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Luca Amarú1, Pierre-Emmanuel Gaillardon1, Andreas Burg2 and Giovanni De Micheli1

1Integrated Systems Laboratory (LSI), EPFL, Switzerland
2Telecommunication Circuits Laboratory (TCL), EPFL, Switzerland

Abstract—Nowadays, most software and hardware applications
are committed to reduce the footprint and resource usage of data.
In this general context, lossless data compression is a beneficial
technique that encodes information using fewer (or at most equal
number of) bits as compared to the original representation.
A traditional compression flow consists of two phases: data
decorrelation and entropy encoding. Data decorrelation, also
called entropy reduction, aims at reducing the autocorrelation
of the input data stream to be compressed in order to enhance
the efficiency of entropy encoding. Entropy encoding reduces
the size of the previously decorrelated data by using techniques
such as Huffman coding, arithmetic coding, and others. When
the data decorrelation is optimal, entropy encoding produces the
strongest lossless compression possible. While efficient solutions
for entropy encoding exist, data decorrelation is still a challenging
problem limiting ultimate lossless compression opportunities. In
this paper, we use logic synthesis to remove redundancy in binary
data aiming to unlock the full potential of lossless compression.
Embedded in a complete lossless compression flow, our logic
synthesis based methodology is capable to identify the underlying
function correlating a data set. Experimental results on data sets
deriving from different causal processes show that the proposed
approach achieves the highest compression ratio compared to
state-of-art compression tools such as ZIP, bzip2 and 7zip.

I. INTRODUCTION

The maturity of Electronic Design Automation (EDA) tools
enables today’s billions transistors chip to be designed and
tested efficiently. Such great success drives the application of
EDA algorithms to non-traditional EDA fields, e.g., cure of
cancer [1], smart water [2], cure of genetic diseases [3], smart
grid [4], etc. In this work, we use EDA synthesis techniques
to reduce the footprint and resource usage of binary data.

It is estimated that the total amount of data stored in
world’s digital devices could be compressed by a factor of
4.5x without any loss of information [5]. The efficiency of data
compression techniques is key to securing a profitable usage
of physical resources. For this reason, data compression is a
widely studied and active research field. Original compression
methods, such as Huffman and arithmetic coding, are based
on the Shannon entropy [6]. The Shannon entropy quanti-
fies the information contained in data. When the considered
data is a sequence of independent and identical distributed
(i.i.d.) Random Variables (RVs), Shannon entropy provides
the upper bound on the best possible lossless compression.
In this condition, Huffman and arithmetic coding methods
are optimal since they are proven to asymptotically achieve
the Shannon entropy. Unfortunately, most of the real-world
information cannot be modeled as sequence of i.i.d. RVs.
Indeed, digital data is often strongly correlated. In order to
overcome this limitation, succeeding techniques have been
developed embedding a decorrelation pre-processing step prior
(or integrated) to entropy encoding based compression [6].

Notably, dictionary techniques incorporate the structure of
correlated data, by building a list of frequently occurring
patterns, to increase the compression ratio. This compression
approach has been used in microprocessor architectures, e.g.,
Thumb from Arm, where the instruction stream is compressed
in I-memory and decompressed in the processor [7]. The
Lempel-Ziv (LZ) method [8], and its evolutions, represents
a very successful dictionary based compression technique
employed in most practical compression standards. However,
LZ-based methods imply some assumptions on the pattern
recurrence locality. Moreover with dynamic dictionaries the
efficiency of the compression converges slowly with the size of
the data. For this reason, specialized decorrelation transforms
have been successively studied with the aim at further improv-
ing the compression ratio [6]. Among existing decorrelation
transforms, fixed-basis (heuristic) transforms, such as discrete
cosine transform, are used in practice while variable-basis
(optimal) transforms, such as KLT [6], are used to bound the
best theoretical transform performance. Indeed, the variability
of the transform basis is not a desirable property in data
compression. Fixed-basis transforms usually target a specific
class of data, for example the discrete cosine transform is
advantageous for imaging (JPEG standard [10]).

A major aim for today’s compression tools is to overcome
the limits of traditional decorrelations techniques in order to
unlock the full potential of lossless data compression.

In this paper, we use logic synthesis to compact the size of
causal data sets enabling novel lossless compression oppor-
tunities. Logic synthesis is the process by which an abstract
Boolean function description is transformed into a correspond-
ing minimized logic circuit [11]. In the data compression con-
text, the capability of modern logic synthesis tools to identify
and remove redundancy, while preserving the initial behavior
of the circuit, paves the way for a general lossless compression
approach with the aim to find the underlying logic function
generating the data we want to compress. Experimental results
on data sets derived from causal processes show that our
compression method based on logic synthesis reduces the data
size by 1∼2 orders of magnitudes compared to state-of-art
compression tools such as ZIP, bzip2 and 7zip.

The remainder of this paper is organized as follows. Section
II first provides background on lossless data compression and
logic synthesis, then it discusses the contributions of this work
compared to prior art on compression techniques performed
via Boolean minimization. In Section III, the proposed logic
synthesis based compression methodology is presented. Exper-
imental results for our compression approach are presented and
compared with state-of-art compression standards in Section
IV. We conclude the paper in Section V.
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II. BACKGROUND AND MOTIVATION

This section first presents background on data compression
and logic synthesis. Later, it discusses the contributions of
this work compared to prior art on compression techniques
performed via Boolean minimization. Please note that, in this
work, we focus only on lossless data compression.

A. Data Compression

A lossless compression scheme refers actually to two al-
gorithms: (i) a compression algorithm that takes in input a
data sequence X and reduces it to Xc (that requires fewer,
or at most equal, bits than X), and (ii) a reconstruction
algorithm that recovers exactly X from Xc, i.e., with no loss of
information. In other words, in a lossless compression scheme
the compression algorithm must be reversible [6]. Given the
dual nature of lossless compression schemes, we concentrate
hereafter only on compression algorithms provided that they
satisfy the reversibility requirement.

Nowadays, practical compression approaches are based on
two subsequent phases: first, the input data is decorrelated
and then entropy encoding techniques are applied as final
compression step.

1) Data Decorrelation (Entropy reduction): Data decorre-
lation, also called entropy reduction, is a data preprocessing
phase aiming at reducing the autocorrelation of the input data.

Linear transformations are efficient means to accomplish
this task [6]. Among all the decorrelation transforms, the
best coding gain, in term of compression ratio, is provided
by the Karhunen-Loeve Transform (KLT). The KLT is a
transform having signal-dependent basis and random variables
as coefficients. In the discrete (binary) domain, the KLT is
described by a matrix having as columns the eigenvectors
of the autocorrelation matrix of the input (binary) sequence
considered [6]. The signal-dependency of the KLT makes its
use inefficient in practical applications where the basis (or the
data autocorrelation itself) must be provided to the decoding
algorithm which is unaware of the properties of the com-
pressed data. Such overhead removes the advantage of the KLT
theoretical optimality. For this reason, the KLT is typically
used as theoretical bound for the best coding gain achievable
by decorrelation transforms. On the other hand, practical
decorrelation techniques of interest make assumptions on the
original data properties resulting in fixed basis transforms. A
well-known example is the Discrete Cosine Transform (DCT),
widely used in image compression methods, e.g., JPEG [10],
which employs cosine functions as fixed transform basis. Other
specialized transforms have been developed in literature, e.g.,
BCJ/BCJ-2 [20] for binary executables, Burrows-Wheeler [9]
especially efficient in the field of bio-informatics etc.

Another notable approach to decorrelate data is based on
dictionary techniques. The core idea of dictionary techniques
is to build a dictionary (static or dynamic) of recurring patterns
in the input data. Such patterns are directly encoded by their
indexes in the dictionary. The Lempel-Ziv (LZ) method [8]
is one of the most recognized dictionary based compression
technique used in many practical compression standards. The
general efficiency of existing dictionary techniques is limited

by (i) assumptions on pattern recurrence locality and (ii) issues
related to dictionary flexibility.

We refer the interested reader to [6] for an extended and
complete discussion of data decorrelation.

2) Entropy Encoding: Entropy encoding refers to a class
of (lossless) coding techniques able to compress an input data
down to its entropy. When the entropy information is defined
according to the exact probabilistic model, entropy encod-
ing achieves the optimum compression for any input data.
However, the correlation and the (often complex) underlying
function that produced the data set is typically not known.
Hence, the choice of the right probabilistic model is a difficult
problem usually simplified by decorrelating transforms. Once
the data is (fully) decorrelated, a simple stochastic model
is reliably employable to define the information entropy.
Then, entropy encoding methods can be applied successfully.
Original entropy encoding techniques are Huffman coding
[12] and arithmetic coding [6] that form the basis of current
compression software and standards. For a review of such
methods, we refer again to [6].

B. Logic Synthesis

Logic synthesis is the process by which (virtually) all digital
integrated circuits are designed [11]. Logic synthesis aims to
transform a general description of a Boolean function into
its minimal logic circuit implementation. The development
of synthesis algorithms have been driven by the exponential
growth of digital electronics, requiring contemporary tools
to be scalable, efficient and capable to produce near-optimal
results. Logic synthesis shares optimization criteria with many
other problems, consequently its application to non-traditional
(non-EDA) fields is attracting the interest of researchers in
several science communities.

For the sake of brevity, we do not review basic concepts
and notation for logic synthesis, please see [11] for a review.

C. Contribution to Prior Art

Previous works in [13]–[15] explored the possibility to
compress data using Boolean minimization. Their method
consist in treating a binary sequence of 2N elements as a
complete truth table for a N -input single output Boolean
function. Two-level minimization is applied in [13]–[15] to
lossless compress the information stored in such truth table
(representing the initial sequence). We differentiate from these
methods by (i) the use of a more sophisticated initial SOP
representation in place of exhaustive truth tables, (ii) exten-
sion from single output to multioutput function representation
to enhance the manipulation flexibility, (iii) introduction of
encoding/decoding arrow of time in binary strings to facilitate
the logic synthesis task and (iv) identification and selective
manipulation of uncorrelated data with traditional entropy
encoding methods.

III. LOGIC MODEL FOR DATA COMPRESSION

Binary data is generated, stored and transmitted by digital
electronic systems. Given its intrinsic nature, binary data
often derived from a set of logic operations performed in the
logic core of an electronic system and repeated over different
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combinations of logic operands. Consequently, a sensible gain
in data compression efficiency is achievable if the kernel set of
logic operations (logic function) generating the data is known
and transmitted/stored in place of the binary data itself. Kol-
mogorov complexity [16] is a theoretical generalization of this
idea: it considers the shortest program for a universal computer
that outputs the sequence. Unfortunately, Kolmogorov com-
plexity is incomputable [16] limiting its applicability to theory.
Nevertheless, relaxing the shortest property requirement, the
search for such a sub-optimal program (logic function) is still
of interest for efficient data compression.

Motivated by this intuition, we study in this section a
methodology able to identify a valid logic function that can
generate back the initial binary data. Then, such logic function
is minimized by logic synthesis techniques effectively elimi-
nating redundancy. We integrate this approach in a lossless
compression flow and then we show its reversibility for exact
data decompression.

A. Description of a Logic Function Generating a Specific
Binary String

The input of general data compression tools is a string
of bits, say B. Data decorrelation techniques begin by par-
titioning B in M sub-blocks {S0, S1, ..., SM−1} of length
L = �|B|/M�1 [6]. We follow this approach to describe
a logic function G that outputs B. In this context, the re-
quirement for G is to produce an output Si when stimulated
by the Binary Representation (BR) of the partition index i
(BR(i) has N = �log2(M)� bits). More formally, G is an L-
output, N -input Boolean function implementing the relation
G(BR(i)) = Si. The original string B can be generated
back by stimulating G with consecutive values of BR(i)
and concatenating the corresponding output. Note that, the
choice for the partitioning number M is dictated by practical
considerations on the binary data to be compressed. The same
argument also holds for general decorrelation transforms [6].

Algorithm 1 creates a Sum Of Products (SOP) representation
for G given the partition {S0, S1, ..., SM−1}. Note that G is
initially represented in SOP form but can be minimized later
in various ways as long as the final logic circuit for G is small.
Two promising candidate techniques to minimize G are multi-
level synthesis and binary decision diagrams. On the one hand,
multi-level synthesis is efficient to manipulate a large amount
of primes that are present in the SOP of G for large data. On
the other hand, binary decision diagrams based methods can
map G in a program with nested if then else to regenerate
data. Regardless of what is the best approach, the use of logic
synthesis is orthogonal to our compression method enabling a
high degree of flexibility to choose the most appropriate mini-
mization technique. The process in Algorithm 1 to generate the
SOP for G consists of two nested for loops, the first considers
all the L outputs of G while the second one considers all
the M partitioned sub-blocks. The rationale is the following:
when a sub-block Si assumes the logic 1 value at the k-th
bit, the k-th output of G is updated accordingly by adding the
cube BR(i) to its SOP. At the end of this procedure, a valid
description for the Boolean function G is obtained.

1For the sake of simplicity, fixed-length partitions are considered.

Algorithm 1 G function description.

INPUT: binary strings {S0, S1, ..., SM−1} (L-bits per each)
OUTPUT: SOP representation for G function
FUNCTION: Construct G({S0, S1, ..., SM−1})

for all k = 0 : L− 1 do
for all i = 0 : M − 1 do

if (Si(k) == 1) then
add cube BR(i) to SOP for the k-th output of G

end if
end for

end for

G function example: B = 000001010011000001110111,
partition coefficients M = 8 (N = 3), L = 3, partition set
{S0, S1, .., S7} = {000,001,010,011,000,001,110,111}.
Consider the first bit highlighted in bold (G0). The SOP of
G0 is G0 =BR(6)+BR(7). With BR(i) = {I0, I1, I2}, the
first (0) bit function becomes G0 = I0I1I2 + I0I1I2.

By using Algorithm 1, it is possible to describe a function G
for every partitioned binary string B. It can be easily verified
that the worst case size for the SOP of G is O(L·M) =
O(|B|) cubes of N bits each. Thus, the SOP description
complexity is linear in the size of the initial string B. However,
we want a logic circuit representation for G much smaller
than O(|B|) in order to have advantageous compression for
B. Logic synthesis techniques are capable to shrink down
the size of G preserving its functionality. In the previous
example, G0 = I0I1I2+I0I1I2 is minimized in G0 = I0I1 by
logic synthesis. On the one hand, optimal synthesis techniques
give the best result in terms of synthesized circuit size but
require a long runtime. On the other hand, synthesis heuristics
produce near-optimal results with efficient runtime. Since data
compression targets the size reduction of large files, heuristic
techniques are key to have affordable runtime. Then, the
capability of synthesis heuristic to produce satisfactory results
heavily depends on the initial logic representation. Moreover,
there exist logic functions too complex to be recognized and
minimized by traditional synthesis heuristics, e.g., arithmetic
operations such as exponential, logarithm etc. When one of
these complex functions describes the underlying correlation
in the data set that we want to compress, the direct synthesis
of G via heuristics may reveal to be unfruitful.

We propose here to improve the efficiency the (heuristic)
synthesis process by providing additional information about
the function G. While G can be fully described by the binary
indexes BR(i) for the partitions of B, G also admits some
more flexibility exploiting the sequential nature of the decod-
ing process, i.e., G can be stimulated by BR(i) if and only if
it has been previously stimulated by BR(i − 1). Therefore,
introducing Si−1 = G(BR(i − 1)) as additional input, on
top of BR(i), some further simplification for G are enabled.
Please note that by introducing Si−1 we are not moving to a
sequential synthesis approach, instead the synthesis process is
made unaware of the provenience of the input Si−1 hence
remaining in a combinational context. To exploit the Si−1

information it is necessary to consider two different cases: (i)
Si−1 = G(BR(i−1)) is unique in {S0, S1, ..., SM−1} and (ii)
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Si−1 = G(BR(i − 1)) repeats in {S0, S1, ..., SM−1} . In the
first case, the L bits for Si−1 = G(BR(i − 1)) are sufficient
information to uniquely determine G(BR(i − 1)) = Si,
consequently the information for Si−1 is ORed to the original
description of G. In the second case, the information of Si−1

has to be ANDed with BR(i) to uniquely determine the
output, this condition is not added to G since it does not
contain additional (non redundant) information. The updated
procedure is presented in Algorithm 2.

Algorithm 2 Synthesis-facilitated description of G.

INPUT: binary strings {S0, S1, ..., SM−1} (L-bits per each)
OUTPUT: SOP representation for G function
FUNCTION: Construct G({S0, S1, ..., SM−1})

for all k = 0 : L− 1 do
for all i = 0 : M − 1 do

if (Si(k) == 1) then
add cube BR(i) to SOP for the k-th output of G
if (Si−1 is unique in {S0, S1, ..., SM−1}) then

add cube Si−1 to SOP for the k-th output of G
end if

end if
end for

end for

The key improvement with respect to Algorithm 1 is the
following: if the i-th output for Si has a unique predecessor
Si−1 this can be used as alternative (logical or with BR(i))
information to describe G. In other words, we can uniquely
determine Gi = G(BR(i)) = Si by giving the index i and
its binary representation BR(i) but also by specifying the
predecessor of Si, Si−1, provided that it does not repeat in
the initial partition. Heuristic synthesis techniques have new
minimization opportunities for G, thanks to the additional
disjunctive information on G(BR(i)) deriving from Si−1 (ex-
ploiting the causal nature of G). It is clear that Algorithm 2
can be extended to deal with Si−2, Si−3 etc., the choice of the
numbers of previous outputs to be employed is then a tradeoff
between the effectiveness of the additional information and
the increase in representation size. Practical discussion on this
topic is given in Section IV.

B. Compression Flow
Our proposed compression flow employs logic synthesis to

identify and remove redundancy in binary data. If logic syn-
thesis fails at discovering the underlying function for a certain
portion of data, entropy encoding is used to complete the com-
pression process. Procedure details are given in Algorithm 3.
First, the input binary string B is partitioned in substrings
{S0, S1, ..., SM−1} as in usual compression flows [6]. A logic
function G is then constructed for {S0, S1, ..., SM−1} using
the methodology presented in Algorithm 2. G is synthesized
via traditional heuristics considering each output separately. It
is worth to stress that even if G has an initial description in
SOP (2-level) form, synthesis heuristics can produce general
logic networks potentially more compact than 2-level circuits.
When the synthesis for a certain output Gi is not effective
(it generates time-out or results in a large circuit) then the

Algorithm 3 Lossless compression of binary string B.

INPUT: Binary string B
OUTPUT: Compressed string C
FUNCTION: Compress B

R = ∅ (set of integers – indexes)
K = ∅ (set of logic functions)
W = ∅ (set of bits – string)
partition B in L-bit long {S0, S1, ..., SM−1} substrings
construct logic function G for {S0, S1, ..., SM−1} (Alg. 2)
for all output i of G do

synthesize Gi

if ((synthesis time-out) or (size Gi > threshold)) then
R← i

else
store Gi’s synthesized logic circuit in K

end if
end for
logic sharing extraction in K
for all i ∈ R do

for all j = 0 : M − 1 do
W ← Sj(i)

end for
end for
C = binary representation of K + entropy encoding of W

index of the corresponding input is stored in R for successive
treatment. Otherwise, when the synthesis is effective, the logic
circuit for Gi is stored in a common optimized logic circuit
K. After all the outputs of G have been considered, the logic
circuits stored in K may contain redundancy and therefore
a sharing extraction algorithm is applied to K to reduce its
size. Considering then the indexes in R, they represent difficult
functions for which synthesis heuristics have not been able to
produce satisfactory (small) logic circuits. We assume that the
words (collection of bits) corresponding to such indexes in
R have an uncorrelated nature and hence are suited to be
compressed with entropy encoding techniques rather than to
be synthesized in a circuit. Entropy encoding is applied to W
(concatenated bits corresponding to the indexes in R). Finally,
the compressed string is obtained by concatenating the binary
representation for the logic circuit K and the entropy encoded
sequence W . The integer set R and the integer numbers
{M,L} must be provided to the decompression stage in order
to fully reconstruct the original string B.

C. Decompression Flow

The compression method in Algorithm 2 is lossless and
therefore exactly reversible. The corresponding decompres-
sion method is depicted by Algorithm 4. The input of the
decompression method are: the previously compressed string
C (logic circuit K + binary string W), the set of integer–
indexes R, and the integer values {M,L}.

The first decompression step is achieved by simulating the
logic circuit K with consecutive values of BR(i) in input. Note
that the logic circuit K is designed to be stimulated only by
incremental values of i, otherwise the functionality of G is
lost. If G is described using Algorithm 1 the decoding model
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Algorithm 4 Lossless decompression of binary string C.

INPUT: Compressed string C (logic circuit K + binary string
W ), integer set R, integer values {M , L}
OUTPUT: Original string B
FUNCTION: Decompress C

X = ∅ (set of bits – string)
Y = ∅ (set of bits – string)
for all i = 0 : M − 1 do
X ← K(BR(i))

end for
Y ←entropy-decode(W )
B = interleave X and Y according to {R,L}

is just a combinational logic circuit producing as output the
(partial) strings {S0, S1, ..., SM−1} in sequence. Otherwise,
when Algorithm 2 is employed to facilitate the synthesis of
G, the decoding model needs to be updated. The Mealy FSM
model in Fig.1 is a valid extension to decompress logic circuits
described by Algorithm 2. The previous output Si−1 becomes

input BR(i)

previous
 state
  Si-1

  state
 register
    Si-1

output (Si)

logic circuit for G

Fig. 1. Decompression FSM (Mealy) model.

the state of the Mealy machine and together with the current
input BR(i) determines the output value. Denote by X the
concatenation of binary outputs produced by the consecutive
simulation of G (either FSM or combinational model).

The second decompression step is perfomed via entropy
decoding of the binary string W , produced by Algorithm 3.
Denote by Y the entropy decoded string.

The final step to recover the original string B consists
of interleaving strings X and Y . Indeed, the initial partition
{S0, S1, ..., SM−1} can be built back from X and Y by (i)
partitioning in M sub-strings X and Y and (ii) merging pair-
wise each Xi, Yi sub-strings in unique L-bit long sub-string
{Xi, Yi} → Si. Such merged substring Si has Yi elements
placed in the indexes pointed by the R set and Xi elements
placed consecutively in the rest of the positions. At the end
of this procedure the initial partition {S0, S1, ..., SM−1} is
obtained, B follows by direct concatenation of Si strings one
after the other.

X-Y interleaving example: X = 000111010, Y = 101,
M = 3 (N = 2), L = 4, R = {2}. Given M (number of
partitions) X and Y can be seen as X = {000, 111, 010},
Y = {1, 0, 1}. R says that the 2nd index of each partition

originally belongs to Y while, by duality, the rest of indexes
belong to X . Consequently, B = {0100, 1011, 0110} which
corresponds to B = 010010110110.

Note that the overall decompression technique requires M
simulations of the logic circuit for G, plus M interleaving
operations. Thus, it can be shown that the decompression
runtime is O(M · |G|), where |G| represents the size of the
logic circuit G to be simulated.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the advantage of the proposed
lossless compression technique. Decompression runtime is not
reported for brevity. Comparisons with state-of-art lossless
compression tools are also given.

A. Methodology

The top module of the lossless compression method pro-
posed is described by Algorithm 3. Then, its core constituents
are (i) algorithm(s) for G description, (ii) logic synthesis
heuristics to minimize G and (iii) entropy encoding for the
string portion not represented by G. The top module is
implemented in PERL language and manages the interaction
between the three major sub-modules. Algorithm 2 for G
description is implemented in C language. Only the previous
value Si−1 is considered in the implementation of Algorithm 2
since, for the considered data sets, the use of additional
previous values do not carry synthesis improvements but
representation size overhead. Logic synthesis is accomplished
using ABC [17] academic synthesis tool. Entropy encoding
for the portion of the input string not represented by G is
achieved via the standard-de-facto ZIP tool [18].

In order to validate the proposed compression method, we
consider data set benchmarks deriving from causal processes:
1) a perfect line measurement, 2) a line measurement affected
by white noise, 3) a parabolic measurement and 4) appar-
ently random data but automatically generated by a XOR-
intensive logic circuit. Benchmarks 1-3 are data-set observable
in physics experiments (Electronics, Mechanics, Astronomy
etc.) while benchmark 4 represents the output of a computer
program, or integrated-circuit, running over several operation
cycles. In all 4 cases, we consider only data sets larger than
1 MB. The focus on such particular data sets, in place of the
general benchmark suite, is motivated by the nature of the
proposed compression, which is intended, and designed, for
high-correlated data sets.

For these benchmarks (still binary strings B), the number
of partitions considered (M ) is �|B|/20�. Therefore, G in our
experiments is a 20-output, �log2(�|B|/20�)�-input Boolean
function. The synthesis timeout threshold in Algorithm 3 is
set as 1.0s while the size threshold is 10% of the initial logic
representation size.

The counterpart compression tools considered are: (i) ZIP
[18] (based on LZ [8] technique), (ii) DCT transform + ZIP,
(iii) bzip2 [19] (based on Burrows-Wheeler transform [9]) and
(iv) 7zip [20] (evolutions of LZ [8] technique).

B. Results

Table I shows data compression results. Among all the
compression techniques considered, our approach shows the
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TABLE I
DATA COMPRESSION RESULTS

Benchmark Original Data Size ZIP DCT+ZIP bzip2 7zip Our Approach ZIP Runtime

Linear Data
2.2 MB 208 KB 868 KB 316 KB 60 KB 8 KB 0.3 s
25 MB 2.1 MB 8.3 MB 3.1 MB 888 KB 8 KB 2.1 s
287 MB 21 MB 81 MB 31 MB 3.4 MB 302 KB 32 s

Linear Data + Noise
2.2 MB 264 KB 872 KB 258 KB 212 KB 80 KB 0.4 s
25 MB 2.7 MB 8.4 MB 2.6 MB 2.4 MB 700 KB 3.0 s
287 MB 27 MB 84 MB 30 MB 23 MB 7.1 MB 43 s

Quadratic Data
3.3 MB 484 KB 816 KB 532 KB 272 KB 8 KB 1.0 s
39 MB 5.3 MB 7.6 MB 6.1 MB 3.3 MB 16 KB 6.1 s
449 MB 59 MB 71 MB 67 MB 40 MB 566 KB 64 s

Random (XOR-intensive network)
1.6 MB 116 KB 304 KB 124 KB 44 KB 8 KB 0.1 s
20 MB 1.2 MB 3.2 MB 1.5 MB 796 KB 8 KB 1.2 s
230 MB 12 MB 31 MB 15 MB 3.8 MB 234 KB 10 s

Average runtime (normalized to ZIP) – 1 – 1.5 x 8 x 12 x –

highest compression gain ranging from 1 to 3 order of mag-
nitues. The best compression ratio among counterpart tools
is achieved by 7zip, being still 1∼2 order of magnitudes
smaller than our approach. The considerable compression gain
improvement of our method comes from the capability of
logic synthesis to recognize (by eliminating redundancy) the
core function underlying in the data we want to compress.
For example, the first benchmark representing linear data is
reduced to the function G(BR(i))=BR(i), which corresponds
to a logic circuit where input and output are just connected
by a wire. Then, the third benchmark (square function) is
reduced to the function G(BR(i))=BR(i) + G(BR(i − 1))
(where + is the binary addition operation), which corresponds
to a two-operands binary adder circuit. It is then obvious
why such large compression improvement is possible: we
store only the basic function (or program) generating the
data while other traditional compression tools cannot rely on
this opportunity. About the runtime, ZIP is the fastest tool
while our approach is on average 12x slower. This is due
to the current implementation of the compression software
calling external synthesis (ABC) and entropy encoding tools
(ZIP). We expect that the runtime can be improved in a fully
integrated software.

It is interesting to notice that in the data set 2 (linear data
+ noise) our proposed approach is able to identify the random
portion of the data and then isolate it. Indeed, for the noisy
bits of the partitions, the synthesis process always produced
timeout. Then, the identified complex bits are treated as un-
correlated and compressed with entropy-encoding technique.
As a result, the size of the compressed data tends to the size
of the random noise superposed on the linear data.

The largest data set compressed is 449 MB evidencing the
scalability of our method. This is thanks to the O(|B|) size of
the initial G description and to the efficiency of logic synthesis
heuristics employed (and-inverter-graphs based techniques in
ABC [17]).

V. CONCLUSIONS

Resource usage is a key factor of today’s software and hard-
ware applications. To reduce resource usage, in terms of data
storage or transmission capacity, lossless data compression

techniques are widely employed. In this paper, we use logic
synthesis to compact the size of causal data sets enabling novel
lossless compression opportunities. In the data compression
context, the capability of modern logic synthesis tools to
identify and remove redundancy, while preserving the initial
behavior of the circuit, paves the way for a general lossless
compression approach with the aim to find the underlying
logic function generating the input data. Experimental results
on data sets derived from causal processes show that our
compression method based on logic synthesis reduces by 1∼2
orders of magnitudes the data size compared to state-of-art
compression tools such as ZIP, bzip2 and 7zip.
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