the
IC corresponding to the auditory network changed for several other ICs.
In particular, we observed increased functional connectivity along three
different axes: (a) brainstem auditory pathway (IC 5), (b) high-level
visual and attention networks (IC 9), and (c) a chain of three networks
including an early visual cortex network (IC 15) and insula (IC 10).
While typical working memory networks are usually less evidently
identified in classic resting-state fMRI studies (Damoiseaux et al.,
2006; Laird et al., 2011), IC 14 considerably overlaps with anterior and
1 2 3 
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12 11 13 

10 24 8
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Fig. 1. Representative spatial maps of the 20 independent components at axial levels in the M
8) are considered as noise/artifacts and represented with a shade. See Table 1 for the full li
parietal parts of the working memory network that are consistently
identified in task-related activation fMRI studies of working memory,
in particular in the context of n-back tasks (Braver et al., 1997; Jansma
et al., 2000). Note that the confluent parts of IC 14 partially overlap
with the motor network, which is, however, not further discussed in
the context of the current investigation. For each of the 5 significant
connectivity changes, the average correlation of all sessions as well as
the change in correlation over training sessions is provided separately
for each participant (Fig. 4A). We also notice that the timecourses of
the visual networks (ICs 9 and 15) show deactivation during regulation
blocks (Fig. 3A). This phenomenon might be explained by eye saccades
during the neurofeedback (Wenzel et al., 1996).

Changes in functional network connectivity due to self-regulation

Changes in functional connectivity occurring during the training
runs of neurofeedback might be related to self-regulation, related to
the process of learning, or a combination of both. In order to confirm
the specific effect of self-regulation on functional connectivity without
the potential confound of learning, we performed the direct
comparison of functional connectivity for the different conditions.
First, we found that, during the training phase, there are significant
changes in baseline versus self-regulation for each connectivity modu-
lated by training, see Fig. 4B. Second, we assessed such changes for
the transfer runs when participants applied learned self-regulation in
the absence of neurofeedback and consequently the inability to learn.
We compared baseline versus regulation, as well as baseline versus
counting backwards as a cognitively demanding control condition. For
baseline versus regulation, we found a significant change between the
auditory network (IC 1) and the high-level visual and attention
4 5 
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ontreal Neurologic Institute (MNI) standard space at the indicated level. Three ICs (2, 7,
st of ICs. Colorbar indicates t-values (thresholded for p b 0.05, Bonferroni corrected).
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Fig. 2. Linear modulation over training days of functional connectivity between each pair of ICs. Colorbar indicates t-values, connections indicated with * are significant (p b 0.05,
Bonferroni corrected for all possible connections between the 17 selected ICs).
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networks (IC 9), see Fig. 4C. Interestingly, connectivity decreased during
transfer, while it increased during training. In addition, the connectivity
between the auditory network (IC 1) and the auditory pathway (IC 5),
as well as with the low level visual (IC 15), working memory (IC 14)
and the insular (IC 10) networks did not change significantly during
the transfer phase. For the counting backwards condition, we only
found one significant change (decrease) for IC 10–IC 15, confirming a
specific effect of self-regulation on functional connectivity. While the
change in connectivity between insula and low level visual networks
during learning might be unexpected at first glance, it is worthwhile
mentioning that the analysis of the current investigation is targeted to
assess of self-regulation related effects. The analysis of the transfer
phase was done using back-reconstruction of ICs defined during the
neurofeedback training runs. The analysis is thus biased and not
targeted for the specific assessment of counting backwards versus base-
line. Interestingly, meta-analysis of task-related fMRI studies includes
insula for “counting”, “numbers” and basic visual areas for “numbers”
(http://neurosynth.org) indicating an involvement of these two regions
during the (mental) manipulating of numbers and counting. The
counting backwards condition was aimed to confirm the specific effect
of self-regulation during the transfer phase and to exclude a global ef-
fect on functional connectivity due to the application of a cognitively
demanding task, which was indeed the case.

Direct comparison of functional connectivity for different conditions

We confirmed that all functional network interactions that show
learning effects during training (Fig. 3A) have aswell a significant change
when comparing correlation in baseline versus regulation (Fig. 4B). The
differences in connectivity during transfer were significant for IC 1–IC 9
(baseline-regulation) and IC 10–IC 15 (baseline-counting). In addition,
we found a significant change in baseline-regulation when comparing
training and transfer for two connections; i.e., IC 1–IC 15 and IC 1–IC 9.

Discussion

We deployed ICA (data-driven exploratory method without a-priori
specification of regions of interest) and successfully identified changes
in functional network connectivity as a function of neurofeedback train-
ing as well as to applying learned self-regulation. Interestingly, the
auditory cortex, whichwas the target area for neurofeedback was iden-
tified as the hub of these network changes even though this was not
specified a priori. These results show (a) that functional brain networks
can change as a function of learning, (b) that rt-fMRI-based
neurofeedback training causes network changes that are specific to
the neurofeedback target region, and (c) that network changes related
to applying learned self-regulation are different from those of the train-
ing phase. We will also discuss potential clinical applications of our
findings.

Learning related changes of functional connectivity

Despite the large number of fMRI studies that used functional con-
nectivitymeasures, only a limited number of them specifically assessed
dynamic changes in functional connectivity (Bassett et al., 2011; Lewis
et al., 2009). Depending on the complexity of the task, they founddiffer-
ences in complex functional networks when comparing them before
and after behavioral training. The neurofeedback training approach
that we used significantly advances these earlier findings. Rather than
measuring functional-connectivity changes related to a behavioral
task, our approach allows to directly target specific brain regions. Also,
rather than comparing fMRI scans before and after the behavioral

http://neurosynth.org


A) Training phase with feedback

Low-level 
visual 

insula working 
memory 

brainstem 

auditory 
network 

2

4

6

8

10

12

14

B) Transfer phase without feedback

9 5 

10 15 14 

1 

2

4

6

8

10

12

14

high-level visual 
and attention  

Low-level 
visual 

insula working 
memory 

brainstem 
auditory 
network 9 5 

10 15 14 

1 

high-level visual 
and attention  

Fig. 3. (A) Functional network connectivity between the auditory network and various networks is modulated by neurofeedback training. The auditory network (IC 1) was iden-
tified without prior assumptions as the hub of altered functional connectivity. Functional connectivity was dynamically reconfigured between this auditory network along three
axes: (1) auditory pathway (IC 5); (2) high-level visual and attention network (IC 9); and (3) several networks related to visual processing of the feedback (IC 15) and
higher-level cognition, notably insula related to introspection and self-regulation (IC 10) and working memory (IC 14). White crosses indicate significant increase of functional con-
nectivity as a function of training. (B) Connectivity between baseline and self-regulation during transfer phase (without neurofeedback) is modified between the auditory network
(IC 1) and high-level visual and attention network (IC 9). Consistent with the absence of feedback and, consequently, the inability to further learn, functional connectivity of IC 1
with the visual as well as the memory networks was not modified. Colorbar indicates t-values (thresholded for p b 0.05, Bonferroni corrected).

248 S. Haller et al. / NeuroImage 81 (2013) 243–252
training, the neurofeedback learning takes place during scanning. This
allows examining progressive learning-related changes in functional
connectivity. It also allows distinguishing between learning-related
changes and those related to applying learned self-regulation.

Neurofeedback training gradually changes functional connectivity with
the auditory target region

The process of learning to self-regulate the auditory target region is
mediated by gradual changes in connectivity. Using data-driven analysis,
we found that the auditory target region was the hub of these changes
(Fig. 3). Note that this network includes bilateral auditory area despite
the unilateral ROI in the neurofeedback training, which is consistent
with the close anatomic connection of both auditory areas and e.g. bilat-
eral (about 2/3 dominant) contralateral auditory activation to unilateral
auditory stimulation (Haller et al., 2006). Our data indicate that the
neurofeedback target region does not only change in terms of activity,
but in addition alters its connectivity with other networks. During
neurofeedback training the functional connectivity of the auditory target
region changed along three axes. Firstly, connectivitywith the brainstem
network (IC 5) increased. This brainstem network (IC 5) includes many
pathways, yet in the context of the current investigation the most rele-
vant pathway is the auditory pathway, including the cochlear nuclei, su-
perior olivary complex and inferior colliculi of the tectum and themedial
geniculate ganglion of the thalamus. Secondly, connectivity between the
auditory target area and higher-level visual and attention networks (IC
9) showed linear increase in connectivity. The self-regulation requires
high attentional demands. Moreover, the higher-level visual association
area is associated with visual tracking (Laird et al., 2011) required for
the tracking of the feedback. Thirdly, connectivity with a widespread
network (ICs 15–10–14) including low-level visual as well as insular
and working memory areas changed with neurofeedback training.
While the early visual network is consistent with the visual feedback,
the insular andworkingmemory areas might be attributed to introspec-
tive awareness induced by feedback from one's own brain activity and
working memory demands when learning to self-regulate. Note that
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Fig. 4. (A) Details of the functional network connections modulated by training. The blue bars indicate average correlations over all sessions and all runs; the red bars indicate the change in connectivity over session. (B) Direct connectivity
changes between the selected pairs of ICs in the training runs for baseline and self-regulation. All changes in connectivity between the conditions are significant. Error bars indicate standard deviation over subjects. (C) Average correlation
between the selected pairs of ICs in the transfer runs for baseline, self-regulation, and counting backwards. The only significant change in connectivity for baseline versus self-regulation is between IC 1 and IC 9, and for baseline versus
counting-backwards between IC 10 and IC 15. Error bars indicate standard deviation over subjects.
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several previous rt-fMRI neurofeedback investigations found insular ac-
tivation (for example, see Haller et al., 2010; Subramanian et al., 2011)
indicating that this region might be involved in the process of
self-regulation per se, while this has not yet been systematically
assessed.

While the functional interpretation of each IC that exhibits changes in
its connectivity remains somehow speculative, the overall pattern of re-
sults suggests that task-relevant functional connections are reinforced.
This confirms previous findings of connectivity changes due to
neurofeedback learning. For example, Rota et al. (2011) studied linguistic
prosody by training participants to self-regulate the right inferior frontal
gyrus (rIFG). Using a ROI seed-based functional connectivity analysis,
these authors showed that the initially widespread connectivity of the
rIFG to frontal and temporal areas decreased over four training sessions.
They also showed that the connectivity became more lateralized to the
right hemisphere. In another recent study, Horovitz et al. (2010) used
similar analysis methods to show that neurofeedback training of the
motor area led to increased basal ganglia involvement and bilateral
motor cortex connectivity. Finally, Lee et al. (2011) used a multivariate
Granger causality analysis to investigate neurofeedback training related
changes in the insular cortex. Similar to the studies discussed above,
the authors showed that neurofeedback training leads to a reduction of
presumably redundant connections and to a strengthening of relevant
connections. However, these studies rely on the a priori choice of seed re-
gions and, therefore, do not allow investigating changes in functional
connectivity between networks.

Application of previously learned self-regulation causes changes in
functional connectivity

Another limitation of the above-mentioned studies is that they inves-
tigated functional connectivity changes only during the neurofeedback
training phase. The neurofeedback training, however, is different fromap-
plying learned self-regulation after the training. The training involves pro-
cessing and interpreting the neurofeedback display, testing different
strategies, and evaluating the training success. All these components are
reflected in the connectivity changes thatwe foundduringneurofeedback
training (Fig. 3A). Once participants learned self-regulation of the
auditory target area, participants can do so even in the absence of
neurofeedback. We also confirmed direct changes between baseline and
self-regulation for all connections modulated by training (Fig. 4B).

In order to disentangle the confounding effect of learning and to
confirm changes in functional connectivity related to self-regulation,
participants performed an additional transfer run without feedback
and thus without the ability to further learn. In particular, participants
were asked to apply the previously learned self-regulation strategy in
the absence of feedback. This self-regulation task was contrasted to a
cognitively demanding control task (counting backwards). When par-
ticipants apply their newly acquired self-regulation skill during the
transfer run, only the connectivity between the auditory network and
attention and high-level visual network changed when comparing
baseline against self-regulation, consistent with high demands on at-
tention during self-regulation, which was acquired during the training
phase (Figs. 3B and 4C). Learning-related connectivity changes related
to introspection, memory demands, or to reinforcement learning were
no longer present. Note that the connectivity between the auditory net-
work (IC 1) and the brainstem auditory pathway (IC 5) showed a trend
(but non-significant; p = 0.15) also during self-regulation. In contrast,
we observed no effect of the counting backwards condition on this func-
tional connectivity. This confirms that the observed changes in func-
tional connectivity are specific and related to self-regulation learned
in rt-fMRI neurofeedback and not simply an effect of performing a
cognitively demanding (control) task.

The analysis of the transfer runs was based on back-reconstruction
using the 20 ICA maps determined from the training phase data. We
mention that alternative approaches of ICA for multiple-condition
data have been proposed and could be considered for future work
(Beckmann et al., 2006; Calhoun et al., 2001a; Long et al., 2009).

Direct comparison of functional connectivity between training and transfer
runs

The direct comparison between training and transfer runs is compli-
cated by the different nature of the training and transfer runs. First,
concerning duration, participants were instructed to test several
self-regulation strategies during the training runs. In order to have suf-
ficient time to do so, the block lengthwas 60 s. In contrast, during trans-
fer runs, the application of the previously learned self-regulation
strategy is faster and thus we opted for a block length of 20 s in agree-
mentwith standard block-design fMRI experiments (Amaro andBarker,
2006). Second, concerning conditions, the training runs had only 2 con-
ditions (baseline and self-regulation). In contrast, the transfer runs had
3 conditions (baseline, self-regulation, and counting backwards) with
the latter condition intended as cognitively demanding control condi-
tion. Third, concerning repetitions, training runs were repeated 4
times per day in order to give participants sufficient time to learn
self-regulation, while the transfer run was performed only once after
all learning runs. Consequently, differences in block length and
number of runs between training and transfer runs might potentially
confound the analysis, and both experimental paradigms are not
identical (Fig. 5).

For all functional network connections that showed learning
effects during training (Fig. 3A), we confirmed a significant change
in correlation when performing a direct comparison between base-
line and regulation (Fig. 4B). In addition, the change in connectivity
between baseline and regulation was compared between training
and transfer. Two connections survived this test. The first one (IC 1–IC
15: auditory-low level visual) confirms our previous result (i.e., signifi-
cant change in connectivity regulation-baseline within transfer runs).
The second one (IC 1–IC 9: auditory-high level visual) seems contradic-
tory because we had before a significant change in connectivity of
regulation-baseline both within training and within transfer. However,
a closer inspection reveals that the change within training is positive
(increase in connectivity), while the change within transfer is negative
(decrease in connectivity). In sum, the direct comparison confirms our
previous findings and even refines the functional connectivity between
auditory and high level visual for regulation applied during transfer.

Limitations

In this study, all training runs were pooled together for the ICA de-
composition, which is used as an unsupervised dimensionality reduc-
tion tool prior to further analysis. Similar to PCA, spatial ICA is
completely blind to temporal relationships of the data (i.e., temporal
permutation does not influence the result), neither is ICA informed
about the paradigm. The optimization criterion of ICA (i.e., a surrogate
for spatial independence) will be driven by the spatial property
‘averaged over time’. However, the fact that post-ICA analysis of the
timecourses shows statistically significant changes over time is meth-
odologically valid and does not originate from circularity in the analysis.
We previously found learning effects on activity in the target region
using a two-level GLM analysis (Van De Ville et al., 2012). Nevertheless,
it is worthwhile mentioning that pooling the data might decrease the
sensitivity of our data analysis approach. Finally, we mention that the
ICASSO algorithm was used to determine the number of components
and monitor the robustness of the decomposition.

Outlook and conclusions

Our approach of combining data-driven analysis tools with a
neurofeedback training and transfer phase allowed us to disentangle
the connectivity changes when learning to self-regulate and when
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applying learned self-regulation. The former is related to widespread
changes in learning networks whereas the latter is focused on net-
works that are specific to the neurofeedback target region.

Importantly, the application of the previously learned self-regulation
strategy induces connectivity changes. Hence, the neurofeedback ap-
proach can be used to non-invasively and non-pharmacologically ma-
nipulate region-specific brain networks. In this sense, neurofeedback
might be used to develop strategies to ‘normalize’ abnormal network ac-
tivity in patients with certain neurological conditions, such as in tinnitus
(Burton et al., 2012; Vanneste et al., 2011) or neglect (Halligan et al.,
2003; Husain and Rorden, 2003; Milner and McIntosh, 2005;
Vuilleumier et al., 2008). The strategy that was learned by the patient
with the help of neurofeedback can be voluntarily applied by the partic-
ipant and can thus be used concomitant to the conventional therapy. The
current setup targeting the auditory region was adapted from the one
used for down-regulation of auditory cortex activity in tinnitus patients
(Haller et al., 2010). Since we have revealed several changes in network
interaction, regulation of brain connectivity might be considered as an
explicit target of neurofeedback training for future applications. Previous
“classic” ROI-based rt-fMRI neurofeedback studies showed beneficial
effects in diseases with clearly defined anatomical target regions
(deCharms et al., 2005; Haller et al., 2010; Subramanian et al., 2011). Nu-
merous diseases including Alzheimer disease, depression or psychosis
(Broyd et al., 2009; Damoiseaux et al., 2012), however, have clearly de-
fined target regions, but do have documented changes in functional con-
nectivity. Consequently, a functional-connectivity based neurofeedback
might complement the ROI based neurofeedback and open access to an
increased spectrum of diseases. Moreover, we reason that for example
in tinnitus or chronic pain, there is not only an alteration in the primary
sensory auditory or sensitive processing, yet also a complex higher-order
cognitive alteration related to perception and interpretation of the
adverse tinnitus or pain. A connectivity-based approach might better
capture such higher-level cognitive components in addition to the
lower-level sensory components.

In summary, using data-driven analysis, we found that
neurofeedback-based learning induces connectivity changes between
the network that encompasses the neurofeedback target region and
various other brain networks including those implicated in processing
of visual feedback, working-memory and introspection. Subsequently,
applying learned self-regulation of brain activity causes instantaneous
changes in network interactions that are specific to the neurofeedback
target region and attention, while working memory and introspection
are no longer required during application of the learned self-regulation
strategy in the absence of neurofeedback and are consequently no longer
modified. Because learned self-regulation can be voluntarily initiated, it
is a promising method to promote recovery from neurological disorders
that are linked to abnormal patterns of brain connectivity.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.05.019.
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