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Abstract Despitethehugeresearchefforttoimprovethe
performanceoftheComplementaryMetalOxideSemicon-
ductor (CMOS) image sensors, Charge-Coupled Devices

(CCDs) still dominate the cell biology related conven-
tional fluorescence microscopic imaging market where
low or ultra-low noise imaging is required. A detailed

comparison of the sensor specifications and performance
is usually not provided by themanufacturers which leads
the end users not to go out of the habitude and choose a

CCDcamera insteadofaCMOSone.However,depending
on the application, CMOS cameras, when empowered by
image processing algorithms can become cost-efficient

solutionsforconventionalfluorescencemicroscopy.Inthis
paper, we introduce an application-based comparative
study between the default CCD camera of an inverted

microscope (Nikon Ti-S Eclipse) and a custom-designed
CMOS camera and apply efficient image processing al-
gorithms to improve the performance of CMOS cameras.

Quantum micro-bead samples that emit fluorescence
light at different intensity levels, breast cancer diagnostic
tissue cell and Caco-2 cell samples are imaged by both

CMOS and CCD cameras and results are provided to
show the reliability of CMOS camera processed images
and finally to be of assistance when scientists select their

cameras for desired applications.
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1 INTRODUCTION

Historically, CCDs have dominated the imaging sensors
market.Today, themarket share forCMOSimage sensors

is increasing and even surpassing CCDs in terms of
volume [1]. However, CCDs are still the dominating
technology for high quality imaging market and are used

for high cost imaging applications such as microscopy for
life andmaterials science applications inboth clinical and
educational domains. In the literature, there are many

examples of use of CCDcameras for detecting fluorescent
labelledDeoxyribonucleicAcidDNAsorsomeexpressions
on the stained, fixed or live cells. Some examples to that is

imaging of growingDNAchains [2], real-timedetection of
DNA hybridization to DNA microarrays [3], monitoring
of anticancer effects of some specific agents [4], examining

of cell polarity on stained, fixed and live cells [5] and
obtainingquantitative information about the chromatin-
DNA distribution inside the nucleus [6], [7], [8].

On the other hand, CMOS image sensors weremostly

used in lowperformance devices (e.g. toys, cell phones [9],
[10]) due to their inherent advantages such as low power
consumption,lowcost,compactnessandhighintegration.

Recently, this traditional misconception started to dis-
solve and CMOS imagers started to show up in both high
quality Digital Single Lens Reflex (DSLR) cameras and

biological applications. A couple of examples of CMOS
cameras in biological applications include miniaturized
fluorescence cameras for brain imaging [11], [12], [13] and

fluorescence lifetime imaging with CMOS Single Pho-
ton Avalanche Diodes (SPADs) [14], [15] where CMOS
sensor speed advantage becomes crucial. However, the

use of CMOS based cameras in microscopy is still very
limited although a CMOS imager can perform as well
as a CCD imager on various grounds, depending on the

application specifications while usually costing less than
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CCDs.Todo that, it is of great importance tomitigate the

downside of CMOS sensors, especially higher noise, with
image processing algorithms dedicated for quantitative
fluorescencemicroscopymeasurements [16], [17], [18] and

benefit from synthetic image generation techniques [19],
to facilitate the progress on this domain.

Inthispaper,wetargetfluorescentdetectionsystemsin

upright or inverted microscopes due to their popularity
in cell-level biology and biochemistry for a variety of
experimental,analytical,andqualitycontrolapplications

asdescribedearlier.Withthecomparativestudydescribed
in the following sections, we show that even a mid-
performance CMOS camera when empowered by image

processing algorithms can reach similar results with a
widely used high-cost CCD camera results. This paper
intends to show the potential use of CMOS cameras for

microscopicapplications,suggeststhescientiststofurther
diagnose their camera options before buying cameras and
proposes different image processing methods that can be

applied to reduce different types of noise as well as to
make an easy comparative study.

The structure of this paper is as follows: in Section
II, we describe the materials used in this experiment: the

custom-designed CMOS camera, commercially available
Nikon CCD camera and image intensity calibration kits,
in Section III, we present the methods that are used in

this experiment: image processing algorithms including
noise reduction algorithms, auto-thresholding and image
registration and resizing and the use of image intensity

calibrationkits to calculate the relative intensities of each
kit sample from the collected camera images, in Section
IV, the results are presented based on the calculation

of the relative intensities as well as the detection of the
morphological patterns on the tissue samples for cancer
diagnostics and Caco-2 cell lines by both cameras.

2 MATERIALS

2.1 Custom-Designed CMOS Camera vs Default
CCD Camera

InordertoshowthepossibleuseofCMOScamerasforcell-
level biological applications, we perform an application-
based comparative study based on fluorescence imaging

between the images collected from the default CCD
camera of the Nikon Eclipse Ti (Nikon Instruments,
Inc.Melville, N.Y.) invertedmicroscope and the custom-

designed CMOS camera. The chosen CCD camera has
been widely sold by Nikon for conventional microscopy
applications and the custom-designed CMOS camera is

assembled by using a mid-performance CMOS imager.

Since the focus of this paper is to introduce a low-

cost replacement of standard CCD cameras, Scientific
CMOS (sCMOS) cameras, which are the high-cost, new-
generation CMOS cameras providing a comparable and

evenbetterperformancethanElectronMultiplyingCharge
Coupled Devices (EMCCDs), are excluded from this
study and instead the standard CMOS camera images

are empowered by image processing algorithms.

Fig. 1 represents a block diagram of the entire fluores-

cence imaging system with the custom-designed CMOS
camera from image collection to FPGA interface. The
moredetailedpictureofthecustom-designedCMOScam-

era is shown in Fig. 2 where the CMOS image sensor and
the FPGA4U [20] board is visible. The custom-designed
CMOS camera replaces the CCD camera system which

includes CCD camera control unit and the CCD camera
itself in two separate cases. where the imager inside the
camera is Sony-ICX274AL [21]. The case for the camera

hastwoopeningsfromthebackandthefrontwhereformer
is for the USB connector and the later is for interfacing
output optics of themicroscope using a C-mount system.

The screw on the left side of the C-mount system is used
to adjust coarsely the depth of focus. Although, it is now
possible to find CMOS cameras for microscopic appli-

cations in the market, at the time of the setting up this
system, due to the lack of available CMOS cameras for
microscopy, we have chosen to build a custom-designed

CMOS camera.

As seen in Fig. 1, the camera system includes an

FPGA4u board and a Printed Circuit Board (PCB)
specifically built for the CMOS image sensor (Micron-
MT9V032 [22]). The FPGA4U board includes a USB

interfacewhichallows to connect theboard to a computer
in order to both program the CMOS sensor and transfer
the collected images. The collected images are later post-

processed by using MATLAB software on the computer.
The image sensor in the camera is a mid-performance
blackandwhiteCMOS imagerwith 752x480activepixels

and10bitsAnalogtoDigitalConverter (ADC)resolution.
The sensor is connected to the FPGA board through
the 20 pin connector which carries the Inter-Integrated

Circuit I2C bus and the camera control signals. The
I2C interface is used to configure the internal registers of
the sensor and more specifically the exposure time and

analog gain for this application and the Altera Design
Software is used to write the VHDL code for camera
control and synchronization units and to test them.

A more detailed comparison of the CMOS and CCD
camera used in this experiment is shown in Table 1. The

costofthetwocamerasgiveninTable1areestimatedcosts
where the CCD camera cost is based on the information
in [23] which is an Infinity X32M camera that includes

the same sensor as the Nikon CCD camera and the
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Fig. 1: System Level Representation of Image Collection
by CMOS Camera

Fig. 2: Custom-Designed CMOS Camera

Table 1: Comparison of CMOS and CCD Cameras Used
in this experiment

Nikon CCD Camera [23] CD CMOS [22]

Sensor Sony ICX274AL [21] MT9V032 [22]

Optical Format (in) 1/1.8 1/3

Pixel Size (µm× µm) 4.40× 4.40 6.0× 6.0

Sensor Area (H × V )(mm2) 57.8 12.99

Number of pixels (H × V ) 1628× 1236 752× 480

Dynamic Range (dB) 56 55

Quantum Efficiency (QE) @515nm %54 %44

Pixel Read Noise (e−) 12 25

Digital Output bits 8/12 10

Price Euros 6, 300 ≃ 1600 [24]

CCD Camera CMOS Camera

CMOS camera cost is based on the Infinity 1-1M CMOS

camera[24]whichhassimilarcharacteristicsasthecustom-
designed CMOS camera. The CMOS camera system not
only allows a low cost replacement of the CCD camera

but also provides a highly flexible and reprogrammable
camera unit. It also supports the implementation of
additional functionalities and possibly image processing

algorithms directly and rapidly on board.

Fig. 3: General View of CMOS and CCD Cameras [25]

Based on the sensor and camera data-sheets, the
comparison of the CMOS and CCD cameras used in this

experiment are limited to Table 1. For the CCD camera,
since the sensor and camera characteristics vary a lot, the
information given on the data-sheet of Infinity X-32M

camera is more useful than the image sensor data-sheet
but still limited. That is basically because a CCD imager
outputs an analog output and consists of pixel array and

analog signal chain while a CMOS image sensor consists
of pixel array, analog signal chain, on chip noise reduction
and digital readout providing a digital output as simply

described in Fig. 3 [25]. Thus, the CCD sensor requires
extra circuits for noise reduction as well as for digital
readout (ADC - Analog to Digital Converter) while a

CMOSimagesensorgeneratesdirectly thedigital output.
The ADC resolution of the CMOS sensor used in this
experiment is 10 bits while the extra digital readout

circuit combined with the CCD sensor generates 12 bits.
For the consistency of the results in this paper, the images
collected by the CCD camera is also converted to 10 bits

by post-processing. However, it should be notable that it
is possible to find CMOS sensors also with 12-bits digital
resolution and even higher in the market [26], [27]. The

most important parameters that would have a direct
impact on the quality of the collected images are the
Quantum Efficiency and Read-Out Noise. The read-out

noise can further be decreased by post-processing which
will be explained in the upcoming sections, however the
quantum efficiency QE which refers to the fraction of

photons incident on the detector surface that generate
electrons, plays a very important role in the detection
limit of the two sensors. As seen in Table 1, the CCD

camera has 1.22 times larger QE than the CMOS sensor.
However, depending on the application or the light level a
lower quantum efficiency can also be enough to generate

sufficient number of electrons or for more demanding
applications possible to chose CMOS image sensors with
higher QEs i.e 77% at 515nm [27].

To sum up, the comparison made on the sensor
performances based on the sensor data-sheets do not
provideenough informationtodrawaconclusiontodefine

the cameras’ noise floor or minimum light detection limit
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or their performances for a specific application. The

performances given in the camera data-sheets suffer
from the same problem as well because of using different
terms for the same performance parameters or by not

specifying themeasurement conditions clearly. Thus, the
only comparable information we could achieve from the
sensor and camera data-sheets are limited to Table 1.

However, the methods presented below can compare the
two cameras based on the application-specific collected
images which are the images of the artificial and real

fluorescent samples. Thisworkmainly compares awidely
available high-cost CCD camera for microscopy use with
a mid-performance low-cost CMOS camera. Obviously

the characteristics of the CMOS sensor can highly be
improved by use of better performing sensors from the
market [26], [27] or from the literature [28], [29]. For

other applications, the samemetrics and post-processing
algorithms or similarmetrics can be used for comparison.

2.2 Image Intensity Calibration Kit

Amicroscope image intensity calibrationkit is used to

comparethequalityofeachcamera.Thiskitprovidesfluo-
rescentmicrosphereswithfluorescenceintensitiesranging
from very low-intensities, similar to the ones emitted by

biological samples, to the brightest signal expected in
most microscopy applications. The green calibration kit
references as Invitrogen, InSpeckGreen (505/515)Micro-

scope Image Intensity Calibration Kit (Life Technologies
Incorporation, Carlsbad, CA) used for this application
which has Excitation/Emission wavelengths of 505/515

nm and the diameter of each microsphere is 6 µm. Ac-
cording to the data sheet of the calibration kit, the kit
includes 5different samples ofmicrospheres at relative in-

tensities of 100%, 30%, 10%, 3%, 1%and0.3%whichwere
determined using a Becton Dickinson FACScanTM flow
cytometer.However, as listed in thedata sheet, the actual

relative fluorescence intensities of these componentsmay
vary somewhat from the values listed, depending on the
kit and the production lot.

3 METHODS

In order to provide a cost-efficient solution to high-cost

CCDs, standard CMOS camera images are empowered
with different image processing algorithms. First of all,
Fixed Pattern Noise (FPN)) and temporal noise reduc-

tion algorithms are used. Later, we apply thresholding
algorithms onCMOSandCCDcamera images to extract
the morphological patterns on the collected images and

to create a comparison metric. In addition, we apply
image registration and image resizing algorithms on the
images collected by the CCD camera to keep the same

area of interest with the images collected by the CMOS

camera and we finally compare the camera images from

the calculated correlation value. First, we image fluores-
cence micro-bead samples (size of 6µm) obtained from
microscope intensity calibration kit which emits light at

515nm with different Relative Intensities (RIs) as 100%,
33%,10%,3%,1%and0.3%.Wecalculate theRIs of these
micro-bead samples by using a new metric called inten-

sity per white pixel (I/WP) and compare the calculated
RIs with both cameras. Second, we use a tissue sample
obtained from breast cancer patients where an Estrogen

Receptor (ER) expression emits low intensity fluores-
cence light at 665nm. More details on the tissue sample
imaging can be found in [30]. Finally, we also applied

the methods on images of fluorescent groups of Caco-2
cells. Using immunofluorescence techniques, we stained
the naturally present Glyceraldehyde 3-phosphate dehy-

drogenase (GAPDH) enzyme that we use as an example
of nanometer-scale target using a Texas-red compatible
dye.

3.1 Image Processing Algorithms Applied on the
CMOS Camera Images

3.1.1 Noise Removal

The goal of this research is to deal with low light emitting

samples and applications. This is why noise contributors
should be dealt with by reducing their impact on the
useful signals. CMOS imagers are known to suffer from
various noise sources which can be classified either as

temporal noise or FPN [31]. Temporal noise (e.g. photon
shotnoise, readoutnoise)results fromastochasticprocess
and cannot be fully determined nor mitigated for every

pixel. However, the FPN is not a function of time and can
be determined. It forms a constant pattern among the
pixels/columns of the imager sensor. This problem arises

fromsmalldifferences in the individual responsivityof the
pixels or the column amplifiers that aremostly caused by
inhomogeneity in the manufacturing process. The noise

removal algorithms are depicted in the results section.

Fixed Pattern and Temporal Noise Reduction
The FPN is generally divided into two components; dark
signal non-uniformity (DSNU) and pixel response non-
uniformity (PRNU). DSNU is an offset between pixels

in dark without illumination (dark current generation
variability) and PRNU is seen as a responsivity variation
among pixels under illumination. Both of these noise

sources are affected by the exposure time, the imager
temperature and the imager analog gain. When the
light intensity received by the CMOS sensor through the

fluorescencemicroscope isweak, it is required to program
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theCMOS image sensor athigh exposure timeandanalog

gain. This causes a huge FPN to appear and a classic
methodtomitigatepartof theDSNUisapplied [32]onthe
CMOS images. First of all, a master dark frame (MDF)

is generated by computing the median or the average
frame out of a set ofN dark frames. Second, the MDF is
subtracted from any regular captured bright frame (i.e.

containing the signal) at the same exposure and gain as
the MDF. The de-noised frames are computed using;

Fcorrected = max(0, Fraw −MDF ). (1)

The sensor temperature should be stable during the

calibration process, which can be achieved by letting the
system on for a few minutes before capturing the dark
frames.

On the other side, temporal noise is a function of time
and includes different noise sources such as photon shot
noise and readout noise. By collecting multiple images

and averaging the collected images, temporal noise has
been reduced.

Removal of Hot Spots/Pixels and Dead Pixels
In every CMOS and CCD camera, there are dead and

hot pixels. The amount of these defective pixels depends
on temperature, technology, design, layout or micro-
lenses. They may also appear due to aging of the sensor.

Hot pixels generate higher leakage or dark current than
normal. When an image is taken under long-exposure
time, longer than causing the pixel exceeding its linear

charge capacity, they appear as bright spots and cause
salt and pepper type noise on the image.This type of noise
cannot be removed byMDF generation and subtraction,

since it is only visible at high exposure time. On the other
hand, dead pixels are unresponsive stuck pixels and no
matter what the light intensity or exposure time, they do

not respond to light. A common method to remove hot
pixelsordeadpixels is replacingthembythemedianvalue
of the surrounding pixels. This remapping operation can

be done byMATLAB median filtering -medfilt2 operand
or by an outlier removal algorithm. For this experiment,
the following outlier removal algorithm has been used;

∆ = (|Iij −m|) (2)

∀i ∈ [1, v],∀j ∈ [1, h] : Ii,j =

{
m if ∆ > Th,
Iij else.

(3)

I: Intensity value of a pixel
h: Number of pixels at the horizontal direction
v: Number of pixels at the vertical direction

m: Median value of the intensity values of pixels in a

certain window around the chosen pixel Iij
window: Defined array size (radius× radius).
If the ∆ value is above a defined Threshold (Th), the
intensity value of the chosen pixel (Iij) is replaced by

the calculated median (m) and else if the ∆ is below the
Th, no change is done and the pixel value is kept as it
is. This method can be applied for both hot and dead

pixels. Hot pixels are the pixels that exceed the level of
the brightest neighboring pixel by more than the Th and
the dead pixels are the pixels that are darker than the

darkest neighboring pixel by more than the Th. In both
cases, they are replaced by themedian of the surrounding
pixels.

3.1.2 Auto-Thresholding

Thresholding method aims at selecting a threshold by
maximizinga criterionmeasure that evaluates the”good-

ness” of that threshold. For the experiments that are
stated in this paper, automatic thresholding method
introduced by N.Otsu [33] is applied on the images by

using MATLAB’s graythresh function.

During the thresholding process, individual pixels in
an image with an intensity value larger than a defined

thresholdvalueareconvertedto1(“object”pixels)where
alltheotherpixelvaluesbelowthisthresholdareconverted
to 0 (“background” pixels). Otsu’s thresholding is a non-

parametric method automatically selecting a threshold
level for a gray-level image based on its histogram. The
algorithmconsiderstheimagetobethresholdedconsisting

of two classes of pixels as foreground and background and
tries to achieve a thresholding value whichminimizes the
intra-class variation while at the same time allowing the

maximization of the inter-class variation.

The only input of the method is the normalized gray-
level histogram of the image, which can also been seen

as a probability distribution. Given a threshold value,
the L bins of the histogram can be dichotomized in two
classes;C0 gathering the bins indexed by [0, .., k−1] and

C1 gathering the bins indexed by [k, .., L− 1]. The gray
level corresponding the bin k corresponds to the selected
threshold.

Finding the optimal thresholdk∗ is reduced to solving

maxS∗
(
σ2
B(k)

)
(4)

where S∗ is the range of k over which the maximum is

sought

S∗ = {k;ω0ω1 > 0, or, 0 < ω0 < 1} (5)

andσ2
B is referred toas thebetween-classvariancedefined

by

σ2
B = ω0ω1 (µ1 − µ0)

2
(6)
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forwhichω0 andω1 aretheprobabilityofclassoccurrences

and µ0 and µ1 and the class mean levels.

3.1.3 Image Registration

When the camera sensors have different pixel and pixel
array sizes, image registration algorithms should be ap-

plied on the collected images to reach a fair comparison.
Image registration is the process of aligning the pixels of
two or more images of the same scene when one image is

considered as a reference. In this experiment, the image
registration algorithms basically include rotation, crop-
ping and scaling of the CCD camera images according

to the CMOS camera images since the CCD array size is
larger than the CMOS one. Below are the steps used for
the registration of the CCD camera images until highest

correlation with the CMOS camera image is achieved:
1) Rotation of the image to solve the low or high

angles of tilt issues that may appear when mounting the

cameras (with MATLAB’s imrotate function).
2) Cropping of the CCD camera image to reach same

area of interest with the CMOS camera image. In this

experiment, MATLAB’s imcrop function is used to crop
the CCD camera image of 1628× 1236 according to the
field of view of the CMOS camera image and finally an

image with an array size of 989× 631 is reached.
3) Resizing/Scaling of the CCD camera image. The

scaling factor forhorizontal andverticaldirections should

be calculated separately depending on the size of the each
camerapixel. Inthisexperiment,bothofthecamerapixels
are in square which results in the same horizontal and

vertical scaling factors. The scaling factor is calculated
by dividing the CMOS pixel size to the CCD pixel size
which is 1.3159 (CMOS pixel size / CCD pixel size =

5.79µm / 4.4µm = 1.3159). By using the scaling factor,
the cropped CCD image of 989 × 631 is resized to an
image with an array size of 752× 480.

3.2 Calculation of the Relative Intensities from

the Calibration Kit Samples

For measuring the microsphere RIs, we mount each

microsphere sampleof 5µLonaseparateglass slide.After
letting each droplet dry on the glass slide, we imaged the
samples with both CCD and CMOS cameras at different

Neutral Density (ND) filter values where an ideal ND
filter modifies the intensity of light equally according to
its value. The collected images are later used to calculate

the relative intensity values at the correct ND level as a
comparison method. However, it is not straightforward
to calculate the relative intensities of each sample since

the number of microspheres per droplet is not known

and their distribution on the glass slide is not uniform

which causes a varying number of microspheres for each
sample and for each frame. This is why a metric called
intensity per white pixel (I/WP) has been developed by

using the calculated parameters total intensity (TI) and
White pixel (WP). It is important to pay attention to the
different pixel array size ofCMOSandCCDsensorswhen

annotating these parameter values. The CMOS sensor
has752×480pixelswhiletheCCDsensorhas1628×1236.
Ideally, this would result in 5.57 times larger TI andWP

in CCD images than CMOS ones if the responsivity and
noise level of twosensorswere the sameandmicro-spheres
have been uniformly distributed. However, none of these

conditions are valid and the number of microspheres per
image and its ratio to the dark areas somehow differ
from an ideal distribution. Thus, it is expected to achieve

larger values of TI andWP for CCD images than CMOS
ones but it is not possible to define the exact ratio of
this increase. On the other hand, the I/WP and RI
parameters are independent of the area that is imaged

or the pixel array size of the camera that is used, or
the non-uniform distribution of the micro-beads. The
immunity of these parameters to different conditions

make these parameters reliable for this application and
they are also easily reusable for any camera comparison.
The RI parameter calculated from the I/WP parameter

is used as a comparison metric for this application since
the micro-beads RI values are already known within a
margin. Details of the calculations for each parameter is

given below.

The total intensity (TI) parameter is the sum of the

each pixel intensity values on a grayscale image and
calculated as;

ITotal =
v∑

i=1

h∑
j=1

Iij . (7)

I: Intensity value of a pixel
h: Number of pixels at the horizontal direction
v: Number of pixels at the vertical direction

Whitepixel (WP)parameterisrelatedwiththethresh-

olding concept which is explained earlier. By summing
up the pixels above the threshold value, the total number
of white pixels (WP) in an image can be calculated.

∀i ∈ [1, v],∀j ∈ [1, h] : BWi,j =

{
0 if Iij < VThresholding,
1 if Iij ≥ VThresholding.

(8)

where VThresholding is the thresholding value calculated

byMATLABandBWisthepixelvalueafterthresholding,
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either black(0) or white(1).

BWTotal =

v∑
i=1

h∑
j=1

BW ij (9)

By dividing the total intensity (TI) in a grayscale image

to the total number of WPs, the intensity per white pixel
(I/WP) parameter is defined.

I/WP =
ITotal

BWTotal
(10)

In order to improve the reliability of the RI results,
the I/WP parameter is averaged over twenty images of

the same sample which can be the depicted as µN . The
RI value among different samples can be formulated by
below equation where X represents the imaged sample

that the RI is being calculated of.

RI =

∑20
N=1 µN (Sample%X)∑20
N=1 µN (Sample%100)

(11)

4 RESULTS AND DISCUSSION

4.1 Comparison on Relative Intensity

Table 2: Relative Intensity Calculations from CMOS
Camera Images of Microsphere Slot of Relative Intensity
10%

ND
∑

(Intensity)
∑

(WhiteP ixel) TI/WP x ND

1024 1253 115229 11.1370
512 1279 116210 5.6347
256 1437 122685 2.9993
128 1739 19519 11.9592
64 2219 11096 12.7979
32 3514 11201 10.0401
16 5483 11158 7.8616
8 9808 11236 6.9832
4 15826 12312 5.1418
2 20996 14812 2.8349
1 30328 19845 1.5282

InTable2and3,sumofintensitiesofgrayscaleimages-
TI, sumofnumberofwhitepixelsafter thresholding -WP,
and intensity over white pixel - I/WP results are shown

for the micro-beads with 10% of relative intensity with
different ND values so the illumination levels. In Fig. 4,
thesumof intensityvaluesonTable2and3aregraphically

represented and it is seen that for ND values from 1 to
4, the pixels are saturated and from 128 to 1024 they
are under-illuminated. ND values from 8 to 64 represent

an area of interest where WP count is almost constant

Table 3: Relative Intensity Calculations fromCCDCam-
era Images of Microsphere Slot of Relative Intensity
10%

CMOS CCD

ND
∑

(Intensity)
∑

(WhiteP ixel) TI/WP x ND

1024 12404 611848 20.7872
512 12971 632442 10.4196
256 14127 653572 5.5296
128 16759 62725 34.2016
64 20852 57960 23.0272
32 30819 57511 17.1488
16 46833 57213 13.0976
8 76800 59319 10.3576
4 101165 68321 5.9056
2 134034 84263 3.1814
1 195104 114228 1.7080

as expected among light power. The WP parameter can
also be used to define the exact illumination level. When

decreasing the illumination level from the highest to the
lowest by using the ND filters (changed from 1 to 1024),
it is found that the WP first starts decreasing due to

the decrease in the number of saturated pixels, and after
some point, this value start re-increasing due to the noise
falling into the threshold level. When noise falls into the

threshold level, the noise is also counted as part of the
morphological pattern and the black and white image is
no longer correct.This iswhytheNDvalue corresponding

to the lowestWP is considered as the correct illumination
level for the sake of this measurement and highlighted in
yellow inTable 2 and 3.This behaviour could be observed

in all samples at different RIs although in here it is shown
only forfluorescencemicro-beadswith illumination levels
of %10.

The TI and WP parameters for CMOS and CCD

images largely differ due to the large array size of the
CCD sensor, the non-uniform distribution of the micro-
beads, the unknown ratio betweenwhite and black pixels

and the difference in performance parameters of the two
sensors.TheWPparameterislessimmunetothedifference
in the performance parameters but still immune to non-

uniformity and to the unknown ratio. The results of this
parameterdifferbyaratioof5.2 forthetwocameraswhich
is close to the ideal value (CCD array size / CMOS array

size= 5.57). Thus, neither theTI nor theWPparameters
canbeused to calculate theRIs.Asmentioned earlier, the
I/WPparameter isabettercomparisonparametersince it

isnotdependenton thearray sizeor thenon-uniformityof
micro-beads’ distribution. The highlighted rows of Table
2 and 3 show that the calculated I/WP for the CCD

image is 13.09 and 7.86 for the CMOS camera image for
the same illumination level. This value can be interpreted
similar to the system gain (K ) in the linear region of

a sensor which is defined as DigitalNumber(DN)/e−.
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This commonly known system gain parameter defines

the number of digital numbers per electron or vice versa,
where in this method the I/WP parameter defines the
number of digital numbers per white pixel.

The relative intensity - RI parameter on the other
side compares the two cameras in terms of their imaging
capabilities providing a relative value with respect to

the highest intensity sample. Thus, we achieve a direct
comparison of the sensors imaging capabilities for this
light range. The calculation method for RIs and results

are shown in the next section.

(a)Measured on Images Collected byCMOSCamera

(b) Measured on Images Collected by CCD Camera

Fig. 4:TotalwhitepixelVariationof aThresholded Image
with respect to ND Filter Values

Table 4: Calculated Relative Intensities of Microspheres
by CMOS Camera

Expected RI µN ND µN ×ND Calculated RI

%100 0.4222 256 108.1 %100
%30 0.3559 128 45.55 % 42.15
%10 0.4914 16 7.86 %7.27
%3 0.3458 8 2.77 %2.56
%1 0.5657 2 1.13 %1.05
%0.3 0.5072 1 0.51 %0.47

Table 5: Calculated Relative Intensities of Microspheres
by CCD Camera

Expected RI µN ND µN ×ND Calculated RI

%100 0.76 256 194.81 %100
%30 0.6053 128 77.48 % 39.77
%10 0.82 16 13.10 %6.72
%3 0.6065 8 4.85 %2.49
%1 0.55 4 2.2 %1.13
%0.3 0.91 1 0.91 %0.47

4.2 Comparison on Imaging

InTable4and5,thecalculatedRIsforbothCMOSand
CCD camera images are shown with the parameters that
are used. The calculated results vary from the expected

relative intensities for both CMOS and CCD camera
images. The variation for CMOS images for all intensity
levels in average is 28.6% while it is 30.4% for the CCD

images. This variation was expected as stated from the
data-sheet of the fluorescence due to the variation of
the production lot and also due to the difference in the

calculation technique. However, despite the variation of
calculated RIs from the expected values, the results are
consistent for both CMOS and CCD camera images and

thevariationamong the twocamera images is only%4.79.
This means that both cameras are capable of generating
similar quality images aswell as close quantitative results

from a large-scale intensity fluorescence samples.

In this section, the image processing algorithms ex-
plained in Section 3.1 are applied on the CMOS and/or

CCD camera images step by step. First, due to the high
exposure time in CMOS camera, FPN noise becomes
critical and FPN noise reduction algorithm is applied

on both Tissue and Caco-2 cells’ CMOS camera images.
Second, to remove both hot and dead pixel outliers which
are numerically distant from the surrounding pixel val-

ues on the image, outlier removal algorithm is applied
on the CMOS and CCD camera images. Later, auto-
thresholding algorithm is used for both camera images

forquantitativecalculationsandcomparisonaswell as for
better visibility of the morphological patterns expressed
on the cells. Finally, the CCD camera images are regis-

tered and resized according to theCMOS camera images.
With this method, the CCD images of 1200Vx1600H are
converted to images of 480Vx752H. In order to keep the

experimental setup the same for both cameras, the same
light intensity (NDFilter= 1) andmicroscope optics and
objectives (40X, Numerical Aperture=0.75) are used for

both camera image acquisitions. The light emitted from
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(a) CMOS Gray-Scale Camera Image Before
Noise Removal (with DSNU)

(b) CMOS Camera Master Dark Frame (MDF)

(c)CMOSGray-ScaleCameraImageAfterFPN
Removal (without DSNU) (Contrast Enhance-
ment for Better Display of Salt and Pepper
Noise Caused by Hot Pixels

(d)CCDCameraGray-Scale Image (En-
hanced Contrast)

(e) CMOS Camera B/W Image After Otsu’s
Auto-Thresholding Method

(f) CCD Camera BW Image after Otsu’s
Auto-Thresholding Method

Fig. 5: CMOS and CCD Camera Images of ER detection from Tissue Samples (Exposure=1s, Gain=8x) [30].

theERexpressionintissuecellsandtheGabdhexpression
inCaco-2 cells are bothmuch lower than themicro-beads
even at lowest intensities. That is why the samples have

been imaged at very high exposure time (1s) and analog
gain (8X/16X) for both camera experiments.

4.2.1 Tissue Sample Imaging

The sample is a breast cancer diagnostic sample that

the nuclear Estrogen Reception (ER) expression emits
fluorescence light at 665nm. ER is detected by indirect
immunohistochemicalreaction[34],[35]usingmonoclonal

mouse anti-humananti-ERreceptor antibodyasprimary

antibody (clone 6F11, Leica Microsystems) and Alexa-
Fluor 647 conjugated goat anti-mouse polyclonal IgG
antibody (Invitrogen) as secondary anti-body.

First, from the CMOS camera row images (Fig. 5a),
the Master Dark Frame (MDF) (Fig. 5b) is subtracted
and the corrected image is obtained as seen in Fig. 5c.

Contrast enhancement is applied on this image in order
to increase the visibility of hot pixels/spots. Later, outlier
removal algorithm is applied on this image. Finally,

thresholding method is applied on the image which is
shown in Fig. 5e which improves the localization of the
morphological pattern. For the CCD images seen in Fig.

5d, again outlier removal algorithm is applied as well
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(a)CMOSGray-ScaleCameraImageAfterFPN
Removal (without DSNU)

(b) CCD Gray-Scale Camera Image

(c) CMOS Black and White Camera Image
After Otsu’s Auto-Thresholding Method

(d)CCDBlackandWhiteCamera Image
AfterOtsu’sAuto-ThresholdingMethod

Fig. 6: CMOS and CCD Camera Images of Gabdh Protein Expression on Caco-2 Cells (Exposure=1s, Gain=16x)

(a) Tissue Sample Image with CMOS camera (b)RegisteredandResizedCCDCameraTissue
Sample Image (752× 480)

(c) Caco-2 Cell Line CMOS Camera Image (d)RegisteredandResizedCCDCameraCaco-2
Cell Line Image (752× 480)

Fig. 7: CMOS and CCD Camera Image Comparison
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as the auto-thresholding method. Resulting image after

auto-thresholding is seen in Fig.5f.

4.2.2 Gabdh Gene Expression on Caco-2 Cells

Humancolonadenocarcinoma(Caco-2) cells are com-
monly used in pharmaceutical researches as an in-vitro

model of the human small intestinal mucosa in order
to monitor the drug uptake and transport. Since the
culturing of mature intestinal epithelial cells are very

difficult, recently Caco-2 cell lines have taken a lot of
attention. In [36], Caco-2 cell monolayers have been pro-
posed as a model for drug transport across the intestinal

mucosa. Inaddition, in [37], inductionofToll-like receptor
- TLR proteins with Lipopolysaccharides - LPS has been
shown on Caco-2 cells to investigate the inflammation

in Gastro-intestinal Tract - GIT epithelial cells and a
nutrition platformmimicking the humanGITwithin the
frame of these results have been proposed.

DuetothepopularityofCaco-2cellsinpharmaceutical
research and nutrition analysis on human health, we use

a Caco-2 cell sample with Gabdh protein expression to
show the possible use of CMOS cameras on these kind
of applications.

Similar to the tissue sample images, again CMOS
camera imagesarecorrectedwithFPNremovalalgorithm

and converted to black and white images with auto-
thresholding algorithm as seen in Figures 6a and 6c. For
the CCD camera Caco-2 cell images, the same procedure

as in the tissue sample imaging is applied and results are
shown inFigures6band6d.ThreeCaco-2Cells arevisible
in these images and the Gabdh protein is expressed in

the nucleus of the cells.

4.2.3 Comparison of CCD and CMOS camera
images

Fig. 7helps tomakeadirect comparisonon theCMOS
andregisteredandresizedCCDcamera tissueandCaco-2
cell images.

In Figures, 7a and 7b, it is seen that both cameras
are capable of detecting the morphological pattern of

the ER receptor expression at the nucleus level that can
be found in the breast tissue. The correlation coefficient
calculatedamongthesetwoimagesbyusingtheMATLAB

cross-correlation function of corr2 is found to be 0.65.

In Figures, 7c and 7d, it is visibly possible to conclude

that both cameras are capable of detecting the morpho-
logical pattern of the Gabdh protein expression at the
Caco-2 cell nucleus level.A correlation value among these

two black and white images is found as 0.84.

These high correlation values confirm the conclusion

that was drawn earlier that the CMOS cameras when

empowered with image processing algorithms should be

considered for cellular level optical studies.

5 CONCLUSION

In this paper we proposed a comparative study between

a CCD and a CMOS camera with respect to their perfor-
mances for imaging on artificial fluorescence beads and a
biological tissue sample by using optical microscopy. The
calculationsappliedontheimagesofartificialfluorescence

beads have shown that even amid-performance, low-cost
CMOS and a high-cost CCD cameras extract very close
information where the final variation among the relative

intensities is only 4.79%. For the cancer diagnostic and
Caco-2 samples, since ER and Gabdh expressions emit
even lower fluorescence light than the micro-beads with

the lowest intensities, the effect of the noise reduction
algorithms have become even more crucial and visible.
At this high exposure rates, although the initial CMOS

image has been very noisy, after applying proper image-
processing algorithms, the CMOS camera was capable
of generating the same morphological pattern as the

CCD camera image. Therefore, this paper demonstrates
that CMOS cameras are recommended for investiga-
tions of cells and tissues when dealing with fluorescence

microscopy. It paves the way to biologists to further
investigate their camera options as well as decrease their
instrument costs. Undoubtedly, the trend towards using

low-cost CMOS cameras is even more important when
standardmicroscopy is replaced by (possibly disposable)
lab-on-chip platforms.
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