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ABSTRACT 

Nowadays, the production in fine chemical and pharmaceutical industry is mostly carried out in large 

scale batch reactors having typically dimensions of a few meters to satisfy the demand of the market. Even 

though this technology has been widely used and developed for centuries, it is by far not optimal for every 

type of reaction. For example, when working with exothermic reactions, the produced heat can’t be 

always fully evacuated. To avoid run-aways, high amounts of solvents are used to increase the heat 

capacity of the mixture, or semi-batch mode with a slow addition of one of the reactants. In both cases, the 

space-time yield, i.e. mass of product produced per unit of time and per unit of volume, drastically 

diminishes. 

One of the main enabling technologies allowing process intensification are the microstructured devices, 

characterized by high heat and mass transport rates due to the small characteristic dimensions (< 1mm). 

Using this type of equipment, almost isothermal conditions can be achieved while carrying out fast 

exothermic reactions (with characteristic reaction times down to tr ≈ 10 s). Thereby, the target throughput 

is reached by numbering-up, i.e. parallel connection of several identical microreactors. For very fast 

exothermic reactions, especially for quasi-instantaneous reactions, dimensions smaller than 100 m are 

needed to prevent the formation of unwanted hot spots. As such small dimensions are not suitable for 

industrial scale due to possible clogging and high pressure drops, other solutions are warranted. 

The aim of this thesis is to develop alternative microstructured reactors enabling quasi-instantaneous 

reactions to be carried out under intensified conditions while suppressing the large hot spots. The work is 

divided into two main parts: determination of suitable strategies for the microstructured reactor design via 

numerical simulations (Chapter 3) and the experimental validation of the best microstructured reactor 

concept (Chapter 4-6). 
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Three strategies for enhanced temperature control within microstructured reactors for quasi-instantaneous 

reactions are taken for analysis using numerical simulation: 1) reduction of hot spot temperature by 

increased axial heat transfer in the reactor wall, 2) by injection of one reactant in multiple points along the 

reactor length and 3) by continuous injection of one reactant through a porous wall in a concentric reactor 

geometry. The multi-injection reactor (option 2) is the most effective design since with an optimized 

dosing with only 4 injection points the temperature rise is 5-fold smaller as compared to the adiabatic 

temperature rise. Furthermore, the key design requirements for an efficient multi-injection reactor are 

identified: 1) complete mixing after each injection and 2) evacuation of the produced heat before reaching 

the next injection point. 

To experimentally validate the simulation results, in the subsequent chapter, an experimental method to 

monitor temperature in microstructured reactors is developed (Chapter 4). To track axial temperature 

profiles quantitatively, a method based on non-intrusive infrared thermography is developed yielding a 

resolution of 100 points/mm2 and a precision of 1 °C. In the first validation experiments, the heat transfer 

coefficient determined in a micro heat exchanger (574 W/m2K) is in good agreement with prior 

estimations. While carrying out the hydrolysis of tetraethoxysilane as a fast model reaction, incomplete 

mixing of the reactants is detected via the temperature profile, and is ascribed to the high difference in 

density of the inlet flows. 

Applying the method of quantitative IR-thermography to a T-micromixer with circular cross section gives 

insight into the mixing phenomenon (Chapter 5). The latter is studied via the temperature profile of the 

reactions strongly controlled by mixing, i.e. dilution of sulfuric acid with water and cyclization of 

pseudoionone.  

The mass transfer coefficients determined are in the order of 0.1-9 1/s. It is shown that at high Fourier 

numbers Fo = tdiff/ (mixing by shearing), the Damköhler number DaI= /tmix remains constant with 

respect to flow rate at the reactor outlet, as both, mixing time and residence time decrease proportionally 
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with the latter parameter. To enhance the mixing performance, two approaches are applied: 1) the 

introduction of a carrier phase leading to travelling micro-batches with up to 4-fold faster mixing and 

2) the structuring of the channel walls leading to the formation of vortices, and thus, to a substantially 

improved mixing efficiency. 

For efficient mixing in the multi-injection reactor (Chapter 6), two types of mixing structures, i.e. the 

tangential mixer and the herringbone mixer, are developed using low temperature co-fired ceramics, and 

compared using quantitative infrared thermography. The best mixing performance is obtained by the 

herringbone structure, providing efficient mixing in a large range of flow rates corresponding to Reynolds 

numbers Re = 20-130.  

Finally, a multi-injection reactor comprising three injection points and the herringbone microstructure is 

developed. Using the quasi-instantaneous and exothermic cyclisation of pseudoionone to -ionone and 

-ionone as model reaction, it is demonstrated that the temperature rise can be reduced 8-fold compared to 

the adiabatic temperature rise due to 1) the high volumetric heat transfer coefficient in the order of 

4·106 W/(m3K), 2) the reduced overall transformation rate due to gradual mixing within the herringbone 

structure and 3) the injection of pseudoionone at three injection points. Yields of -ionone and -ionone 

above 98 % are achieved at a residence time of 3.7 s while efficiently avoiding the unwanted consecutive 

polymerization in a temperature range of 30-60 °C. Compared to the conventional semi-batch process, 

where such high yields can only be attained at temperatures below 10 °C, a 500-fold increased space-time-

yield is achieved. In addition to the intensification of the process, the required mass of solvent is halved 

while maintaining good temperature control, rendering the overall process safe. 

 

KEYWORDS:  Process intensification, multi-injection, microstructured reactor, exothermic, 

temperature, infrared, pseudoionone 
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ZUSAMMENFASSUNG 

Damit die Nachfrage des Marktes gestillt werden kann, findet heutzutage die Produktion der 

feinchemischen und pharmazeutischen Industrie in großen Rührkesselreaktoren statt. Diese weisen 

typischerweise Dimensionen in der Größenordnung von einigen Metern auf. Obwohl diese Technologie 

schon seit Jahrhunderten genutzt und weiterentwickelt wird, handelt es sich dabei bei weitem nicht um die 

beste Lösung für alle Reaktionstypen. Bei stark exothermen Reaktionen zum Beispiel, kann die 

produzierte Wärme nur sehr langsam evakuiert werden. Um ein thermisches Durchgehen des Reaktors zu 

verhindern, werden große Mengen an Lösungsmitteln eingesetzt, die die Wärmekapazität des Gemisches 

erhöhen. Eine andere Möglichkeit stellt das langsame Hinzudosieren eines der Reaktanden im 

sogenannten „Semi-Batch Modus“ dar. Beide Fälle führen zu einer drastisch reduzierten Raum-Zeit 

Ausbeute, d.h. Masse an Produkt pro Zeiteinheit und pro Volumeneinheit. 

Eine der wichtigsten und aussichtsreichsten Technologien zur Prozessintensivierung sind 

mikrostrukturierte Reaktoren, deren kleine charakteristische Dimensionen von unter einem Millimeter 

hohe Massen– und Wärmetransportraten ermöglichen. Anhand solcher Apparate können beim 

Durchführen von schnellen exothermen Reaktionen (mit charakteristischen Reaktionszeiten bis hinunter 

zu tr ≈ 10 s) fast isotherme Bedingung erreicht werden. Dabei wird der benötigte Durchsatz durch das 

„Numbering-up“-Konzept erzielt, bei dem mehrere Mikroreaktoren parallel geschaltet sind. Für sehr 

schnelle Reaktionen, insbesondere für quasi-instantane Reaktionen, werden Dimensionen unter 100 m 

benötigt, um sogenannte Hot Spots, d.h. einen unerwünschten Anstieg der Temperaturen, zu vermeiden. 

Da sich solche kleinen Kanäle wegen des hohen Druckverlustes und des Risikos der Verstopfung für eine 

Produktion auf industrieller Ebene nicht eignen, werden andere Lösungen benötigt. 
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Die Zielsetzung dieser Arbeit ist die Entwicklung alternativer Mikroreaktoren, die es ermöglichen, quasi-

instantane Reaktionen unter intensivierten Bedingungen auszuführen. Dabei gilt es, die Temperatur auf 

ein möglichst konstantes Niveau zu halten, d.h. Hot Spots zu unterdrücken. Die Arbeit lässt sich 

hauptsächlich in zwei Teile gliedern:  

 die Ermittlung geeigneter Mikroreaktordesigns mittels numerischer Simulation (Kapitel 3) und  

 die experimentelle Validierung des besten Mikroreaktorkonzepts (Kapitel 4-6). 

Folgende drei Strategien zur verbesserten Temperaturkontrolle von quasi-instantanen Reaktionen in 

Mikroreaktoren werden mittels numerischer Simulationen untersucht: Die Verminderung der Hot Spot 

Temperatur 1) durch eine Erhöhung der axialen Leitfähigkeit in der Reaktorwand, 2) durch Hinzudosieren 

einer der Reaktanden an mehreren diskreten Punkten entlang des Reaktors und 3) durch das 

kontinuierliche Hinzugeben einer der Reaktanden durch eine poröse Wand in einem konzentrisch 

aufgebauten Reaktor. Der Multi-Injektionsreaktor (Option 2) stellt sich als die effektivste Variante heraus, 

da mit optimierter Dosierungsstrategie mit lediglich 4 Injektionspunkten der Temperaturanstieg im 

Vergleich zum adiabaten Temperaturanstieg um ein 5-faches verringert werden kann. Des Weiteren 

werden die Anforderungen an das Design eines effizienten Multi-Injektionsreaktors ermittelt: 1) eine 

vollständige Vermischung der Ströme nach jeder Injektion und 2) das Abführen der durch die Reaktion 

produzierten Wärme vor Erreichen des nachfolgenden Injektionspunktes. 

Zur experimentellen Validierung der Ergebnisse wird im darauffolgenden Kapitel 4 eine Methode zur 

quantitativen Vermessung von Temperaturprofilen in mikrostrukturierten Reaktoren entwickelt. Diese 

basiert auf berührungsfreier Infrarotthermographie und erzielt eine Auflösung von 100 Punkten/mm2 mit 

einer Präzision von 1 °C. In den ersten Validierungsexperimenten mit einem Mikrowärmetauscher, wird 

eine gute Übereinstimmung zwischen dem experimentell ermittelten (574 W/m2K) und dem aus 

Korrelationen geschätzten Wert erhalten. Darüberhinaus wird das Temperaturprofil einer schnellen 

Modellreaktion vermessen, nämlich der Hydrolyse von Tetraethoxysilan. Das ermittelte Profil ermöglicht 



xi 
 

es, unvollständiges Mischen der Eingangsströme im Reaktorinneren festzustellen. Diese kann auf den 

hohen Dichteunterschied zwischen den Strömen zurückgeführt werden. 

Die zuvor entwickelte Methode wird in Kapitel 5 auf einen Mikro-T-Mischer mit kreisförmigem 

Querschnitt angewandt, um Einsicht in den Verlauf des Mischungsphenomens zu erhalten. Dieses wird 

mittels des Temperaturprofils von mischungskontrollierten Reaktionen untersucht: die Verdünnung von 

Schwefelsäure in Wasser und die Cyclisierung von Pseudojonon.  

Es werden Stoffübergangskoeffizienten in der Größenordnung von 0.1-9 1/s ermittelt. Dabei wird 

festgestellt, dass bei großen Fourierzahlen Fo = tdiff/ (Mischung durch Scherung), die Damköhlerzahl 

DaI= /tmix am Reaktorauslass bezüglich der Flussrate konstant ist: sowohl die Verweilzeit als auch die 

charakteristische Mischzeit nehmen umgekehrt proportional mit der Flussrate ab. Um die 

Vermischungsqualität zu verbessern, werden zwei Ansätze angewendet: 1) Das Hinzfügen einer 

Trägerphase die zur Bildung von kontinuierlich strömenden „Mikro-Batches“ mit bis zu 4-fach erhöhter 

Mischgeschwindigkeit führt und 2) das Erzeugen von Strukturen  in der Kanalwand die zur Bildung von 

Sekundärströmungen führen, die eine deutliche verbesserte Mischung zur Folge haben. 

Um eine effiziente Mischung im Multi-Injektionsreaktor in Kapitel 6 sicherzustellen, werden zwei Typen 

von Mischstrukturen untersucht, nämlich der Tangentialmischer und der Herringbonemischer. Beide 

Strukuren werden mit Low Temperature Co-Fired Ceramics hergestellt und unter Nutzung der 

quantitativen Infrarotthermographie verglichen. Die beste Vermischung wird mittels der 

Herringbonestruktur erreicht, die in einem breiten Bereich von Reynoldszahlen Re = 20-130 zur 

vollständigen Vermischung führt. 

Die in den vorherigen Kapiteln gesammelten Daten führen zur Entwicklung eines effizienten Multi-

Injektionsreaktors (Kapitel 6), der 3 Injektionspunkte und die Herringbonestruktur beinhaltet. Bei der 

Durchführung der quasi-instantanen und stark exothermen Cyclisierung von Pseudojonon zu -Jonon und 

-Jonon im Multi-Injektionsreaktor, wird eine im Vergleich zur adiabaten Temperaturerhöhung 8-fach 
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reduzierte Maximaltemperatur erzielt. Die gute Temperaturkontrolle kann auf folgende Punkte 

zurückgeführt werden: 1) ein hoher volumetrischer Wärmeübergangskoeffizient von ca. 4·106 W/(m3K), 

2) eine verringerte effektive Transformationsrate die sich aus der graduellen Vermischung innerhalb der 

Herringbonestruktur ergibt und 3) die Injektion des Pseudojonons an 3 unterschiedlichen 

Injektionspunkten. Bei Verweilzeiten von 3.7 s werden Ausbeuten von -Jonon und -Jonon von über 

98 % erzielt. Gleichzeitig kann die unerwünschte Folgepolymerisation in einem Temperaturbereich von 

30-60 °C unterbunden werden. Im Vergleich zu einem konventionellen Semi-Batch Prozess, wo solche 

hohe Ausbeuten lediglich bei Temperaturen unter 10 °C erreicht werden, wird eine 500-fach erhöhte 

Raum-Zeit Ausbeute erreicht. Zusätzliche zur Prozessintensivierung, wird die benötigte Masse an 

Lösungsmittel halbiert. Dabei wird die Temperatur stets in einem kontrollierten Bereich gehalten, was zu 

einem rundum sicheren Prozess führt. 

 

STICHWÖRTER:  Prozessintensivierung, Multi-Injektion, Mikrostrukturierte Reaktoren, exotherm, 

Temperatur, Infrarot, Pseudojonon 
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Chapter 1  

INTRODUCTION 

In this first part of the thesis, the subject and the problematic are introduced. It summarizes the aim, the 

objectives and the chosen strategy to achieve them. 

1.1 Sustainable Development in Chemical Industry 

Sustainable development is defined as a development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs [1]. This definition was formulated 

in a report of the United Nations General Assembly in 1987. It shows the acute state of awareness of the 

threats of industrial progress to future generations already back in the eighties. Nevertheless, a constant 

increase in consumption of natural resources and waste production has been denoted in the past decades, 

as depicted in Figure 1.1. Already nowadays, consumption of natural resources is much higher than their 

rate of replacement, leading to their depletion. To meet the rate of consumption of natural resources in 

2013, we would need 1.5 planets for our supply. As only one planet Earth is available, we must drastically 

change our habits. Thereby, the transition from the business as usual to a more sustainable regime is one 

of the main barriers, since it is often complex to find agreement between economic targets and sustainable 

development [2]. 

Due to the obvious adverse effects of chemical products and processes on the global ecology, it is 

mandatory for the chemical industry to induce some drastic changes, and to strive for a more sustainable 
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future [3]. A.W. Hofman, a German chemist and founder of the Royal College of Chemistry in London, 

illustrated already in 1866 that [4]: 

“In an ideal chemical factory (…) there is, strictly speaking, no waste but only products (…). The closer 

(…) it gets to its ideal, the bigger is the profit.” 

In contrast to many other industries, a sustainable development in chemical industry is well in accordance 

with economic success, which should be an incitement for this sector to do pioneering work within this 

field. With E factors (kg waste/ kg product) above 25 [5-7], especially the current fine chemical and 

pharmaceutical industries are industries of waste generation [8]. 

To overcome the high E factors, the industry needs to take decisive steps forward on several levels [9]. 

One main concern is to move from a chemistry carried out under highly diluted conditions to intensified 

processes at high concentrations and temperatures allowing high product yield [8]. 

 

Figure 1.1: Diagram illustrating two possible scenarios for the future development: continuing with the business as 

usual (black) or making radical changes of approach as described by “Vision 2050” [10].  
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1.2 Objective and Structure of the Present Work 

In this section, the objectives of the present work are formulated. Subsequently, the overall structure of the 

thesis is addressed before giving an overview of the reactors used and developed within this work. 

1.2.1 Objective 

A common approach to handle fast exothermic reactions is by 1) dilution of the reactants using solvent or 

by 2) semi-batch mode, which is the slow addition of one of the reactants. In both cases, the space-time 

yield, i.e. mass of product produced per unit of time and per unit of reactor volume, drastically diminishes. 

Furthermore, the first approach results in the enormous E-factors (kg waste/ kg product) found in the 

pharmaceutical and fine chemical industry, as mentioned in the introduction. Using innovative reactor 

designs, such fast and exothermic reactions can be carried out in a much more efficient way, i.e. at 

drastically increased space-time yield. 

The microstructured reactor (MSR) is one key component to fulfill the needs of substantial intensification 

of chemical transformation in the fine chemical and pharmaceutical industry [8, 11-13]. Its most 

significant advantage is the improved heat evacuation compared to the conventional large scale reactors 

[14-16]. Under the predominant laminar regime, the volumetric heat transfer resistance at the reactor 

channel side is proportional to the square of the reactor diameter [17].  

In principle, by using the strong dependence of the heat transfer rates on the reactor diameter, any 

exothermic reaction can be controlled by adjusting the reactor diameter to the reaction properties. When 

carrying out exothermic reactions with effective characteristic reaction times < 10 s, almost isothermal 

profiles can be achieved by the use of MSR with diameters in the range of 1000 m to 100 m. However, 

for faster reactions, particularly quasi-instantaneous with characteristic reactions times in the order of 1 s, 

this approach leads to sizes smaller than 100 m. For a production on industrial scale, such small channel 
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sizes are not viable as they are highly sensitive to clogging, cause high pressure drops when passing 

liquids and are expensive to scale-out [17]. 

The aim of this project is to enable process intensification of rapid and highly exothermic reactions with 

characteristic reaction times of a few seconds or even smaller than 1 s, referred to as quasi-instantaneous. 

Thereby, alternative strategies of temperature management in microstructured reactors have to be found to 

minimize the temperature rise, i.e. suppress the formation of hot spots, while avoiding the use of 

excessively small reactor diameters. The task is addressed on a theoretical level by carrying out numerical 

simulations and experimentally by demonstrating the proof of concept. 

1.2.2 Structure of the Work 

The reader is introduced to the fundamentals of microstructured reactors to give an insight in the 

advantages and constraints encountered with microstructured reactors (Chapter 2).  

Following the first brainstorming, three strategies having the potential to reduce hot spot temperature in 

microstructured reactors are selected and analyzed in detail using numerical simulation (Chapter 3): 1) 

temperature control by axial conduction of heat, 2) by distinct injections of one reactant along the length 

and 3) by continuous injection along the length of a concentric reactor. Using numerical simulation as tool 

for elaboration of the best concept, the multiple injections at distinct positions is identified. Furthermore, 

the key design parameters of an efficient multi-injection reactor are determined: To avoid accumulation of 

heat and mass, it is crucial to assure complete mixing of the reactants, and to evacuate the produced heat 

before reaching the subsequent injection point. Thereby, an entire chapter (Chapter 5) of the thesis is 

devoted to mixing, which remains challenging under the predominant laminar flow regime in micro-

capillaries. 
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For the experimental validation of the simulation results obtained with the multi-injection reactor, a non-

intrusive experimental method to monitor temperature in microstructured reactors is developed and 

validated in the following chapter (Chapter 4). 

As complete mixing between the injection points is crucial, the newly developed thermal mapping method 

is used to get further insight into the rate of homogenization in a T-shaped micromixer with circular cross 

section (Chapter 5). 

Finally, in Chapter 6, the development and testing of a multi-injection reactor is presented. Thereby, the 

cyclization of pseudoionone is used as a model reaction to demonstrate the degree of process 

intensification that can be achieved with this type of reactor while keeping temperature in a controlled 

range. 

The findings of the study are summarized in the concluding chapter (Chapter 7). 
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1.2.3 Overview of the Reactors 

Table 1.1: Overview of the reactors developed during the present study. 
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Table 1.1 gives an overview of the 11 main reactors that were bought (reactor 1&2) or developed during 

the present thesis. While reactors 1 to 7 are thoroughly described in the thesis (see Figure 1.2), reactors 

8-11 are only mentioned in the present section (Figure 1.3). 

Figure 1.2: Overview of the reactors developed within the PhD project and presented in the upcoming 

chapters. If not further specified, the dimensions are given in millimeter. 

The main challenge encountered while developing the reactors was to ensure sufficient mixing of the 

relative viscous inlet flows under the predominant laminar flow regime. When working with the glass 
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reactors (reactors 8), which had three different contact angles for the incoming flows, it was quickly 

noticed that the high ratio of channel width/channel height (about 3.5) prevented the flows to mix even at 

Reynolds numbers of a few hundreds. Any mixing would occur only in the capillaries attached at the 

reactor outlet.  

 

Figure 1.3: Overview of the reactors developed within the PhD project. The results obtained with the represented 

reactors are not addressed in the present study. 

In the first version of a multi-injection reactor (reactor 9), mixing in circular cross sections was found to 

be insufficient, which would have led to dangerous accumulation of the reactants along the length. Finally, 
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a similar behavior was observed for the prototype of the micro-annular reactor (11), where the streams in 

annular space were found to mix solely by slow diffusion. 
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Chapter 2   

STATE OF THE ART 

This chapter will give the reader an introduction to microstructured reactors (MSR). At first, a simplified 

overview of the entire field is given, establishing when and how to use this type of equipment. In the 

subsequent section, the different aspects of mass and heat balance inside microchannels are addressed, 

showing on the one hand similarities, and on the other hand, the differences between the conventional and 

the microreactor scale. As up to now a lot of effort has been done to understand and improve mixing in 

MSR, this on-going subject is addressed in a separate section.  

2.1 Introduction to Microstructured Reactors 

In this section, the reader is introduced to the concept of microreactors. Starting with a definition, the main 

motivations for their use and challenges to overcome are elucidated. As this type of equipment cannot be 

scaled-up in the classical sense, the last part of this section is devoted to the “scaling-out” approach which 

allows the production on a pilot and industrial scale. 

2.1.1 Microstructured Reactors as Tool for Process Intensification 

Process intensification was described by C. Ramshaw as “a strategy for making dramatic reductions in the 

size of a chemical plant so as to reach a given production objective” [12, 13]. This significant reduction in 
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size can be reached by two ways: (1) Reducing the amount of apparatuses involved in one process or by 

(2) reducing the size of the pieces of equipment. Later on, A. Stankiewicz reformulated C. Ramshaws 

concept in a broader sense: “Any chemical engineering development that leads to a substantially smaller, 

cleaner and more energy efficient technology is process intensification”. This vision of the future of 

chemical engineering was the main impulse for the rapid development of microreactors, as one of the 

main tools of process intensification. 

 

Figure 2.1: Illustration depicting in an exaggerated manner a school excursion to a chemical plant in the present 

(top) and in the future (bottom). Adopted from Stankiewicz et al. [12]. 

Microstructured reactors are usually defined as miniaturized reaction systems which have at least one 

characteristic dimension in the submillimeter range, i.e. typically 10-1000 μm [18-20]. Reactors with 

dimensions approaching the upper boundary are usually referred to as milli- or minireactors, whereas for 

smaller reactors the term nanoreactors can be found. When referring to microreactors or microstructured 
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reactors in the present study, systems to carry out chemical transformation aiming at the production of fine 

chemicals or pharmaceuticals on an industrial scale are described. 

 The first activities of micro process technology occurred in the 1980s, when this technology was used to 

enhance heat exchange capacity [14, 20, 21]. In 1990, the Institut für Mikrotechnik Mainz (IMM) was 

founded [22], which played an essential role in the future development of this field. Initially, micro-

fabricated equipment was used to create so called Lab-on-Chip devices for biochemical and analytical 

tasks [20, 23, 24]. Thereby, several working steps are integrated on one chip creating a miniature working 

station. The idea of carrying out chemical and biochemical synthesis for pilot plant and larger applications 

became mature in a workshop which took place in 1995 at Institut für Mikrotechnik Mainz, Germany [25]. 

This was the birth of a separate class of microfluidic devices which are the subject of this dissertation. In 

1997, the first International Conference on Microreaction Technology (IMRET1) was held in Frankfurt, 

Germany [26]. Since then, 12 IMRETs have been organized all over Europe, USA and Japan, and a 

dramatic increase in research activity took place leading to a yearly growing amount of publications and 

patents [27], as can be seen in Figure 2.2.  
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Figure 2.2: Amount of publications on “microreactor” found on Scopus [28] in 2013 (dots) and amount of 

worldwide patent families published per year on microreactors (edited from Dencic et al. [27]). 

As mentioned in the previous paragraph, microreactors can be divided in different categories according to 

their function. On one extreme there are the analysis systems, designed as a tool to gather information 

(Lab-on-Chip), uniting several functions on one single plate. One example for this category is a device 

developed to measure concentration of metal containing aerosols in air [29]. 

The second category is constituted of reaction systems which are used for chemical or biochemical 

synthesis, but solely to collect data for a process that is meant to be carried out on conventional macro 

scale equipment. In this, the classical scale-up step separates the lab scale experiment from the pilot plant 

or large scale production. A typical example for the latter category would be the determination of kinetic 

data of a reaction that is industrially carried out in a batch or semi-batch reactor [30, 31]. Finally, on the 

other extreme one finds microstructured reactors that are used to carry out chemical or biochemical 

synthesis on a small production scale. Thereby, transfer from laboratory experiment to larger scales is 

done by so called “scale-out” or “numbering-up” (see section 2.1.4). Especially within the two latter 
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categories, several of the following components are arranged in series/parallel to create a set-up or mini-

plant [18]: 

 Micromixer 

 Micro heat exchanger 

 Microseparators 

 Gas phase reactors 

 Liquid phase reactors 

 Gas/Liquid Reactors 

 

Figure 2.3: Typical arrangement of several microdevices forming a set-up or mini-plant. This plant was designed for 

the synthesis of ionic liquids. Image adopted from Renken et al. [32]. 

2.1.2 Main Benefits of Microstructured Reactors 

In the previous section, the rising amount of effort put in the development of microstructured reactors was 

demonstrated. The motivations behind this are numerous, and can be ascribed to essentially three main 

characteristics:  
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a) Enhanced reliability 

b) Advantages related to the small characteristic dimensions 

c) Scale-up is replaced by Scale-out 

In the fine chemical and pharmaceutical industry, most of the liquid phase processes are conventionally 

carried out in batch reactor. By implementing such reactions in microstructured reactors, generally a shift 

from a discontinuous process to a continuous flow process takes place [33-35]. In the continuous mode, 

quality can be controlled continuously and a fast response to unwanted changes of parameters can be 

supplied. According to Sergio Pissavini, Business Director of Reactor Technologies at Corning SAS 

(France), three out of ten batches don’t pass quality control as the outcome of a whole batch can only be 

verified at the very end of the reaction [36]. In addition, the integration of automation system can increase 

the operator safety and reduce the risk of human error. 

The small sizes lead to an improvement of the mass and heat transport phenomena: due to the radical 

reduction of transport length, the diffusion gradients are intensified, which in turn results in higher surface 

specific flux according to Fick’s and Fourier’s law [37, 38]. At the same time, the volumetric contact 

surface between two phases is high, leading to high absolute transfer rates. Better transfer rates mean 

better reaction control, which at the end of the process results in higher yields and diminished waste. From 

the point of view of fluid dynamics, due to the small channel, very defined flow in the case of single and 

multiple phase flows are observed [25, 39-41]. In the former case, the Reynolds number encountered lie 

well below the transition regime and are in the order of Re = 1…1000 [14, 42]. Numerical simulation of 

the fluid behavior is more accessible than on large scale reactors which are often operated in a turbulent 

regime. The small hold-up volume of microstructured reactors [43-45] represents a tremendous advantage 

from the safety perspective. The amount of involved reacting mass as compared to large scale batch 

reactors reduces the consequences in the case of an uncontrolled situation. Hence, hazardous reactions 

(e.g. toxic reactions) can be carried out in microstructured reactors with much higher safety. At the same 
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time, reactions can be operated under harsh conditions (higher temperature and pressure) to benefit from 

higher productivity, which is usually referred to as “novel process windows” [11, 46].  

The third aspect promoting the success of microtechnology is the fundamental change of the approach 

towards the step from laboratory scale to industrial scale. Whereas classically the size of the laboratory 

reactor (the beaker) is upgraded to a few cubic meter to meet the target productivity, the scale-out concept 

consists in an increase of the number of parallel operating units (more details can be found in section 

2.1.4) [17, 47-52]. Thereby, omitting the cost and time expensive step of scaling up allows a company a 

faster presence on the market with a newly developed product [36, 53]. A shorter time to market goes 

along with reaching the break-even point of the cash flow curve at an earlier point of time, which renders 

the whole concept more appealing. Furthermore, the main advantage of batch reactor compared to 

classical continuous flow reactors is its flexibility: several reactions can be carried out in one and the same 

batch reactor. Building up modular mini-plants based on microtechnology brings up a whole new degree 

of freedom in terms of flexibility: using the same basic modular units, different products can be 

synthetized [8, 36, 54, 55]. Producing a chemical in smaller plants also offers the opportunity of 

decentralized on-site on-demand production, as common practice nowadays in the automotive industry 

(“Just in Time Delivery”) [54, 56].  

2.1.3  Remaining Challenges for Microstructured Reactors 

Several incentives for the use of microdevices have been revealed so far. According to a study published 

by Roberge et al. [57], about 44 % of the synthesis processes would benefit from a transfer to processes 

partly designed with microstructured reactors. However, this technology still has to face some challenges 

when implemented in reality. A considerable drawback while using the currently available microdevices is 

the handling of solids or solid containing solutions, as depositions can quickly lead to clogging of the 

whole channel [58]. In addition, to be viable on the market, this new concept needs to be economically 
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advantageous compared to conventional equipment. Recent studies have shown that for smaller scale 

production, the equipment costs are of the same order [59]. If a larger amount of product is needed, the 

microstructured reactor technology turns out to demand higher investment compared to a classical vessel 

[57]. The latter phenomenon can be explained by the extremely low scale up factor of a batch reactor, 

which can be hardly reached with the numbering-up strategy. In this case, the use of microstructured 

reactor can be economically justified solely in the case of higher yields, as raw materials represent the 

major part of the operating costs [35]. Besides the economical question concerning the scale-out strategy, 

there also remains some doubt about the best technical solution, as will be discussed in the upcoming 

section. Finally, the use of microstructured reactor requires a shift of thinking from the side of the 

industry, which has to open up and try to benefit from the advantages that can be brought to them by this 

yet young technology (as illustrated in Figure 1.1) [36]. 

2.1.4 Scale-out of Microstructured Reactors 

As a traditional scale-up of such microstructured reactors would eliminate their inherent advantages, one 

has to “scale-out” or “number-up” (Figure 2.4) [8, 48, 49, 60, 61] . There are two classic ways of 

numbering-up: internal and external [48]. For external numbering-up, multiple identical units are operated 

in parallel. The advantage is that each single unit is independent of the other and performs as the 

developed lab-scale unit. However, as each unit will need individual equipment (such as pumping, tubing, 

etc.), the costs of external numbering-up are considerable. When numbering-up is carried out internally, 

the amount of equipment needed is reduced and thus the costs. The fluids are mixed in a mixing zone and 

subsequently distributed into the reaction channels, where conditions are similar to the lab-scale single 

microchannel. The two main drawbacks of internal numbering-up shall be illustrated in the following.  
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Figure 2.4: Scale-up versus numbering-up (image from A. Renken 2006). 

The distribution of fluids to the multiple channels turns out to be complex, as every single molecule needs 

to experience the same conditions (i.e. temperature, residence time) to obtain optimal reactor performance, 

efficiency [62] and safety. Saber et al.[61] analyzed the effect of maldistribution in catalytic wall 

microchannel reactor using a theoretical model and showed the negative effect of clogging on selectivity. 

In the past, a lot of work has been carried out to minimize the flow non-uniformities, which are generally 

due to two reasons: a poor design of the distribution unit and manufacturing tolerances. Whereas 

manufacturing tolerances usually cause variations of local temperature in the range of about ±5 %, the 

former reason can cause flow ratios in different channels more than a factor 4. An overview over various 

flow equalization devices is given in Rebrov et al. [63]. When numbering up multiphase flows such as 

slug flow, additional complexity is added to the problem due to the high sensitivity of the flow pattern to 

variation of flow rate [64]. In these cases, low fabrication tolerances are mandatory and a considerable 

amount of energy has to be invested in the distribution of the liquids [65, 66]. An about 4 to 50-fold higher 

pressure drop is required for the distribution of the fluids as compared to the overall pressure drop over 

one single channel.  
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The second disadvantage of internal numbering-up is reaction control in the mixing zone. As soon as both 

reactants are contacted, reaction is initiated and heat is generated. However, efficient heat removal is 

acquired only in the channels placed after the distribution section. This effect can be reduced to some 

extend by decreasing Damköhler number (DaI = τ / tr) in the distribution section. However, for very fast 

exothermic reactions other solutions are required for higher throughput with limited increase in 

temperature. 

Roberge et al.[8, 55, 67] proposed a novel modular multi-scale approach. As most of the reactions form 

deposits which lead to unpredictable increases in pressure drop, their primary target was to avoid channel 

parallelization to maximize control over the reactor. Hence, they rejected the concept of “numbering-up” 

and instead carried out the reaction in one single channel at high flow rates. The channel size increases 

along the length, thus optimizing temperature control and diminishing pressure drop. 

2.2 Moving from Macro- to Microdimensions 

 After the introduction to microreactors, this section focuses on the change of scale. By moving from the 

classical scale of typically several meters for batch reactors and at least a few centimeters for tubular 

reactors to the microscale, the dimensions change with a factor of 100 to 10000. Naturally, this substantial 

transformation can affect the properties of interaction between reactor and reaction to a certain extent. The 

first part of this section shows that this type of equipment can still be described with the conventional 

Navier-Stokes equations [68]. In the second part, some examples are illustrated where terms usually 

neglected on larger scale gain importance on the microscale, referred to as “scaling effects”. 

2.2.1 Validity of Continuum Assumption 

Due to the small size of MSR, one has to investigate whether a model of continuous and indefinitely 

divisible matter is still valid at a channel size as low as 100 μm, which is the smallest relevant scale for 
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industrial production. For gases, continuum models can be used to describe a system as long as the mean 

free path λ’ is much smaller than the characteristic length of the MSR ( '
MSRL ). A criterion is defined using 

the Knudsen coefficient (Kn < 10-3) [69] which is given as follows.  

 
'

'

MSR

Kn
L


  (2.1) 

For a gas under atmospheric pressure at 298 K, the mean free path of an air molecule corresponds to 

λ’  = 6.7·10-8 m [70]. In this case, the system can be modeled with the continuum equations down to a 

characteristic size of L’MSR = 67 μm. As for an ideal gas λ’ is proportional to T and p-1 [71], the modeling 

of small reactors at high temperatures or low pressures can become critical. In liquid systems, describing 

the limits to non-Newtonian behavior is more problematic. An attempt to approximate this boundary is 

given by Loose et al. [72]. According to their criterion, the fluid behavior becomes non-Newtonian when 

the shear rate   exceeds twice the molecular frequency: 
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where τ’ is the molecular time scale, M is the molecular mass, σ is the molecular length and ε’ the 

molecular energy scale [69, 73]. Thereby, u indicates the flow in x-direction and y is a coordinate normal 

to x. For water under standard temperature and pressure τ’ = 8.31·10-13 s. In this case, only very high shear 

rates would cause the continuum assumption to fail. Experimental results given in literature predict a 

Newtonian behavior down to films of 10 molecular layers for non-polar molecules and to characteristic 

lengths < 1 μm for polar molecules [74-76]. Therefore, the assumption of continuous and indefinitely 

divisible matter is valid for liquids in most of the cases. 
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2.2.2 Scaling Effects 

As discussed before, MSR can be described using a continuum model i.e. the Navier-Stokes equations. 

Although the same equations as for a “macro” reactor can be applied to an MSR, the importance of 

different terms in the Navier-Stokes equation changes due to “scaling effects” [77-80]. For example, radial 

temperature gradients in liquid phase MSR can be neglected, whereas they need to be considered in 

conventional scale reactor (see section 2.3.2)  

One of the most pronounced scaling effect is the axial conduction of heat. There are two different 

pathways: axial heat conduction through the fluid and axial conduction through the reactor wall. The 

former one can be neglected if the Péclet number (Pet = dh·u/αFluid) > 10 and is only of importance within 

the channel length (z) such that [73, 81, 82].  

 20t
h

z
Pe

d


 
(2.4) 

where dh is the hydraulic channel diameter and Fluid is the thermal diffusivity, defined as: 

 Fluid
Fluid

pc








 (2.5) 

 where  is the average density, cp is the average heat capacity and Fluid is the thermal conductivity of the 

fluid. 

For most of the fluids axial heat conduction does not need to be considered due to their low heat 

conductivity (i.e. water at 290 K, λFluid = 0.59 W/m·K [83]). However, heat conductivity in the walls of the 

channels is very high (for silicon at 298.2 K, λWall = 149 W/m·K [83]). Because of the small channel 

diameter of MSR, the significant wall thickness needed to give mechanical stability to the device results in 

a non-negligible axial conductivity through the walls. This effect has been thoroughly analyzed in the 

literature for non-reacting systems demonstrating for example that the heat exchange efficiency of a micro 
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heat exchanger has an optimum heat conductivity, and decreases for higher heat conducting materials [84-

86]. For the geometry analyzed by Stief et al. [86], the optimal conductivity was given at about 1 W/(m 

K), corresponding to glass as material. An example of different thermal wall resistances for hydrogen/air 

combustion is shown in Figure 2.5. The hot spot was reduced from ~850 °C to ~675 °C and finally to 

~590 °C upon diminishing the thermal resistance of the wall material [87]. Horny et al. [88] run the 

oxidative steam-reforming of methanol in autothermal mode. The axial heat conductivity was increased by 

inserting multiple catalytically active brass wires into a 9 mm glass tube reactor. She managed to transfer 

the heat released from the fast exothermic partial oxidation of methanol to the downstream mixture for 

acceleration of the slower endothermic steam-reforming. The temperature profile initially containing a hot 

spot at the inlet of the reactor followed by a cold spot, was transformed in a nearly isothermal profile. The 

effect of axial heat conduction through the reactor wall is more extensively discussed in a literature review 

[63] and in Chapter 3 of the present thesis. 

 

Figure 2.5: Effect of different wall resistances (“thermal spreaders”) on the temperature profile of H2/air 

combustion. The thermal spreaders consist in additional wall material added on top of the stainless steel 

reactor. Adapted from Norton et al. [87]. 

Due to the strong velocity gradients in MSR, the energy losses due to viscous dissipation resulting in a 

temperature rise need to be considered under certain circumstances. This effect becomes dominant with 

decreasing channel diameter and with increasing fluid viscosity as well as flow velocity. Many studies 
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have shown the relevance of this effect by experimental and theoretical analysis [89-93]. To get 

measurable results, the experiments were carried out in a microchannel with size of 10-100 μm. The 

experimental work of Celata et al. [90] concluded that the viscous dissipation effects are not important 

when working with diameters above 100 μm. A theoretical analysis carried out by Morini et al. [80, 94, 

95] reported that for water with Reynolds number (Re) around 1000 and dh of 100 μm the adiabatic 

temperature rise is 1 K per 5 cm of tube. Thus, it can be concluded that for the heat balance of MSR 

working under Re < 1000 and dh > 100 μm this scaling effect can be neglected.  

Various other effects such as the formation of an electric double layer at the fluid solid interface have been 

described in literature but their influence is minor as compared to the abovementioned effects [96, 97]. 

2.3 Mass and Energy Transfer 

In the upcoming section the reader is introduced to the different characteristics of mass and energy 

transfer in microchannels. It was demonstrated previously that a set of continuous equations with no-slip 

boundary conditions can be applied to describe the behavior inside a microfluidic channel. As a first 

aspect, residence time distribution (RTD) in MSR is considered. The conclusions of that part are used to 

simplify the heat and mass balance in microchannels. At the end of this section, safety issues are 

addressed, and by using the dimensionless form of the heat and mass balance, a criterion for a priori 

estimation of reactor stability is developed. 

2.3.1 Residence Time Distribution in Microstructured Reactors 

An MSR is an open system and its performance can be compared to ideal plug-flow, meaning that all 

molecules at the reactor outlet exhibit an identical residence time. A deviation of an MSR from ideal plug-

flow behavior can be analyzed using different classic models described in the literature [98]. 
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The laminar flow in a tube is characterized by a parabolic velocity profile resulting in fluid dispersion 

along the length of the reactor. This effect is more pronounced in the microchannels with liquid phase [99, 

100] than with gas phase [101] (see Figure 2.6). The fast radial diffusion of the molecules efficiently 

suppresses the formation of a concentration profile similar to the laminar flow profile. The extent of this 

effect depends on operating conditions such as characteristic dimension of the reactor (dh), flow velocity 

(u) and molecular diffusivity (Dm) [102, 103]. 

 

Figure 2.6: Simulated concentration profiles in gas phase laminar flow for tubular reactors with different tube 

diameters dR ; (ν = 10-5 m2/s, Dm = 10-5 m2/s, Re = u·dR/ ν = 10). Adapted from [17]. 

This effect can be easily explained by using one of the commonly used models, the axial dispersion 

model. The residence time distribution is described by one single parameter, i.e. the dimensionless 

Bodenstein number (Bo), representing the ratio of characteristic axial dispersion time (tdiff,ax) to residence 

time (τ), as  

 ,diff ax

ax

tu L
Bo

D 


   (2.6) 

where u is the mean velocity, L is the total channel length and Dax is axial dispersion coefficient. In the 

case of negligible axial dispersion (ideal plug-flow), the Bo tends to infinity. In reality, plug-flow behavior 

can be assumed for Bo > 100. For complex systems, the axial dispersion coefficient has to be determined 

experimentally. However, an a priori estimation of the axial dispersion coefficient in laminar flow in a 

cylindrical channel with diameter dR is possible if the molecular diffusion coefficient Dm is known [104, 

105]: 
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By putting equation (2.7) into the definition of Bo, one obtains a simple approximation while assuming 

that the contribution of molecular diffusion in axial direction (the first term) is negligible compared to 

convection effects: 
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(2.8) 

Hence, plug flow behavior can be assumed for liquid phase (Dm = 10-9 m2/s) in tubular reactors if:  
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2
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(2.9) 

and in gas phase (Dm = 10-5 m2/s) if:  

 

4 2
2

5 10  s/m
Rd


 

 
(2.10) 

To visualize the link between residence time and reactor diameter needed for ideal plug flow behavior, 

equations (2.9) and (2.10) were plotted in Figure 2.7. It has to be pointed out that this relation is solely 

valid for channels under laminar flow in absence of radial secondary flows (e.g. vortices), whereas it 

cannot be to applied to structured channels, where generally higher Bo are obtained.  
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Figure 2.7: Minimum residence time required to acquire plug flow behavior (Bo > 100) in gasphase (Dm = 10-5 m2/s) 

and liquid phase (Dm = 10-9 m2/s) microchannels.  

Whereas for gas phase reactions even at diameters as high as 500 μm plug flow can be assumed already at 

residence times as low as 0.01 s, for liquid microfluidics a residence time of 10 s is necessary already at an 

inner diameter of 100 μm. If fast liquid phase reactions (low residence time in the order of seconds) are 

carried out in such channels, residence time distribution induced by the laminar flow profile has to be 

taken into account when operating with channel diameters above 100 μm [100, 106, 107]. Trachsel et 

al.[105] measured the axial dispersion by injecting a pulse in a liquid flow channel with rectangular cross 

section (dh = 178.6 μm) and reported that the plug flow behavior can be readily assumed at  > 70 s. As 

expected, a relatively high Bo was obtained (Bomeasured ≈ 83 at  = 70 s) due to long residence time (see 

equation (2.9)). The discrepancy between the measured and the calculated Bo (Bocalculated ≈ 431at  = 70 s) 

is attributed to partly the cross section, which is rectangular and not circular as assumed in the 

approximation, and partly to the non-ideality of the injected pulse. 
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To reduce residence time distribution of liquids, two strategies have been proposed. On the one hand, a 

second phase is introduced into the MSR in order to obtain a segmented flow pattern (slug flow) [105, 

108]. In this case, each slug of the dispersed phase can be seen as a microsized perfectly mixed batch 

reactor travelling through the microchannel. All the molecules of one “micro-batch” exhibit the same 

residence time resulting in a high Bo number. In residence time distribution experiments, Kuhn et al. [108] 

demonstrated that the narrowest distribution is attained for the molecules in the non-wetting phase, thus, 

avoiding the communication between two “micro-batches” through the liquid film. The second strategy to 

narrow down residence time is the use of mixing elements [109, 110]. By creating secondary flows, the 

radial interchange of molecules disturbs the laminar flow profiles. Hence, when carrying out a fast 

reaction in a micromixer, plug-flow behavior can be attained even for liquid phase reactions. 

2.3.2 Mass and Heat Balance in Microchannels 

In order to develop the mass and heat balance inside gas and liquid phase cylindrical microchannels, plug 

flow behavior is assumed in the following. As already demonstrated in section 2.3.1, it is valid for most of 

the gas phase reactions and for liquid phase channels operated under presence of secondary flows. Hence, 

no radial gradients of concentrations need to be considered. In the gas phase, mass and heat transport have 

the same characteristic time. The value of Prandtl number (Pr) and Schmit number (Sc) is typically 

Pr ≈ Sc ≈ 1.  

 

,

. ,

1
Pr

diff ax

therm diff ax m

tSc

t D


  

 

(2.11) 

The analogy between heat and mass transfer [104] allows the above equations to be applied for heat 

transfer in gas phase reactions resulting in high Pet, and, in turn, in small radial temperature gradients. 

However, this assumption has to be reconsidered for fast gas phase reactions with high activation energies 

such as combustions where radial temperature gradients exist [87, 111]. In the liquid phase, heat transport 



 
2 State of The Art 

29 
 

rates are much higher compared to the mass transfer (e.g. for water Sc/Pr = 1200/7 = 171), and therefore, 

the assumption of an isothermal radial temperature can be readily applied. 

To simplify the system, the scaling effects described in the previous sections are neglected and only axial 

dispersion of mass and heat is addressed. Assuming plug flow behavior [16], the material balance for a 

small volume element (ΔV) at the reactor steady state is written as 
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(2.12) 

with in being the molar flux of the i-th chemical compound, ν’i the stoichiometric coefficient of the i-th 

reactant for a reaction with reaction rate r. 

 

Figure 2.8: Mass balance for an ideal plug flow reactor.  

Assuming the cross sectional area S (dV = S·dz) and the flow velocity u in z-direction to be constant, the 

above equation can be written for each concentration ci as: 
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(2.13) 

For heat transfer, neglecting the work done on the reacting fluid and assuming constant heat capacity and 

reaction enthalpy, the energy balance equation can be written as given in the following 
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In this equation,  represents the mass flow rate, U is the global surface specific heat transfer coefficient 

and a is the surface area per volume. Assuming constant cross section, the above equation can be written 

as  
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ad
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 (2.15) 

where is the adiabatic temperature rise: 
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and c1,0 is the inlet concentration of the limiting reactant. 

If axial dispersion of heat and of mass in the fluid is considered, a second derivative of concentration and 

temperature appears in equations (2.13) and (2.15), respectively. While mass can disperse axially only 

through the fluid, heat is also transporter through the walls. The mass and heat balance become [86, 112]: 
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In order to approximate the real behavior of a MSR where thermal conductivity occurs in the fluid and in 

the wall, it is recommended to work with a lumped heat conductivity whose value is located between the 

value of the wall and the pure fluid. 

The heat transfer coefficient U includes all the resistances to the evacuation of heat i.e. the resistance 

between channel wall and fluid hin, the channel wall itself hwall and the resistance located between the outer 

wall and the cooling fluid hout [113]. 

m

adT
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where aout is the ratio of outer reactor surface to inner reactor volume, dR and dout are the inner and outer 

channel diameter respectively, and am is the average specific area of the walls, which is defined as follows 

for cylindrical channels: 
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The heat transfer coefficient between a fluid and a wall can be estimated using correlations for the Nusselt 

number (Nu) which is defined as [37]: 

 in t

Fluid

h d
Nu





 

(2.21) 

Especially when looking at the inner volumetric heat transfer coefficient, the substantial increase of heat 

evacuation gained by decreasing channel size becomes obvious. On the one hand, the specific surface area 

is proportional to dh
-1 and on the other hand, the inner heat transfer coefficient is also proportional dh

-1. 

Hence, if the inner resistance is rate limiting, the overall volumetric heat transfer coefficient increases with 

dh
-2. Thereby, one has to keep in mind that for very small diameters, the heat transfer is likely to be limited 

by the walls for low conducting material or by the outer resistance in a simple tempered bath.  

2.3.3 Safety and Stability of Microstructured Reactors 

The improved temperature control and reduced risk of runaway in MSR allows operating under new 

reaction conditions like higher temperature and pressure. The kinetics are speeded up which allows a 

drastically reduced characteristic reaction time (tr = 1/kc0
n-1). As mentioned in the introduction, this 

concept is called “Novel process windows“ [11, 46]. Due to the short quenching distance, an operation in 
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the classical explosive regime becomes possible [114, 115] . The recombination of propagating radicals at 

the channel walls prevents an ignition of the mixture which makes this type of reactor safe regarding the 

initiation of a propagating explosion. An example of reaction under explosive regime, the catalytic 

oxidation of hydrogen with pure oxygen, was demonstrated in MSR without run-away of the reactor [45, 

116]. Leclerc et al. [117] also studied the oxidation of cyclohexane with pure oxygen which was carried 

out by working with a mixture above the flammability limit of 4 % in a capped silicon etched MSR. 

However, for a propagating explosion front entering the microchannel from the inlets/outlets, no 

quenching of the reaction was observed [114]. 

Despite the safety gained through the use of MSR, Etchells [118] raised some important issues that need 

to be considered. Due to the short residence time in the order of seconds, the system is much more 

responsive to changes than classical equipment requiring control and monitoring specially developed for 

this new environment. The process monitoring and control technology need to be adapted and the 

operators should be trained to fit into the new required specificities. In addition, the reactor channels are 

very sensitive to clumping or fouling, which can lead to dangerous variations of the system conditions, 

which, in turn, can even result in a run-away. Besides, the reaction rate varies with the modification in 

parameters. The unexpected increase of reaction rate can lead to self-acceleration of the reaction, or a 

decrease of the reaction rate can lead to accumulation of reactive substances and provoke an uncontrolled 

reaction in downstream equipment. Thus, the operator and the monitoring equipment have to assure that 

the reaction conditions are maintained within a narrow tolerable range [114].  

The stability criteria developed for conventional continuous reactors by Semenov and Barkelew [119-121] 

can be applied to MSR (see section 2.1.4), assuming that the axial dispersion of heat is negligible (low 

conducting wall material). As the criteria were developed for plug flow behavior, they are still valid (yet 

too conservative) for reactors with axial dispersion. Other sensitivity criteria yielding similar results as the 

one described in the following can be found in Varma et al. [122]. 
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The criterion is based on a dimensionless form of mass and energy balance (equations (2.13) and (2.15)) 

of an nth order reaction: 
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where, N’ is the ratio of characteristic reaction time (tr) to cooling time (tc) and S’ is heat production 

potential. The change in temperature along dimensionless time t’ is a result of the difference of heat 

produced and removed. An isothermal operating point is obtained when the dimensionless heat produced
 

'
prodq

 
is entirely removed '

remq by the cooling system: 
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(2.24) 

An operation point is called stable if a small variation in cooling temperature does not affect the systems 

working temperature. This inherently safe behavior of a system is provided at the operating points where 
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. The upper boundary of this condition is the critical case: 
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By solving equations (2.24) and (2.25) for a zero order reaction and by assuming '/T   << 1 (Frank-

Kamenentskii [123]) , the following condition for safe operation is obtained for a reaction of the order 

n = 0: 

 '/ ' .N S  2 72  (2.26) 

If applied to higher order reactions, this criterion is still valid but becomes too conservative. The 

consumption of reactants results in a decrease of the reaction rate with time t’, and thus, the heat 

production will diminish with time, which is not accounted for in equation (2.26). As an analytical 

solution is not possible for n ≠ 0, a numerical method is applied. 

The numerical simulations were carried out by Renken et al.[112, 124] and a modified criterion was 

proposed. It states that a reactor will run-away for a dimensionless temperature rise (∆T’) ≥ 1.2, 

independently of the reaction order. In terms of N’ and S’, the following correlations were proposed for 

safe operation: 
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(2.27)

 

Figure 2.9 shows a plot of the correlations given in equation (2.27). The grey area included within the 

dashed lines represents the results of literature correlations [122] for safe operation of a first order 

reaction. As can be seen from the comparison, the presented criterion is relatively conservative compared 

to others. 
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Figure 2.9: Parametric sensitivity of a plug flow reactor for different reaction orders. Adopted from [125]. 

Thereby, m denotes the reaction order n. 

It has to be pointed out that this criterion initially proposed by Semenov [120, 121] was developed for a 

zero order reaction. In this case, temperature rises until equilibrium of heat production and heat removal, 

forming a plateau until complete consumption of the reactants. Whereas, when working with higher order 

reactions, temperature continuously diminishes after reaching the aforementioned equilibrium. 

Accordingly, the reaction rate strongly decreases on the one hand due to temperature effect, and on the 

other hand, due to the reduced concentration. Thus, reaching high conversion with a “safe” reactor 

requires extremely high residence times due to this quenching effect. In order to maintain acceptable 

productivity, other strategies such as a stepwise increase of temperature have to be applied [32].  

To assess safety of a complete process, Klais et al.[126] adopted a “HAZOP-LIKE” method for risk 

analysis in MSR which combines the advantages of the process hazard analysis (PHA) and the hazard 
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operability study (HAZOP). It provides a systematic way with well-defined and codified guiding words to 

evaluate a process. Its main advantage is that it can be carried-out at the early stages of a process design 

which allows an ab initio integration of the safety measures. This method was applied to two 

demonstration projects, i.e. oxidation of SO2 to SO3 by air and synthesis of an Ionic liquid (1-ethyl-3-

methyl imidazolium ethyl sulfate). 

2.4 Mixing in Microstructured Reactors 

Often the reaction kinetics in novel process windows [11, 46] are accelerated to a point where they are 

influenced or completely limited by mass and heat transport. To avoid an effect of mixing on product 

quality in complex reactions, mixing time needs to be at least one order of magnitude below characteristic 

reaction time [127, 128]. Therefore, devices achieving fast mixing of the reactants are required. In the 

past, much effort has been devoted to the development of efficient micromixers [38, 93, 129] . In general, 

one distinguishes between two types of mixers: passive and active mixers. The former type works 

essentially with energy provided by pumping while the latter uses an external energy source such as 

acoustic fields [130-132], electric fields (electro-kinetic instability) [133-135], magnetic fields [136-138] 

or microimpellers [139, 140]. Although fast mixing can be achieved with passive mixing devices, they 

often require complex and expensive control units [128]. For this reason, only passive mixers will be 

considered in the following. Furthermore, the considered mixers have essentially been developed for 

liquid phase, which is more challenging compared to gas phase due to the four orders of magnitude lower 

diffusion coefficient. 

2.4.1 Passive Micromixers 

The simplest passive mixers are Y- and T-type mixers, which provide a contact of two flows in one point, 

i.e. single-injection mixers. With increasing flow rate, mixing time decreases due to vortex formation 
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[141]. Kashid et al.[142] investigated the effectiveness of various mixers and found the square shaped T-

mixer to be the best compromise between short mixing time and efficient use of energy. In this type of 

mixer, three flow regimes were identified as shown in Figure 2.10 [143-146]:  

 Stratified flow: a clear interface separates the two flows (lamination) and mixing occurs entirely 

by diffusion 

 Vortex flow: the vortex creates secondary surface area 

 Engulfment flow: the axial symmetry of the flow breaks apart. 

 

Figure 2.10: Three types of flow patterns observed in a simple T-micromixer. Image adopted from Soleymani et al. 

[147]. 

The transition from one flow regime to another depends not only on the Reynolds number, but also on the 

geometrical aspects of the reactor [141, 147-149]. When working with fast chemical reactions (in the 

order of seconds), sufficiently low mixing times can only be attained in the vortex or engulfment flow 

regime. If lower flow rates are chosen, the diffusion process will be limiting the overall conversion due to 

small interfacial area and a long diffusion path (half of the channel width). Hence, the crucial point of any 

mixer is the creation of secondary flow patterns which are superposed to the typical laminar flow profile. 
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One way to improve mixing quality at Reynolds numbers in the range of a few hundred is the design of 

curved channels [38, 150, 151]. Thereby, the mixing quality is improved by creating secondary flows for 

Dean numbers (De) > 140, where  
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R

   
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 (2.28) 

In this equation, R’’ designates the radius of the channel curve. The same effect is observed for zigzag 

channels [152].  

All of the mixing principles mentioned so far are based on the fact that the inertia forces break the laminar 

flow profile at some point, leading to homogenization. However, when working at low Reynolds numbers, 

the inertia forces are not sufficient. In this regime, different strategies of mixer design have to be applied. 

By increasing the number of lamellae of alternate concentrations, the so called striation thickness is 

decreased resulting in lower diffusion time. This principle is used by multi-laminating mixers, which work 

also at very low Reynolds number, as they only rely on mixing by diffusion. They can be further divided 

into the parallel and the serial approach. A detailed overview of this type of mixers is given by Hessel et 

al.[38]. Another remarkable structure which is used to mix two liquids at low Reynolds number is the use 

of grooved channels [153-157]. The grooves create a transverse velocity component at the bottom of the 

channel which leads to a swirling motion in the upper part of the channel. Interestingly, this type of mixer 

loses efficiency with increasing Reynolds number, as the flow ceases to follow the grooves. 

Due to the small dimensions, the type of pump used plays an essential role in MSR. When two fluids are 

introduced in a T-junction, a distinct lamination appears and mixing occurs by diffusion. This type of 

injection is typically observed with discontinuous syringe pumps, which provide a relatively constant flow 

rate. For comparison, Glasgow and Aubry [158] applied a sinusoidal inlet flow at both inlets resulting in a 

remarkable increase in mixing quality being maximal for a phase shift of 180° between the pulsations of 

the two inlets. Pulsations typically appear when working with continuous pumps such as HPLC pumps. 
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Ducry and Roberge [159] observed very strong effect when the change of pulsation frequency masked the 

efficiency difference between various mixer types. 

2.4.2 Estimation of Mixing Time 

By comparing different type of mixers, Falk and Commenge [160] developed general rules for mixing in 

MSR. The mixing at low Re (< 1000) can be reduced to two distinct phenomena, which are (I) the 

deformation of lamellae due to the shear field increasing the interfacial surface area followed by (II) 

complete homogenization due to diffusion. In the case of a T-mixer operated in the stratified flow regime, 

mixing occurs only by diffusion and the mixing time constant is described as [160, 161]: 
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where dhalf is the half thickness of the aggregate and A’ is a shape factor defined as 

 
   

1
’

’ 1 ’ 3
A

p p


 
 (2.30) 

with p’ =0 for a slab, p’ = 1 for a cylinder and p’ = 2 for a sphere. The aggregate behaves like a first order 

dynamic system with time constant tdiff,rad as shown in Figure 2.11. It can be seen that for the assumption 

of pure mixing in liquid phase (Dm = 10-9 m2/s) a slab size of 50 μm, i.e. a channel size of about 100 μm is 

required in order to get tdiff ≈ 1 s. For gas phase reactions, mixing by diffusion is much faster 

(Dm = 10-5 m2/s). 
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Figure 2.11: Diffusion time constant in liquid phase in a slap (p = 1) according to equation (2.29). 

Based on the model of Baldyga and Bourne [162], Falk and Commenge [160] developed an expression 

assuming that all the energy dissipated in a tube (mainly due to shearing) is used for mixing, which results 

in the shortest possible mixing time for laminar flow. In this case, characteristic mixing time can be 

described by the following expression: 
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where, ν is kinematic viscosity, Pem (= dh·u/Dm) is the Péclet number and ε is the power dissipation per 

unit mass of fluid: 
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The pressure drop can be estimated according to the Hagen-Poiseuille flow equation: 
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Combining the equations above, an expression for mixing time constant as a function of Pem, Dm and dt is 

obtained. 

  ln .h
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 (2.34) 

By comparing the above relation with experimentally measured data, the energetic efficiency of mixing 

(η) can be defined as the ratio between shear rate effectively used for mixing and total shear rate used for 

the flow: 
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Falk and Commenge [160] compared the performance of different mixers studied in literature and 

obtained very low energetic efficiency η = 3 % (see Figure 2.12). Baldyga et al.[163] yielded similar 

values for mixing efficiency, i.e. η = 0.75 % for a twin-screw extruder and η = 5 % for a semi-batch 

reactor. With the existing micromixers, the mixing time and specific energy input are correlated as 

   ... s kg/Wmt      0 450 450 15  (2.36) 

The reason for the poor energetic efficiency of mixers is that most of the mechanical energy used to 

achieve the flow is dissipated in zones of pure component which does not contribute in mixing of two 

zones of alternate concentrations. 
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Figure 2.12: Experimental determination of mixing time with resulting energetic efficiency of mixing. Adapted from 

Falk and Commenge [160]. 
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2.5 Notations 

a Specific surface area, [m2/m3] 

A’ Shape factor [-] 

B Fit parameter [-] 

cp
 

Mean heat capacity, [J/(kg K)] 

c Concentration, [mol/m3] 

dh Hydraulic diameter, [m] 

dR Reactor diameter, [m] 

Dax Axial diffusion coefficient, [m2/s] 

Dm Molecular diffusion coefficient, [m2/s] 

EA Activation Energy, [m2/s] 

h Heat transfer coefficient, [W/(m2K)] 

Hr Reaction enthalpy, [J/mol] 

k Rate constant, [(m3/mol)n-1/ s] 

L Total length of the reactor, [m] 

L’ Characteristic length, [m] 

M Molecular weight, [kg/mol] 

m Reaction order (same as n) 

m  Mass flow rate, [kg/s] 

n Reaction order 

n  Molar flow rate, [mol/s] 

N’ Heat removal potential, [-] 

p Pressure, [Pa] 

p' Parameter, [-] 

q’ Dimensionless energy flow, [-] 
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Q Volumetric flow rate, [m3/s] 

r Reaction rate , [mol/(s m3)] 

R’’ Curve radius, [m] 

S Cross section area, [m2] 

S’ Heat production potential, [-] 

t Characteristic time, [s] 

t’ Dimensionless time, [-] 

T Temperature, [K] 

T’ Dimensionless temperature, [-] 

u Velocity, [m/s] 

U Heat transfer coefficient, [W/(m2K)] 

V Volume, [m3] 

X Conversion, [-] 

y Ordinate, [m] 

z Axial coordinate, [m] 

 

Greek 

α Thermal diffusivity [m²/s] 

γ Arrhenius number, [-] 

  Shear rate, [1/s] 

∆ Symbol for difference 

ε Specific power dissipatio, [W/kg]  

ε' Molecular energy scale, [J/mol] 

η Energetic efficiency of mixing, [-] 

λ Thermal conductivity, [W/(m K)] 

λ’ Mean free path, [m] 
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ν Kinematic viscosity, [m2/s] 

ν' Stoechiometric coefficient, [-] 

ξNC Non-circular coefficient, [-] 

 Mean density, [kg/m3] 

σ Molecular length scale, [m] 

τ Residence time, [s] 

τ’ Molecular time scale, [s] 

Dimensionless numbers 

Bo Bodenstein number u·L/Dax, [-] 

DaI Damköhler number /tr, [-] 

De Dean number Re·(dh/R‘‘)0.5, [-] 

Kn Knudsen coefficient, [-] 

Nu Nusselt number h·dh/lFluid, [-] 

Pet, Pem Péclet number heat/mass u·L/a respectively u·L/Dm ,  [-] 

Pr Prandtl number ν/a, [-] 

Re Reynolds number u·dh/ν, [-] 

Sc Schmidt number ν/ Dm, [-] 

Subscript  

0 Initial condition 

ad Adiabatic 

ax Axial 

c Cooling 

diff Diffusion 

i Index designating a component 

in Inside 

m Mean or mixing 
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max Maximal 

MSR Microstructured reactor 

out Outside 

p Production 

rad Radial 

rem Removal 

r Reaction 

s At the outlet 

therm Thermal 

w Wall 
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Chapter 3  

NUMERICAL SIMULATION OF 

MICROSTRUCTURED REACTORS 

In this chapter, the numerical simulations of three different strategies of temperature management are 

explained in detail and their results evaluated. For this study, numerical simulations were carried out a 

priori allowing the performance of the respective concepts to be judged before building up an 

experimental system. To simplify the reading, each concept is treated separately with the results directly 

following the description of the numerical model. At the end of the chapter, the three strategies of heat 

management are directly compared, and the most suitable concept, i.e. the multi-injection reactor, 

maintained for further experimental evaluation. A part of the results described in the following have been 

published in the master thesis written by Charles Guinand [164]. 

3.1 Introduction 

The hot spot in a chemical reactor is the maximum value of temperature resulting from the interchange 

between heat release and heat evacuation during the reaction. According to Arrhenius equation [165], in a 

homogeneously cooled reactor the hot spot occurs at the point where the reaction rate is maximum. 

Although a high reaction rate leads to higher conversion, in general the hot spot temperature must be 

limited for several reasons: 
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 In complex reactions, the increase of temperature favors the reaction with highest activation 

energy. In many cases, this leads to a loss of selectivity towards the desired product [166]. 

 If the reactor parameters are not chosen accordingly, a slight change of parameters can have 

dramatic consequences in terms of safety such as the run-away of the reactor [17, 67, 114, 126, 

167, 168]. 

 At high temperature, the material required for construction should be able to hold high thermal 

stresses meaning increased costs of the reactor. 

 When working in a catalytic reaction, several catalyst deactivation processes such as sintering or 

coking are induced thermally [169]. Thus, high temperature is unfavorable in such cases.  

Within the present thesis, especially the first reason is of interest. 

Looking at the heat balance of a simple tubular reactor, the most advantageous way to reduce the 

temperature rise in the reactor is to increase the specific surface area or the global heat transfer coefficient. 

The easiest way to put this idea into practice is the use of microreactors, typically having hydraulic 

diameters below 1 mm [18-20]. Although this concept seems very straight-forward at the first sight, it can 

be applied only to a limited extent. In the case of quasi-instantaneous reactions with characteristic reaction 

times in the order of 1 s and less [55, 57, 149], diameters smaller than 100 μm are required to maintain 

thermal control. Working with extremely small diameter has mainly three disadvantages: 

 According to the Hagen-Poiseuille equation [17], the pressure drop increases with 1/dR
2 for a 

constant flow velocity. The specific power consumption from pressure drop in W/kg is 

investigated using equation (3.1) [160]: 

 2
2

1
32

R

Q p
u

V d
 


 

    


 (3.1) 

The target throughput for a production on an industrially relevant scale Qtot is obtained by 

numbering up the channels.  
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 In addition, working with very small diameter increases the risk of channel clogging which can 

lead not only to higher friction losses but also to an uncontrolled behavior of the reactor.  

 For a fixed target throughput, due to the small volume of the reactor, the numbering-up costs 

increase significantly with decreasing diameter, as more parallel units need to be set up. 

Hence, for thermal management, it is essential to design a microchannel with an optimal diameter that on 

the one hand, is small enough to remove the heat produced, and on the other hand, large enough to avoid 

unnecessary energy losses. One viable solution to reduce energy consumption is the use of small channels 

where necessary [17, 170, 171], followed by a gradual increase of channel size. In this case, the channel 

diameters are kept small only in the part where high heat removal (or intensive mixing) is required, the 

residence time needed to finish the reaction is provided by a channel with larger diameter lowering 

pressure drop [32, 55]. However, even with this approach, one cannot operate with channel diameters 

smaller than 100 m. 

To enhance thermal control when carrying out rapid exothermic reactions, alternative strategies of reactor 

design can be imagined: 

 Active heat exchange or mixing elements like fins or static mixers [172]: they increase the overall 

heat exchange coefficient. However, the gained benefits should not increase the technical 

complexity [171]. 

 Use of highly heat conducting material for microchannel wall: On the one hand, reduce the heat 

evacuation resistance, and on the other hand, distribute the locally produced heat along the length 

of the microreactor. 

 Multi-injection concept: spread heat production along the channel length to reduce local heat 

density and thus diminish the magnitude of the hot spot.  

In this chapter, numerical simulation is used as a tool to assess the efficiency of different approaches to 

reduce hot spot temperature. The first strategy is not further analyzed as it is a widely known concept 

which comes from the domain of active heat exchangers [172], and its effectiveness is rather a question of 
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feasibility from the manufacturing point of view. Hence, three specific reactor designs are modeled based 

on the two latter of the listed strategies:  

1. The microchannel reactor with highly conductive walls 

2. The multi-injection microreactor 

3. The micro-annular reactor (MAR) 

The first reactor is a simple microchannel corresponding to the geometry of commercially available tubing 

[173, 174] with an inner channel diameter of 500 m and an outer diameter of 1600 m. The model 

contains conduction terms (second derivatives of mass and temperature) allowing evaluation of the impact 

of thermal conductivity on the magnitude of the hot spot. A similar analysis was carried out by Stief et al. 

[86] for micro heat exchanger. They modeled the impact of wall conductivity on heat exchange efficiency 

and found glass to be the most efficient material. Furthermore, Norton et al. [87, 111] studied the stability 

of methane/air and H2/air combustion flames in microchannels with different thermal conductivities, 

demonstrating the reduced hot spot temperature in the wall by using higher conductive material. Horny et 

al.[88] managed to homogenize temperature during the oxidative steam reforming of methanol by 

introducing highly conductive brass wires, transferring heat from the fast exothermic partial oxidation of 

methanol to the cold reforming part. 

In the multi-injection microreactor, the limiting reactant is fed at several injection points along the length, 

thereby spreading heat production resulting in several small hot spots. It can be seen as the continuous 

form of a periodic fed semi-batch reactor. This concept, which has been proved to work on macro scale 

reactors [175-177] has been recently adapted for liquid phase reactions in microreactors with promising 

results [17, 170, 171]. The numerical simulation of this reactor will help to identify the potential of this 

strategy and the optimal set of parameters to be used. 

Finally, the last model represents a novel type of multi-injection reactor developed during this study. 

Compared to the conventional multi-injection reactor, the geometry is altered and the amount of injection 

points is increased up to infinite, leading to a continuous distribution of the limiting reactant along the 

length. This type of reactor is referred to as “ micro-annular reactor”, owing to its geometry consisting of a 
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concentric metal or ceramic filter and a cylindrical case as shown in Figure 3.1. One liquid flows through 

the filter while the other flows through the annular space between the filter and the cylindrical case. The 

high porosity with small pore size of the filter allows uniform distribution of the fluid through it. As soon 

as both reactants contact each other in the annular region, the reaction takes place. A mathematical model 

was developed and the simulations were carried out to investigate the concentration and thermal behaviour 

for fast exothermic reactions. 

 

 

Figure 3.1: Scheme of the micro-annular reactor. 

The three strategies, i.e. the axially conductive microchannel reactor, the multi-injection microreactor and 

the micro-annular reactor, are presented separately in the following. For each reactor type, the model is 

described followed by the results. The results obtained are compared in the conclusion, where the different 

approaches are discussed in terms of applicability.  
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3.2 Microchannel with Highly Conducting Walls 

The model of a microchannel with highly conducting walls is described in the first part of this section, 

followed by the results presented in the second part. Thereby, the wall material is considered as 

anisotropic with thermal conductivity being different in radial and axial direction in order to separately 

analyze their respective effects. As model reaction, a fast and exothermic synthesis of Ionic liquid was 

chosen. 

3.2.1 Model Description 

The aim of the pseudo 2-D model of a microchannel is to describe the interactions between wall, reaction 

and cooling medium on the development of the axial temperature gradient inside the reaction channel. For 

this reason, the continuous mass and heat balance is considered in the three domains as follows: 

 The reaction channel with a diameter of dR = 0.5 mm (Figure 3.2) 

 The cooling channel with an outer diameter of dC = 50 mm and an inner diameter of dW = 1.6 mm 

 The wall separating cooling channel from reaction channel with an inner diameter of dR = 0.5 mm 

and an outer diameter of dW = 1.6 mm (brown) 

The model is entitle “pseudo 2-D” as a full resolution is given in axial direction, whereas in radial 

direction the temperature and concentration are only given at three distinct points (as listed above). 

Thereby, the following assumptions are made: 

 No radial gradients of temperature and concentration in the reaction channel except for the 

boundary layer to the wall. 

 Axial conduction of heat through the wall is considered using the temperature in the center of the 

wall 

 Anisotropic wall material whose thermal conductivity is different in radial and axial direction. 
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 Constant cooling temperature of the coolant 

 

Figure 3.2: Illustration of the pseudo 2-D model used for the simulation of a microchannel reactor. Top part: Cross 

section of the channels including the dimensions used for simulation. Bottom part: A 3-D scheme drawn to 

scale. 

3.2.1.1 Differential Equations 

The equations to be solved in each domain have been partly developed in the previous chapter. In 

principle, only the steady state solutions are of interest. However, a direct solution of the system of steady 

state differential equations is numerically extremely challenging. For this reason, the mass and heat 

transfer equations presented in the following are time dependent. The concentration and temperature 

profiles presented in the results section (3.2.2) were taken at a time t corresponding to the equilibrium of 

the system, i.e. at steady state.  

Starting from the reaction channel (index “R”), the heat and mass balance are:  

 
2

, 2
'i i i

ax R R i

d c dc d c
D u r

dz d td z
     (3.2) 

    , ,
R WR R R

R R R p R r R W R p R
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U Ad T d T d T
u c r H T T c

d z V d td z
               

2

2
 (3.3) 

The second derivative describes the conduction of heat/mass in axial direction, the first derivative 

designates the axial transport by convection and the remaining terms are the source terms. In this case, the 
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source terms consist of the transformation/heat formed by the reaction and the exchange of heat with the 

neighboring wall (index “W”). The axial diffusion coefficient Dax,R is kept low enough to avoid influence 

of backmixing of mass (ideal plug-flow, see Chapter 2) as it is not the primary target of this study. 

As no mass is exchanged in the wall, only the heat balance has to be considered in this domain. 

Furthermore, no convection occurs, which eliminates the term containing the first derivative of 

temperature. Thereby, in equation (3.4) the temperature in the middle of the wall TW is considered, as 

depicted by the dashed line in Figure 3.2.  

    , ,
W R W W C W

W ax R W C W W p W
W W

d T UA UA dT
T T T T c

V V dtdz
          

2

2
 (3.4) 

The source term contains the heat exchange between reaction channel and wall (index “R-W”) on the one 

hand, and between the coolant and the wall (index “W-C”) on the other hand.  

Finally, for the outer channel, a constant temperature is assumed and no mass balance needs to be 

considered as no reaction is occurring in this channel: 

 CdT

dt
0  (3.5) 

3.2.1.2 Estimation of the Radial Heat Transfer Coefficients 

For the heat transfer from the reaction channel to the cooling channel, an overall of three serial resistances 

are taken into account: 

 The convective heat transfer at the liquid-solid interface between reaction channel and the wall 

(index “conv,R-W”) 

 The radial conduction inside the wall (index “W”) 

 The convective heat transfer at the solid-liquid interface between wall and coolant (index 

“conv,W-C”) 
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To obtain the temperature in the center of the wall, i.e. at dW,center = (dR+dW)/2, the wall resistance is split 

into two parts: the inner wall resistance and the outer wall resistance as shown in Figure 3.3. 

 

Figure 3.3: Serial arrangement of the radial heat transfer resistances R.  

The values for the resistances RR-W and RW-C are calculated according to the following equations: 

 
, , ,

1 1 / 2
R W

R W conv R W conv R W W rad R W

R
UA h A A




   
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 

 (3.6) 
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 (3.7) 

Where h is the convective heat transfer coefficient, the thickness of the wall and W,rad the conduction in 

radial direction. Thereby, A  is the logarithmic average of the surface area (see Figure 3.4) [17, 113]: 
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Figure 3.4: Cross section of the channel showing the geometric parameters of the described model.  

The Nusselt number in a developed laminar flow inside a tube can be calculated by the means of empirical 

correlations such as proposed by Hausen [178]: 
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In the above equation, L designates the total length of the reactor and Pr is the Prandtl number which is 

defined in equation (3.11). To calculate the heat transfer coefficient between the wall and the cooling 

channel, the following correlation is proposed for laminar flow in concentric tubes with an adiabatic outer 

wall [37]: 
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PrW is the Prandtl number at the reactor wall temperature and μ the dynamic viscosity. 

3.2.1.3 Boundary Conditions 

To solve the described system of equations, the initial values and the boundary conditions have to be 

defined for the different domains. Two types of boundary conditions were chosen for this model [179]: 

 Dirichlet boundary condition fixing the value of the variable at the boundary. 

 Neumann boundary condition fixing the value of the first derivative of the variable at the 

boundary. 

The boundary conditions applied to the different domains are summarized in Table 3.1. 

Table 3.1: Boundary conditions used for the simulation. 

 
Reaction Channel Wall Cooling Channel 

Initial Condition c = c0; TR = TC,0 TW = TC,0 TC = TC,0 

Inlet Boundary Condition c = c0; TR = TC,0 dTW/dz = 0 TC =TC,0 

Outlet Boundary Condition dc/dz = 0; dTR/dz = 0 dTW/dz = 0 dTC/dz = 0 

 

3.2.1.4 Default Parameters Used in the Simulations 

The model reaction used for the simulation has to be fast and exothermic, with a characteristic reaction 

time in the order of a few seconds. Besides, a high activation energy is required to form a sharp hot spot in 

the temperature profile enabling axial heat transfer to take place. For this reason, the synthesis of the Ionic 

liquid 1-ethyl-3-methylimidazolium ethylsulfate was chosen as model reaction (see Figure 3.5), whose 

kinetics is described in literature [32, 180]. The reaction parameters used for the simulations are 

summarized together with the default values of the other parameters in Table 3.2. 
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Figure 3.5: Synthesis of the Ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate.  

Table 3.2: Default parameters used during the simulations with the pseudo 2-D model. 

Parameter Value 

Channel diameter, dR [mm] 0.5 

Outer wall diameter, dW [mm] 1.6 

Outer diameter of cooling channel, dC [mm] 50 

Reactor length, L [m] 0.1 

Frequency factor, k0 [m
3/(mol·s)] 1.28·109 

Activation energy, EA [kJ/mol] 89 

Reaction enthalpy, ∆Hr [kJ/mol] -100 

Initial concentration of methylimidazole, c1,0 [mol/m3] 4800 

Initial concentration of diethylsulfate, c2,0 [mol/m3] 4800 

Working temperature, TR,0 [°C] 77 

Axial thermal conductivity of wall, W,ax [W/mK] 2 

Radial thermal conductivity of wall, W,rad [W/mK] 2 

Thermal conductivity of reaction mass, R [W/mK] 0.58 

Thermal conductivity of coolant, C [W/mK] 0.17 

Density of wall, W [kg/m3] 8960 

Density of reaction mixture, R [kg/m3] 1100 

Heat capacity of wall, cp,W [J/(kg·K)] 390 

Heat capacity of reaction mixture, cp,R [J/(kg·K)] 2600 

Volumetric Flow rate, QR [ml/min] 0.5 

Dynamic viscosity of water, Water [kg/(m·s)] 0.001 
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3.2.2 Results 

The curves shown in this section represent each the system at steady state. Furthermore, the wall material 

is treated as anisotropic regarding the thermal conductivity. The thermal conductivity in radial direction 

(W,rad) and in axial direction (W,ax) are varied separately in some simulations to explicitly demonstrate 

the origin and the significance of some effects. In Figure 3.5, the profiles obtained from the model solved 

using the default parameters (as listed in Table 3.2) are depicted. 

 

Figure 3.6: Axial profiles of the Pseudo 2-D model using the set of default parameters as indicated in Table 3.2. TR: 

Temperature in the reaction channel; Tw: Temperature inside the wall; c1: Concentration of methylimidazole. 

As expected, a sharp hot spot is formed under the described conditions. The temperature rise is 

TR = 88 °C, which is about half of the adiabatic temperature rise (Tad = 168 °C). At these temperatures, 

the reactor is thermally extremely sensitive to a small change of parameters (see Chapter 2). At the same 

time, this kind of profile promotes the axial conduction of heat. The profile in the wall is similar to the 

axial profile in the reaction channel, with the temperature lying between the reactor and the coolant 

temperature. As the temperature in the wall is closer to the coolant temperature than to the reactor 
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temperature, one can deduce that in this case, the internal resistance RR-W is higher than the external 

resistance RW-C. The concentration of the reactants decreases drastically during the formation of the hot 

spot, leading to a plateau of almost constant concentration due to the strong decrease of reaction rate of 

this second order reaction. Due to the relatively low values of thermal conductivity, the effect of axial heat 

conductivity is not visible. 

3.2.2.1 Variation of Radial Wall Conductivity 

As a first parameter, the radial thermal conductivity of the wall is varied in Figure 3.7 while keeping the 

axial conductivity at a constant value of W,ax = 2. 

 

Figure 3.7: Axial temperature profiles obtained in the reaction channel using the set of default parameters as 

indicated in Table 3.2. The radial thermal conductivity (W,rad) is varied as only parameter. 

Varying the radial thermal conductivity directly affects the overall resistance to the evacuation of heat 

from the reaction channel. Better radial conductivity in the wall leads to an increased heat transport, thus, 

efficiently reducing the magnitude of the hot spot from initially 168 °C to 129 °C. The main sensitivity to 

this parameter is observed at thermal conductivites below 20 W/(mK). At higher values the heat transfer 
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becomes limited by the inner and outer convective resistances (Rconv,R-W and Rconv,W-C). The improved 

temperature control simultaneously has the effect of a slight delay of the hot spot. 

3.2.2.2 Variation of Axial Wall Conductivity 

In Figure 3.8, analogical to the previous graph, the axial thermal conductivity is varied keeping the other 

parameters constant. 

 

Figure 3.8: Axial temperature profiles obtained in the reaction channel using the set of default parameters as 

indicated in Table 3.2. The axial thermal conductivity (W,ax) is varied as only parameter. 
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Two opposing effects are observed: the increase of hot spot temperature with conductivity at values below 

W,ax = 100 W/(mK) and a decrese of the maximal temperature at higher values. The hot spot temperature 

at W,ax = 2 W/(mK) is 31 °C lower than the ones simulated at W,ax = 100 W/(mK). At the same time, in 

the former case, the hot spot is located 1 cm further than in the latter case. The explanation for this 

phenomenon can be found in Figure 3.9. 

 

Figure 3.9: Temperature and concentration profiles obtained at low (W,ax = 2 W/(mK)) and high (W,ax = 100 

W/(mK)) axial thermal conductivity. 

As mentioned before, the formation of the temperature peak overlaps with a sudden decrease of reactant 

concentration. At increased axial conductivity, heat is conducted through the walls from the hot spot 

towards the cold inlet. As the wall at the inlet heats up, consecutively the inlet temperature rises causing 

an earlier and more pronounced run-away of the reactor. This effect is well reflected by the transient 

solution of the differential equation shown in Figure 3.10, where one can observe the shift of the hot spot 

towards the inlet with time. Finally, a further increase of W,ax above 200 W/(mK) leads to a reduction of 

the peak temperature (Figure 3.8). Thereby, the heat is evacuated from the hot spot diminishing the wall 



 
3 Numerical Simulation of Microstructured Reactors 

63 
 

temperature at this precise position. The higher gradient between wall and reactor results in a more 

efficient cooling. 

 

Figure 3.10: Temporal development of the temperature profile at W,ax = 100 W/(mK)). 
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3.2.2.3 Variation of Isotropic Thermal Conductivity 

The maximum temperatures seen while varying the axial (Figure 3.8) and the radial (Figure 3.7) thermal 

conductivity respectively are summarize in Figure 3.11. 

 

Figure 3.11: Maximum temperature observed while varying the axial respectively the radial thermal conductivity 

while keeping all the others parameters constant. 

While rising axial conductivity leads to higher hot spot temperatures (up to W,ax = 200 W/(mK)) , rising 

radial conductivity decreases the maximum temperature. When working with isotropic wall material, i.e. 

W,ax = W,rad, the presence of these two opposing effect leads to an optimization problem. Accordingly, 

the simulation of isotropic material results in the curve as shown in Figure 3.12. 
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Figure 3.12: Hot spot temperature as function of heat conductivity in the wall. I: Radial conductivity dominates; II: 

Axial conductivity leads to an increase of inlet temperature; III: High axial conductivity evacuates heat from 

the hot spot.  

The three regions visible on the curve can be explained with the phenomena described above. In the 

region denoted as “I”, the effect of axial conduction is small whereas the increase of radial conduction 

very efficiently reduces hot spot temperature yielding a minimum temperature of 140 °C. The effect of 

axial heat conductivity becomes much more pronounced if the thermal conductivity is further raised 

(region “II”), leading to an increased inlet temperature and, in turn, to higher temperatures. Finally, when 

working at conductivities above 200 W/(mK), a decrease of the peak temperature is denoted, which can be 

explained by the evacuation of heat from the hot spot. Thereby, the minimum temperature reached in 

region “III” for a reasonable heat conductivity is 183 °C for W = 400 W/(mK) corresponding to copper 

[181] as wall material. Hence, for the parameters chosen in this model, the hot spot temperature is 

minimized by using a rather low conducting wall material such as stainless steel [182]. The benefits of the 

radial heat conduction outstrip the advantages gained from evacuation of heat from the point of highest 

temperature. 
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At last, the impact of the outer thermal resistance Rconv,W-C on the shape of the hot spot temperature curve 

was analyzed in Figure 3.13. Rconv,W-C contains one convective terms and one conductive term (equation 

(3.7)). Under default conditions, 75 % of the resistance comes from the convective term.  

 

Figure 3.13: Hot spot temperature curve as function of the isotropic thermal conductivity for different outer heat 

transfer resistances Rconv,W-C. The variation of the outer heat transfer resistance is modeled by changing the heat 

conductivity of the cooling fluid. 

The lower the external heat transfer resistance, the broader becomes the region of optimum temperature 

and the least pronounced the effect of axial conductivity is. In general, stainless steel seems to be the 

optimal choice of material for the tested geometry. For the case of an efficient external cooling medium, 

the reactor can be entitled as “stable” (see in Chapter 2), and no more effect of axial heat conduction is 

visible.  

3.2.2.4 Introduction of a Heat Sink 

From the results previously shown, one can deduce that too high thermal conductivities are rather 

unfavorable for the thermal control of the reactor when operating in region II of Figure 3.12. The heat is 

conducted to the front of the reactor, where it causes an earlier and more pronounced run-away. This 
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effect disappears only at very high conductivities (region III of Figure 3.12), where sufficient heat can be 

evacuated through the back end of the reactor. 

To benefit from the axial conduction already in region II, a heat sink needs to be introduced into the 

reactor. Such a heat sink can be an endothermic reaction such as used by Horny et al.[88] or a cold inlet 

stream that needs to be heated up [87, 183]. It has to be noted that these works were done without cooling 

channel. In the following, the simulations shown in Figure 3.12 are repeated while maintaining the inlet at 

a temperature of 27 °C instead of 77 °C, which corresponds to a scenario where the reactants enter the 

reactor without pre-heating room temperature. The remaining parameters, in particular the “coolant” 

temperature of 77 °C, remain unchanged. The curves obtained are plotted in Figure 3.14 and Figure 3.15. 

 

 Figure 3.14: Axial temperature profiles obtained in the reaction channel using the set of default parameters as 

indicated in Table 3.2 with the only difference being the inlet temperature of 27 °C. The isotropic thermal 

conductivity (W) is varied as only parameter  

The presence of a heat sink in the reactor leads to a continuous decrease of hot spot temperature with 

thermal conductivity in the reactor wall. To understand the phenomenon behind this, one can compare an 

ideal not conducting wall to a highly conductive wall. In the former case, the coolant supplies heat to the 
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incoming flows until they reach the reaction temperature, where heat is produced by the reaction leading 

to the hot spot. In the latter case, the heat of the hot spot is used to heat up the streams, which diminishes 

the overall heat supplied by the “coolant” to the incoming streams compared to the former case. Thus, hot 

spot temperature is reduced.  

As can be seen in Figure 3.15, an optimum point is not observed anymore, as both, axial and radial 

conduction, are favorable to diminish hot spot temperature. Thus, the higher the thermal conductivity of 

the wall material, the more hot spot temperature can be reduced. 

 

Figure 3.15: Hot spot temperature as function of heat conductivity in the wall. I: Radial conductivity dominates; II: 

Axial conductivity leads to a further decrease of hot spot temperature; III: Axial conductivity leads to a 

continuous decrease of hot spot temperature (same as region II).  
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3.3 Multi-injection Microreactor 

In this section, the model of a multi-injection reactor is described followed by the obtained results. The 

model reaction is the same as in the previous section (synthesis of Ionic liquid), although, for some runs 

the reaction kinetics were modified to simulate a quasi-instantaneous reaction.  

3.3.1 Model Description 

For a multi-injection microreactor with a total of N injection points as shown in Figure 3.16, the mass 

balance can be derived with a similar approach as for a single-injection MSR (equations (3.2), (3.3)). For 

simplification, the second order terms i.e. axial dispersion of mass and heat are neglected in the following. 

Hence, the set of partial differential equation is transformed in a set of ordinary differential equations. 

 

Figure 3.16: Scheme of a multi-injection reactor with N injection points. 
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3.3.1.1 Differential Equations 

The only difference from the model described in the previous section is a sudden change in temperature 

and reaction mass at each injection point j, which can be described by using a Dirac pulse δ(z) and the 

Heaviside function σ(z). Reactant 1 contained in the injected flow (index “Inj”) is considered to be the 

limiting reactant which is added into the excess reactant in the main reaction channel (index “R”). For 

clarification it has to pointed out that the use of the terms “limiting/excess reactant” only describe the state 

of the reactants before reaching the last injection point, where the stoichiometric balance is attained. It is 

assumed that the volume of limiting reactant injected is equal at each injection point and mixes 

instantaneously in the main stream.  
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 (3.13) 

In the second term, the only resistance to evacuation of heat is assumed to be the convective resistance 

between the channel and the wall, which can be estimated assuming an average Nuin = 3.66. The third term 

of the heat balance is the heat added to the system due to the temperature difference between the injected 

flow and the main flow denoted as (TInj-T). The above equations can be solved using a simple ordinary 

differential equation solver for each interval between two injection points. In this case, the boundary 

conditions of the jth interval have to be adapted considering the reaction mass injected at point j and its 

temperature as well as the temperature and concentrations at the end of the interval j-1. After the first 

injection point (j = 1) equation (3.12) and (3.13) are: 
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These equations are solved using the initial molar fluxes 
, ,/n n 2 0 1 0

 and the initial temperature T0 in the 

main reaction channel as boundary conditions. Subsequently, the solutions obtained at z = 1·L/N, i.e. 

(1 / )n L N1 and T(1·L/N,) are used together with the molar flux and temperature coming from injection 

point j = 2 to calculate the boundary condition for equation (3.15) and (3.16) within the second interval 

(j = 2): 
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3.3.1.2 Default Parameters Used in the Simulations 

In order to illustrate the behavior of the multi-injection reactor, simulations were carried out for the Ionic 

liquid synthesis described in section 3.2 [32, 180] with an inner channel diameter of 800 μm. The 

properties of the reaction used for the simulations are summarized in Table 3.3. 

 

 

 

Table 3.3: Parameters used for the simulation of a multi-injection reactor. 

Parameter Value 

Volumetric flow rate, QR [m
3/s] 3 

Volumetric flow rate, QInj [m
3/s] 1.83 

Initial conc. of methylimidazole, c1,0 [ mol/ m3] 12540 

Initial conc. of diethylsulfate, c2,0 [mol/ m3] 7633 

Frequency factor, k0 [m
3/mol·s] 1.28·109 

Activation energy, EA [kJ/mol] 89 

Density of reaction mixture, R [kg/m3] 1100 

Heat capacity of reaction mixture, cp,R [J/(kg·K)] 2600 

Nussel number, Nuin [-] 3.66 

Thermal conductivity of coolant, C [W/mK] 0.17 

Channel diameter, dR [mm] 0.8 
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3.3.2 Results 

The temperature of the injected fluids, the initial temperature and the cooling temperature are assumed to 

be equal. A typical simulation profile for a multi-injection reactor with 4 injection points is given in 

Figure 3.17.  

 

Figure 3.17: Temperature profile of the synthesis of Ionic liquid in a multi-injection reactor with N = 4 and 

T0 = Tinj = TW = 360 K. The injection points are separated by a distance of 0.5 m in order to have a sufficient 

heat removal. (τ = SR·L/(QR+QInj/2) = 15.4 s, tR = 1/(k·c2,0) = 0.84 s, tcool = Pc /(U·ain) = 0.22 s). 

In order to successfully run a multi-injection reactor, the concentration of the limiting reactant should be 

close to 0 before reaching the subsequent injection point. In this case, the limiting reactant is the molar 

flow 1n  which experiences a sharp rise at each injection followed by decay due to the reaction. As the 

excess reactant is also consumed along the length, the reaction rate becomes slower at every injection 

point. The temperature rise is at its maximum at the first injection point reaching about 10 % of the 

adiabatic temperature rise (Tad = 168 °C). Due to efficient cooling, the temperature can be brought back 

almost to the initial temperature before the next injection point. The hot spot temperature diminishes from 
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one injection point to another on the one hand, due to the increased reaction mass, and on the other hand, 

due to the reduced reaction rate. In the following, the different parameters allowing further reduction of 

the maximum temperature are presented. 

3.3.2.1 Number of Injection Points 

The hot spot value within a multi-injection reactor is mainly controlled by the amount of injection points 

(N). For a first approximation of the temperature rise at each injection point, a simplified system can be 

considered [170]. In the case of instantaneous mixing and reaction with an equally distributed flow among 

the injection points, the temperature rises quasi-adiabatically at each injection point. To avoid a high 

temperature rise, the heat produced at each injection point j is removed before reaching the next injection 

point j+1. For such a system, temperature rise at each injection point can be described as 
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The adiabatic temperature rise for a single-injection MSR is defined as 
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Thus, the temperature rise at each injection point can be expressed relative to the adiabatic temperature 

rise obtained in a single-injection reactor (N = 1) as 
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In Figure 3.18, the temperature profile of equation (3.22) is compared to the simulation at an initial 

temperature of 360 K (fast reaction) and to the same reaction carried out at 420 K (instantaneous reaction). 

 

Figure 3.18: Temperature profile in a multi-injection reactor with N = 4 and T0 = Tinj = TW for the synthesis of Ionic 

liquid. The injection points are separated by a distance of 0.5 m in order to have sufficient heat removal. 

(τ = SR·L/(QR+QInj/2) = 15.4 s, tR = 1/(k·c2,0) = 0.84 s, tcool = Pc /(U·a) = 0.22 s); Fast 

reaction: tR = 1/(k·cD,0) = 0.84 s. Instantaneous reaction: tR = 1/(k·cD,0) = 0.012 s). The other simulation 

parameters are summarized in Table 3.3. 

From equation (3.22) it is obvious that the highest temperature rise occurs at the first injection point 

(j = 1), which is due to the fact that the overall flow rate increases with j for a constant heat release at 

every injection point, which in turn leads to an increased heat capacity at each injection point. Figure 3.19 

shows the adiabatic temperature rise at the first injection point as a function of total injection points N. 
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Figure 3.19: Temperature rise at the first injection point as a function of total amount of injection points N for 

QInj/QR = 0.61 and j = 1. 

3.3.2.2 Choice of Limiting Reactant 

In the case of unequal flow rates, a further reduction in hot spot temperature can be obtained  
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Thereby, F is the ratio of QInj/QR. For F→0, the normalized temperature rise at each injection point is 

limited to 1/N. Rewriting equation (3.23), the maximum number of injection points required to avoid a 

temperature rise higher than ∆Tad,N, j=1 can be estimated as a function of F and the adiabatic temperature 

rise of the reaction ∆Tad,N=j=1 in the case of a single-injection reactor (N = j = 1):  

   , 1

, , 1

1 ad N j

ad N j

T
N F F

T
 




  


 (3.24) 

To apply this simple equation, one has to carefully choose characteristic cooling time to avoid the 

accumulation of heat in the reactor. 
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3.3.2.3 Unequal Flow Partition 

In the previous sections, the flow through the injection channels was assumed to be equal. It was shown 

that this type of design results in a temperature profile as given in Figure 3.18, which leads to a maximum 

temperature at the first injection point. In order to further reduce this maximum temperature in a multi-

injection reactor, one can design the MSR in order to obtain N equally high hot spots by increasing the 

injected volume along the length. The optimal flow distribution can be calculated using the model above. 

For a multi-injection reactor with N injection points, the adiabatic temperature rise at each injection point 

has to be equal: 
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It leads to a set of N-1 equations for N unknown normalized injection flow rates Fj = QInj,j/QR. Solving 

equations (3.25) leads to the following expression for the normalized injection flow rates as a function of 

F1: 
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Thus the growth factor for the volumetric flow rate between two injection points j and j+1 is  1 1F  . 

Assuming a constant density along the length: 
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From the above equations, Fj can be determined for a known value of F. Using the above example 

(F = 0.61 and N = 4), the injection flow rate at j = 1 is F1 = 0.126 resulting in a growth factor of G = 1.126 

and a 20 % reduced temperature rise as compared to an equally distributed multi-injection reactor. 

Especially in cases with high F or a low amount of injection points N this kind of channel design can be 

beneficial. The reduction in hot spot temperature is demonstrated in Figure 3.20, where the temperature 

attained with quasi-instantaneous reaction kinetics is compared to the adiabatic case. Even though in the 
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latter case four peaks of equal temperature would form, under real conditions a decrease of the peaks is 

observed. This can be explained by the gradually decreasing concentration of the reactants in the main 

channel, leading to reduced reaction rates. 

 

Figure 3.20: Temperature rise for a multi-injection reactor with instantaneous kinetics and gradually increasing 

injection volume (Factor G = 1.126 from one injection point to the next). The simulation parameters are 

summarized in Table 3.3. 

3.3.2.4 Pressure Drop and Flow Distribution 

As a multi-injection reactor allows operating with bigger channel diameters for the same temperature rise 

as in a single-injection reactor, they may be seen as method of scaling-out. To carry out the reaction with 

quasi-instantaneous kinetics as shown in Figure 3.20, a reactor diameter smaller than 65 m (calculated 

using the numerical simulation) would be required when working with a single-injection reactor. Hence, 

by using a multi-injection reactor in this case, the gain in reactor volume is factor 150 for a comparable 

efficiency in heat removal.  

In the sections above, a well-defined distribution of the flow among the injection channels was assumed. 

However, precise distribution of fluids through multiple channels is not straightforward. As this problem 
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has already been well discussed in the case of the numbering-up of MSR (see Chapter 2), the same 

theories can be applied to multi-injection reactors. The pressure drop can be a priori described using 

computational fluid dynamics (CFD) simulations. The main advantage of this method is accurate results. 

However, the simulation of the whole device requires a lot of computational power, and therefore, a 

simpler approach is warranted. Several studies [47, 63, 184-187] described the pressure drop in the 

channel as resistances analogous to electrical networks. When numbering up, internal numbering-up is 

more cost effective compared to external numbering-up. The comparison for energy input needed for the 

distribution of the flows between the former and the multi-injection MSR can be made. In addition, both 

require a comparable set of accessories (mainly pumps and piping). The following simplified flow 

resistance model is considered (see Figure 3.21). 

 

Figure 3.21: Simplified flow resistance model for (a) internal numbering-up of four channels and (b) multi-injection 

reactor with four injection points. 

The resistance Rp and the pressure drop ∆p are defined according to Pan et al. [186, 187]: 
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As a first approach, the pressure drop between the inlet of QR and the outlet is compared, assuming 

Rp1’ = Rp2’ = Rp0 = Rp1 = Rp and QR = QInj = Q. Hence for case (a): 
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and for case (b) 
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Due to the serial arrangement of the resistances, the pressure drop in the multi-injection reactor is about 

five times higher for the shown example. The parallel alignment of resistances in case (a) leads to a 

diminished pressure drop. In addition to the demonstrated effect, some other factors must be taken into 

account in order to provide the best solution in terms of pressure drop (multi-injection reactor or internal 

scale-up). Especially in liquid phase, fast mixing of two fluids requires high pressure drop (see section 

Chapter 2), thus Rp1 is much higher than in a conventional tube. The resistance of the injection channel 

will generally be designed much bigger than the main channel resistances (Rp0 >> Rp1) in order to provide 

an almost equal flow for every injection channel. On the other hand, the small diameter needed for 

temperature control of multiple parallel microchannels increases the resistance (Rp 1/dR
4). Thus, pressure 

drop is a critical issue that needs to be considered when making a choice of reactor. 

3.4 Micro-annular Reactor 

As mentioned in the introduction, this novel reactor concept has not been described in literature yet. The 

model and results presented in the following are a first proof of concept. The model reaction used to carry 

out the simulation is an imaginary instantaneous pseudo-first order reaction. 
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3.4.1 Model Description 

A homogenous distribution of the fluid at the inlets of the core and at the annular region was assumed. 

Thus, no dependence of the system on the angular coordinate needs to be considered. Furthermore, it was 

assumed that the molar flux through the filter is homogeneously distributed and ideal mixing is insured, 

resulting in a reaction controlled by its intrinsic kinetics. 
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Figure 3.22: Mass- and energy balance in the micro-annular reactor. 

In order to keep the model simple, a pseudo first order reaction was assumed: A1 + A2  A3 with A1 being 

the excess reactant fed through annular space and A2 the limiting reactant entering through the filter. At 

steady state, the balance of species i in a small volume element in the annular region (dVA) is written as  

 ,0iFiA
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A

ndn
R

dV V
 
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Where, RiA is the rate of generation or consumption and iAn  is the molar flow of the ith species in the 

annular region. VA describes the volume in the annular space until the end of injection. The subscript A 

and F stand for the flow of reactant through annular region and through the filter of length L, respectively. 

As through the filter solely diluted A2 is fed, and diluted A1 through annular space, the initial molar flows 

are: 

 1 ,0 2 ,0 0F An n    (3.32) 

The cross section area of the annular region SA remains constant. Therefore, the above equation can be 

written as 
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  
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The volumetric flow rate in annular space QA increases linearly along the length until a total flow of 

QA = QA,0 + QF,0 is reached. As the total volumetric flow rate Q(z) = QA(z) + QF(z) is constant, 

accordingly QF decreases with axial coordinate z. The increase of flow in annular space results in a 

dilution of the reactants in the reaction zone.  

For the heat balance, the cross section of the whole reactor including the filter is considered as isothermal. 

Thus heat produced in annular space is absorbed by the total volume Q = QA + QF and evacuated solely at 

the outer wall of annular space by maintaining it at constant temperature. Neglecting the work done on the 

reacting fluid, the energy balance can be written as given in the following 
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Where, ρ, Q, cp 
and Uain are the density, total volumetric flow rate through the central and annular region 

(QA + QF), specific heat capacity and heat transfer coefficient of reacting mixture, respectively. For a 
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constant tube diameter, the specific heat exchange surface a is the ratio of surface area of the outer tube to 

the total annular space:  
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Where, dF and dA are the outer diameter of the filter and inner diameter of the outer wall, respectively. As 

mentioned before, total volumetric flow rate is used to absorb heat released in the reaction. Assuming 

constant density, specific heat capacity and volumetric flow rate (no change due to reaction), the above 

equation can be written as  
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Since the reaction does not take place in the whole cross section of the reactor, the inner heat transfer 

coefficient hC of the system is different from the tubular reactor. The Nusselt number in the annular flow 

depends on Reynolds and Prandtl number, and it is calculated using the correlation proposed for laminar 

flow in concentric tubes with an adiabatic inner wall [37]: 
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where: 
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Prw is the Prandtl number at the outer wall temperature. Thus, the heat transfer coefficient is calculated as  
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In order to better understand the origin of some effect, equations (3.33) and (3.36) were put into 

dimensionless form, assuming an initial temperature equal to cooling temperature T0 = TW and a pseudo-

first order reaction (n = 1). 
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Here tr’ represents the ratio between moles fed to the reactor and rate of mole change in annular space. 

Characteristic cooling time is denoted as tc. The space time of the micro-annular reactor τ is defined as the 

ratio between total volume of annular space along the filter and total flow rate. Nij is the dimensionless 

molar flow rate of the component i in annular space (j = A) or in the filter (j = F). The index i = 2 

describes the limiting reactant that is inserted at the filter inlet.  

To simulate reactor behaviour in the case of a reaction controlled by kinetics, a pseudo first order reaction 

was modelled:  

 1

*

A + A A       w ith     

                                        

r k C C

k C

   

 
2 3 1 2

2

 (3.42) 

Reactant A1 is the limiting reactant fed through the filter, reactant A2 is introduced in excess in annular 

space in order to get a pseudo-first order reaction. Furthermore, it is assumed that the product A3 is stable 

i.e. there are no consecutive reactions. The physical properties and operating conditions used for 

simulation are given in Table 3.4. 
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The above set of equations was solved using a commercial numerical solver, Mathworks Matlab [149]. 

Table 3.4: Properties used for simulation of micro-annular reactor. 

Parameter Value 
Normalized 
parameter 

Value 

Density ρ [kg/m3] 1000 N1F,0 [-] 1 

Specific heat cp [kJ/kgK] 4.18 N2F,0 [-] 0 

Thermal conductivity of fluid λR [kW/m K] 4.844 × 10-4 tr [ms] 36 

Inlet temperature Tin [K] 378 tc [ms] 816 

Wall temperature TW [K] 378 γ [-] 33.6 

Heat of reaction ∆HR [kJ/mol] -690 ∆θad [-] 1.1 

Activation energy Ea [kJ/mol] 105.5 τ [s] 10.2 

Frequency factor (k0) [1/ s] 1.05 × 1016 Z [-] 1 

Filter diameter dF [m] 6 × 10-3   

Cylindrical case diameter dA [m] 7 × 10-3   

Filter length L [m] 0.8   

Total length LTot [m] 1.6   

Flow rate at filter inlet QF,0 [m
3/s] 4 × 10-7   

Flow rate at annular inlet QA,0 [m
3/s] 4 × 10-7   

Initial concentration c1,0 [mol/L] 16   

Initial concentration c2,0 [mol/L] 5   

3.4.2 Results 

The simulations were carried out for different operating conditions. Only one parameter was varied at the 

time, the other parameters were kept constant as given in Table 3.4. At first, the profile of molar flow and 

temperature are shown under default conditions to demonstrate the principle of the micro-annular reactor. 

Subsequently, the effect of the ratio of residence time to characteristic cooling time is shown. The effect of 

reaction kinetics is analysed by simulating slower reactions on the one hand, and mixing limited reactions 
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on the other hand (low activation energy). Finally, the performance of micro-annular reactor is compared 

to the performance of a microchannel of comparable size.  

3.4.2.1 Axial Molar Flow and Temperature Profiles 

The fluid keeps on accumulating in the annular region along the length of the reactor and the flow velocity 

changes due to constant annular space. At the dimensionless length (Z) equal to 1, the flow velocity stays 

constant as there is no more addition of fluid. In Figure 3.1 the concentration of the limiting reactant is 

zero all over the length due to quasi-instantaneous reaction. It shows that the reaction is limited by the 

continuous addition of the limiting reactant, which causes a linear decrease of molar flow of reactant 2 due 

to reaction. The heat production is constant along the length (for 0 ≤ Z ≤ 1) as it is governed by the 

constant addition of the limiting reactant. Accordingly, the temperature rises until heat production and 

heat removal equilibrium is reached (at Z = 0.3). At Z = 1 the addition of the limiting reactant stops and 

thus heat production becomes zero. 

 

Figure 3.23: Molar flow rates of reactants and temperature along the micro-annular reactor 
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The isothermal working point can be easily calculated using equation (3.41): 
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3.4.2.2 Variation of the Ratio Residence Time/Cooling Time 

The change in residence time can be realised as a variation of filter length or the volumetric flow rate 

inside the filter. By reducing residence time for a given set of initial/operating conditions, the amount of 

reactant dosed per unit filter area increases (see equation (3.44)).  
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A variation of cooling time can be practically achieved either by diminishing the size of annular space or 

by improving radial heat conductivity of the wall/cooling fluid. 

The temperature profile resulting from a change of the ratio of residence time by characteristic cooling 

time is given in Figure 3.24. For a small ratio τ/tcool = 1, temperature rise is similar to a single-injection 

reactor: as the characteristic cooling time is in the same order of magnitude as the time needed to 

accomplish reaction, the temperature rise is relatively high. With increasing ratio τ/tcool, heat removal is 

enabled and a maximum temperature of less than 5 % of adiabatic temperature rise is achieved for a ratio 

of 30.  

However, a key advantage of this reactor is not only the reduced temperature rise, but its quasi isothermal 

behaviour. For a ratio τ/tcool = 9.3, the temperature is constant between Z = 0.3 and Z = 1. With increasing 

residence time or decreasing characteristic cooling time, the temperature of equilibrium between heat 

production and heat removal is reached earlier and thus the isothermal part of the reactor becomes longer. 

To operate the micro-annular reactor under isothermal conditions, residence time should be set one order 

of magnitude higher than characteristic cooling time.  
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Figure 3.24: Influence of the ratio of residence time and characteristic cooling time on temperature. 

3.4.2.3 Variation of the Ratio Residence Time/Reaction Time 

For quasi-instantaneous reactions, heat release is solely controlled by the addition of limiting reactant. For 

low Damköhler I numbers (DaI’ = τ/tr), i.e. slow reactions or higher dosing rates, heat production is 

governed by the reaction kinetics resulting in accumulation of reactant 1 in the annular space and causing 

hot spots or even reactor run-away (see Figure 3.23). 

 

Figure 3.25: Influence of the ratio of residence time and characteristic reaction time DaI’ = τ/tr on temperature 

(Arrhenius number γ = 33.6). 
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3.4.2.4 Reaction Limited by Mixing 

In order to analyse the effect of mixing on MAR performance, reaction activation energy and thus, 

Arrhenius number was used. Simulations were carried out for zero Arrhenius number to model the case of 

mixing being the rate limiting step (see Figure 3.26).  

 

 

Figure 3.26: Influence of the ratio of residence time and characteristic reaction time on temperature. Here γ = 0 

while the rest of the parameters were set according to Table 3.4. 

For the case of DaI’ = 332, the observed profile is the same as for the instantaneous case, as the reaction 

rate is high enough to assure an instantaneous consumption. With lower DaI’, more and more reactant is 

accumulated along the length which reacts after the dosing part. The most apparent difference between 

Figure 3.25 and Figure 3.26 is the absence of a runaway behaviour in the latter one. The accumulated 

reactant only proportionally accelerates the reaction, the exponential increase of reaction rate due to 

temperature is not occurring (as γ = 0). Instead of a runaway behaviour, with decreasing DaI’ (especially 

below DaI’ = 10) a decrease in maximum temperature is observed. The reactants consumption is spread 

along the length requiring more time to complete the reaction due to mixing limitations. However, as soon 
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as the streams get mixed in downstream equipment, a run-away is likely to occur, which is why the reactor 

cannot be operated under conditions of slow mixing. 

 

To work efficiently with micro-annular reactor and avoid run-away in down-stream equipment due to 

accumulation of reactants, characteristic mixing time has to be at least one order of magnitude lower than 

residence time 
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For extremely fast reactions, mixing of the reactants is the limiting step. In order to estimate this effect, 

one can proceed with a simplified calculation. 

As residence time equals to 10 s in the considered case, the mixing time has to be in the order of 1 s. An 

approximate value of mixing time can be calculated for the poor mixing case considering characteristic 

diffusion time:  

 
( ) /A F

mix diffusion
m

d d
t t

D


 

2 4
 (3.46) 

For a gas phase reaction (Dm,gas = 10-5 m2/s) and an annular width of 0.5 mm one obtains a characteristic 

mixing time of 25 ms, which is small enough. However, if a liquid system is considered, the characteristic 

mixing time is about 250 s.  

In order to overcome the slow mixing in liquid phase, there are two solutions: 

 improve the quality of mixing by inserts 

 reducing the annular distance in order to enhance the mixing by diffusion  
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3.5 Conclusion 

In this chapter, three models representing distinct strategies were screened for their potential to reduce hot 

spot temperature in microstructured reactors: the axially conductive microchannel reactor, the multi-

injection microreactor and the micro-annular reactor. 

In the thermally conducting microchannel reactor, the modification of thermal conduction showed that the 

optimal conductivity for this type of geometry lies in the range of stainless steel (15 W/(m2K)) for a pre-

heated inlet stream. It was found to be the best tradeoff between sufficient thermal conductivity for radial 

heat evacuation and a minimization of axial conductivity leading to higher inlet temperatures, which in 

turn lead to more pronounced run-aways. To benefit from axial conduction through the reactor wall, a heat 

sink needs to be added. One possibility is to feed the reactor with cold solution: in this case, the heat from 

the hot spot is used to pre-heat the inlet streams, leading to an almost isothermal temperature profile.  

The concept of step-wise injection was shown to be a very powerful approach especially for quasi-

instantaneous reactions. The hot spot temperature was progressively reduced with the amount of injection 

points. Thereby, the maximum temperature is reached at the first injection point owing to the lowest heat 

capacity and the high concentrations. As countermeasure, it was proposed to gradually increase the flow 

rate of injected reactant. Carrying out a quasi-instantaneous reaction with a multi-injection reactor can be 

seen as a scale-out approach as for a given maximum temperature rise, it replaces hundreds of 

microchannels with a diameter below 100 m. Thereby, the serial arrangement of flow resistances needed 

for distribution requires a substantial amount of pumping energy. Nevertheless, the data obtained from this 

strategy are very promising. Thus, it is selected for an experimental investigation in the following 

chapters. It is essential to keep in mind that for a specific amount of injection points, the best results is 

obtained if between two injection points, the reactants are nearly completely consumed and the heat 

evacuated. In the case of quasi-instantaneous reactions, the consumption of the reactants can be brought 

back to the problem of efficient mixing of the two streams (see chapter 5). 
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The micro-annular reactor is an extreme form of the multi-injection reactor. It shows zero-order shaped 

temperature profiles with higher throughput for a given temperature rise. As for the multi-injection 

reactor, a high heat evacuation rate is required. To benefit from a flat temperature profile, it is crucial to 

have a residence time (equivalent to dosing time) that is one order of magnitude higher than characteristic 

cooling time. At the same time, to avoid dangerous accumulation of reactants, residence time needs to be 

one order of magnitude higher than characteristic reaction time, i.e. characteristic mixing time for the case 

of quasi-instantaneous liquid phase reaction. From the practical point of view, it is more likely to fulfill 

the latter criterion with mixing insert than by narrowing the hydraulic diameter of annular space, as the 

precise construction of concentric tubes remains challenging. 

As mentioned, the two latter strategies show enormous potential for lower hot spot temperature at 

increased throughput, especially in the case of reactions with characteristic reaction time in the order of 

1 s or less. Initially, both concepts, i.e. the multi-injection and micro-annular reactor, were built-up. The 

first trials showed that mixing of two liquids, especially when having different densities and/or higher 

viscosities is challenging. As the modification of the annular space to improve mixing quality turned out 

to be technically challenging, it was decided to built-up a reactor based on multiple injection points. 
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3.6 Notations 

a Specific surface area, [m2/m3] 

A Surface area, [m2] 

A Average surface area in a cylindrical channel, [m2] 

cp
 

Mean heat capacity, [J/(kg K)] 

c Concentration, [mol/m3] 

d Channel diameter, [m] 

dh Hydraulic diameter, [m] 

D Effective diffusion coefficient, [m2/s] 

Dm Molecular diffusion coefficient, [m2/s] 

EA Activation Energy, [m2/s] 

h Heat transfer coefficient, [W/(m2K)] 

Hr Reaction enthalpy, [J/mol] 

i Index denoting chemical compound, [-] 

j Index denoting Injection point, [-] 

J Surface specific molar flow rate, [mol/(m2 s)] 

k0 Frequency Factor, [(m3/mol)n-1/ s] 

L Length of the reactor/filter, [m] 

m Mass flow rate, [kg/s] 

n Reaction order 

n Molar flow rate, [mol/s] 

N Total amount of injection points, [-] 

Nij Dimensionless molar flow rate, [-] 

p Pressure, [Pa] 

q Heat flow, [W] 
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Q Volumetric flow rate, [m3/s] 

r Reaction rate , [mol/(s m3)] 

R Transformation rate, [mol/(s m3)] 

R Ideal gas constant, [J/(mol K)] 

R Heat Transfer resistance, [K/W] 

Rp Flow resistance, [Pa s/m3] 

S Cross section area, [m2] 

t Time, [s] 

tr Characteristic reaction time, [s] 

tr Dimensionless characteristic reaction time, [-] 

tcool Characteristic cooling time, [s] 

T Temperature, [K] 

u Flow velocity, [m/s] 

U Global heat transfer coefficient, [W/(m2K)] 

V Volume, [m3] 

X Conversion, [-] 

z Axial coordinate, [m] 

Z Dimensionless axial coordinate, [-] 

 

Greek 

 Thermal diffusivity [m²/s] 

γ Arrhenius number, [-] 

 Wall thickness, [m] 

 Dirac pulse, [1/m] 

∆ Symbol for difference 

ε Specific power dissipation, [W/kg]  
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λ Thermal conductivity, [W/(m K)] 

 Dynamic viscosity, [Pa s] 

ν Kinematic viscosity, [m2/s] 

ν' Stoechiometric coefficient, [-] 

 Dimensionless temperature, [-] 

 Mean density, [kg/m3] 

σ Heaviside function, [-] 

τ Residence time, [s] 

ξNC Non-circular coefficient, [-] 

Dimensionless numbers 

DaI’ Modified Damköhler number /tr‘, [-] 

DaIImix Mixing Damköhler number /tmix 

Nu Nusselt number h·dh/lFluid, [-] 

Pr Prandtl number ν/a, [-] 

Re Reynolds number u·dh/ν, [-] 

Subscript  

0 Initial condition 

A Annular space 

ad Adiabatic 

ax Axial 

c / cool Cooling 

conv convective 

F Filter 

i Index designating a component 

in Inside 

Inj Injection 
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mix Mixing 

out Outside 

rad radial 

R Reactor 

R-W Reactor-Wall 

Tot Total 

w Wall 

W-C Wall-Cooling 
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Chapter 4  

QUANTITATIVE INFRARED IMAGING OF 

TEMPERATURE PROFILES IN 

MICROREACTORS 

To experimentally validate the simulation results obtained in the previous chapter, an experimental 

method was developed for quantitative measurement of temperature profiles in microstructured reactors. 

This infrared based approach is the main tool applied within this thesis to monitor mixing of exothermic 

reactions (chapter 5) and the temperature profile in a multi-injection reactor (chapter 6).  

4.1 Introduction 

The axial temperature profile within thin channels depends on several parameters, like the kinetics and 

thermodynamics of the reaction, the design of the reactor, physical properties of the reactants and the 

quality of mixing achieved. In microchannels the relative importance of some effects is very different as 

compared to conventional reactors, which is usually referred to as “scaling effect”. For example, when 

working with conventional batch reactors with relatively slow reactions, mixing time is negligible 

compared to reaction time and hence, does not affect the overall rate of transformation. However, 

reactions carried out in microreactors are generally so fast that they may be influenced or totally 

controlled by mixing. 
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So far, only a limited amount of studies on thermal behavior of microreactors are available in open 

literature. Furthermore, most of the work is done by numerical simulation which can only reflect the 

temperature profile under ideal conditions.  

Measuring temperature profiles within microchannels by classical method, such as thermocouples, has 

two major limitations: i) measurement only at distinct points and ii) the sensor changes the fluid behavior 

leading to artifacts. To get accurate and reliable characteristics of microdevices, non-intrusive methods of 

monitoring temperature are required. A common way of carrying out such experiments is the addition of 

temperature sensitive tracers to the fluid, as done in laser-induced fluorescence [188, 189]. However, this 

method is only applied to non-reacting microfluidic systems, since the tracers are usually cross-sensitive 

to the reaction conditions (such as a variation of pH). Another method is based on liquid crystal 

thermometry where temperature is monitored by liquid crystals whose color changes according to 

temperature. The liquid crystals can be added to the reactant solutions or coated on the reactor wall and 

are also used to track temperature in reactive media [190-193]. Iles et al. used liquid crystals to determine 

temperature during the Reimer-Tiemann reaction [192]. The range of suitable sensitivity of this system 

was limited to a window between 60 °C and 70 °C. Using the dependence of the refractive index on 

temperature, Fan et al. determined temperature profiles by laser [194, 195]. However, this method is also 

strongly sensitive to changes in concentration. Other methods presented in the literature are based on 

Raman spectroscopy [196, 197], nuclear magnetic resonance (NMR) [198] and ultrasound [199]. 

In this study, a method based on infrared thermometry allowing quantitative mapping of temperature has 

been developed. To use this technique quantitatively, several challenges have to be overcome including 

the right choice of optics to optimize the resolution, the calibration of the IR camera and the system, etc. 

[200]. Quantitative application of this technique in microchannels is mostly found in studies on 

characterization of thermal parameters of non-reacting mixtures. Recently Barber et al. [201] used thermal 

mapping of the channel walls in combination with high speed imaging and pressure sensors to describe the 

unsteady state fluctuations occurring during two phase heat transfer in microchannels. Using quantitative 

infrared imaging of channel walls, Xu et al. [202] could demonstrate the increased overall Nusselt number 
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obtained by periodically forcing the thermal profile of the fluid to redevelop. To measure directly the 

temperature of the fluid, a channel designed with infrared transparent covers, such as sapphire, silicon, 

germanium or zinc selenide is used [200]. However, a careful calibration of the system is required as the 

radiation losses by absorption and reflection of the window lead to distortion of the IR signal. Mishan et 

al. [203] determined non-reactive fluid temperature in 16 microchannels with hydraulic diameter of 

440 μm covered by sapphire glass window. From the temperature profiles they deduced the heat transfer 

properties of developing flow. Infrared thermometry studies carried out on reactive microsystems are 

scarcer and generally only used for qualitative interpretation. Norton et al. [87] determined temperature 

profiles of the catalytic hydrogen combustion to demonstrate the effect of axial heat conduction in the 

reactor wall. Antes et al. [204] monitored the hot spots resulting from flow maldistribution inside their 

silicon microreactor during the nitration of N,N -diethyl-thioureas. A successful application of quantitative 

IR imaging on reactive systems in microreactors was published by Pradere et al.[205]. They used IR 

thermography to determine the Péclet numbers inside microchannels. From this data, they deduced the 

field of flow velocity and of heat source term. 

In the present work, a quantitative infrared thermometry method initially developed for semiconductors is 

presented and applied to microstructured reactors [206]. Instead of a single point calibration where 

homogeneous emissivity is assumed all over the image, a pixel-by-pixel calibration leading to higher 

accuracy is carried out. The reactor was enclosed in a vacuum box having an infrared transparent window 

to reduce heat losses, and the temperature profiles were measured for both non-reacting and reacting 

systems using two generations of microreactors. The heat losses in the system were characterized, and 

heat transfer coefficients were investigated for different operating conditions.  

4.2 Infrared Thermal Mapping 

In this section, the reader is introduced to the fundamentals of infrared thermal imaging. At the first sight, 

this more and more prevalent method seems straightforward in its application, offering precise monitoring 
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of temperature at high resolution. However, the lack of awareness of certain limitations of this technique 

induces errors and misinterpretations. The challenges and the correct approach for the use of this 

technique are explained in the second part of this section. Finally, its application to microsystems, i.e. 

microstructured reactors is discussed. 

4.2.1 Basic Principles of Measurements 

Every object that has a temperature above absolute zero (0 K) emits a spectrum of thermal radiation, i.e. 

electromagnetic waves [207, 208]. To simplify the illustration in the following, the object is assumed to 

behave as an ideal black body, meaning that it absorbs every incident radiation, and the emitted spectrum 

is solely a function of temperature. The radiance L’(T) emitted by a blackbody can be described by 

Planck’s theory of emission [209]: 
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 (4.1) 

Where c’ designates the speed of light, h’ Planck’s constant, kB the Boltzmann constant, ’the wavelength 

and T the absolute temperature of the body. The exemplary curves obtained at four different temperatures 

are plotted in Figure 4.1. 

The wavelength at which the radiance is maximal for a certain temperature can be deduced from Wien’s 

displacement law [209]: 

 max' .  μm KT   2897 8  (4.2) 

For a fixed wavelength, the radiance emitted by a black body continuously increases meaning that two 

spectra of different temperatures will never cross. The detector of any infrared thermal camera converts 

the incoming radiation (irradiance) within the detection band (Figure 4.1) into an electrical signal. Due to  
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the strictly monotone character of the function that links radiance and temperature, the temperature can be 

deduced from the incoming radiation, which corresponds to an integral function of equation (4.1). 

 

 

Figure 4.1: Radiance as function of wavelength emitted by an ideal black body. The most common working 

windows used for infrared thermal imaging are indicated as striped areas. 

4.2.2 Challenges in Infrared Thermography 

The application of the above described principle into practice is slightly more complex. When pointing the 

thermal camera at an object, one does not necessarily measure the temperature of the object as illustrated 

in Figure 4.2. 
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Figure 4.2: Schematic of the signal entering an IR camera: 1) Reflection on the window surface, 2) Reflection on the 

object surface, 3) Emission from the object, 4) Emission from the window. 

Typically, when working with materials such as glass, for wavelengths above 7 m, 99% of the signal is 

emitted by a layer of 10 m of the objects surface [210]. The signal transmitted to the camera is deformed 

by reflections on various surfaces and absorption within the crossed media. The original signal emitted by 

the object, which is assumed to be a black body, is a function of wavelength as previously described. 

When travelling from the object to the camera, this signal denoted as (3) in the picture is partly absorbed 

and reflected by the window, partly absorbed by the crossed medium. Hence, the radiation entering the 

camera is weaker compared to the emission of the object. At the same time, radiation provided by other 

sources can perturb the signal. The radiation of a surrounding object, as for example the person carrying 

out the measurements could be reflected by the window (4) or by the object (2). Finally, as the window 

has a temperature which is above absolute zero, it also emits radiation. Hence, when measuring, all of 

these components need to be carefully considered, and in a given case suppressed [200]. 

The calibration of an infrared camera is generally done using a black body source, which resembles almost 

perfectly an ideal black body. Real objects, however, have an emission which differs from this ideal 

behaviour [209]. The ratio of radiation emitted by a surface and radiation emitted by a black body is 

defined as emissivity. According to Kirchhoff’s law [211], at a fixed wavelength, the amount of radiation 

absorbed by a body equals the amount of radiation emitted by a body, that is: 

 ( ') ( ')     (4.3) 
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Every surface has an emissivity between 0 and 1. When measuring temperatures of real surfaces, the 

emissivity needs to be known to draw quantitative conclusions of the image. Unfortunately, the emissivity 

of a surface is a function of many variables [209, 212]: 

 Material: Depending on the chemical composition of the material, the emissivity can strongly 

vary. In general, one can state that most non-metallic materials (skin, paper, stone, etc.) behave as 

gray emitters with emissivities in the order of 0.8. In contrast, metals can reach well below 0.2. 

 Surface structure and geometry: Depending on the surface structure, different values can be 

obtained for the same material. This effect is especially pronounced for metals, where polishing a 

rough surface can reduce the emissivity up to one order of magnitude. By creating specific surface 

geometries, this dependency can be used to increase emissivity. 

 Angle of emission: An ideal black body emits a radiance which is independent of the direction 

into which it is emitted. Any real surface shows a dependency of radiance on emission angle, i.e. a 

decrease of emissivity with increasing angle between surface normal and camera. However, in 

most of the cases the emissivity can be assumed to be constant up to an angle of 45°. 

 Wavelength: The dependence on wavelength can be best illustrated with the example of glass, 

which is transparent in the visible range and behaves as a gray body at long wavelengths. 

 Temperature: Finally, as many physical parameters, the emissivity is a function of temperature. 

Several approaches were developed to obtain quantitative data from infrared thermal mapping. One way to 

overcome the imprecision due to variation in emissivity, is to cover the target surface with tape or paint 

with known emissivity. The emissivity can be easily obtained by calibrating the camera with a contact 

probe. Another approach relies on a direct calibration of the studied object by attaching several contact 

probes. Both presented strategies can only be applied if good thermal contact between tape/paint/probe 

and object is assured, and if their thermal impact on the measured object is negligible. 
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4.2.3 Application to Microsystems 

Due to the change of object size, useful data can only be retrieved with additional close-up lenses or 

microscope optics providing sufficient resolution. Thereby, resolutions as low as a few micrometers can 

be reached. However, when using these additional components, the distance between camera and object 

has to be reduced, leading to the so called “Narcissus Effect”. Thereby, the reflection of the thermal 

camera respectively the close-up lens is seen on an infrared window or directly on the objects surface. One 

simple way to avoid this effect is a change of viewing angle or a calibration of the image such a presented 

in section 4.3.2. 

In general, microsystems are built up from material with complex emissivity properties such as metals, 

plastics or glass. Surface modification by tape or paint is often not an option as it would influence the 

thermal characteristics of the studied system. Hence, other solutions need to be found depending on the 

specificities of the system [200, 209].  

In the present study, a solution regarding the quantitative monitoring of temperature in microfluidic 

devices is proposed. Thereby, the reactor is placed under vacuum to reduce heat losses and create well-

defined boundary conditions. At the same time, the upper cover of the channel is chosen thin enough 

(< 500 m) resulting in a small gradient between the surface temperature and the inner channel 

temperature. By carrying out a “pixel-by-pixel calibration” (section 4.3.2), the value of inner temperature 

can directly be derived from the camera signal observed on the reactors surface. 

To measure the temperature profile under cooled conditions, a special reactor was developed and 

constructed where the cooling channel is located under the reaction channel, and hence, does not interfere 

with the infrared signal passing through the IR window. 
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4.3 Experimental 

This part of the chapter aims, on the one hand, at describing the setup used to validate the “pixel-by-pixel” 

approach, and on the other hand, the “pixel-by-pixel” calibration method is explained in detail. Finally, the 

model reaction used to validate the method under reaction condition is presented together with an 

overview of the experiments carried out.  

4.3.1 Setup for Thermal Imaging of Microstructured Reactors 

The setup used for thermal imaging of temperature profile in MSR is depicted in Figure 4.3. It consists of 

two pumps, a plug-in microreactor, a vacuum box connected to a vacuum pump and a thermal camera. 

The microreactor was placed in the vacuum box which is connected to a standard rotary vane pump and a 

sufficient vacuum of 10-2 mbar (see section 4.4.1) was achieved. To have visible access to the reactor 

which is placed inside the vacuum box, an IR-window of size 50 mm × 20 mm × 1.8 mm was mounted on 

the box top. As infrared camera, a ThermovisionTM Alert MC with a 320x240 pixels uncooled Focal Plane 

Array (FPA) detector was used with a temporal resolution of 50 Hz. An optimal compromise between 

spatial resolution and a large field of vision was obtained at 2500 data points/cm2 (close-up lens LW 

64/150) leading to a field of vision of 64 mm × 48 mm. The analysis of smaller structures than presented 

in this work can be done by exchanging the magnifying lens. The spectral range of analysis is 7.5-13 μm 

where temperature is detected between -20 °C and 2000 °C with a sensitivity of 0.1 °C. As the camera 

measures radiation at a wavelength from 7.5-13 μm, a material that has high transmittivity in that range 

and shows sufficient mechanical stability had to be used as window providing visible access to the box. 

Zinc selenide (ZnSe) was found to be the most suitable due to its relatively high and constant 

transmittivity of 70 % in that range [213] as shown in Figure 4.4. The losses of 30 % of radiation due to 

the window lead to a slight deformation of the signal, which can be corrected by calibration as described 

in the next section. 
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Figure 4.3: Overview of the setup containing a vacuum box with one IR-transmissive ZnSe window. 

 

Figure 4.4: Spectral transmittance of zinc selenide. Adapted from ALS Synchrotron Infrared Beamlines [214]. 
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Two liquids are introduced to the micromixer using two syringe pumps. The caterpillar micromixer 

(CPMM-R150/12-ss-hplc), supplied by Institut für Mikrotechnik Mainz (IMM), Germany [215] is a 

stainless steel microchannel with varying cross section. The internal bas-relief structures yield a minimum 

cross section hydraulic diameter of 150 μm. The temperature inside the static mixer and in the connections 

between mixer and reactor is not monitored by the IR-camera. Therefore it is essential that the space time 

in the mixer is short to have negligible conversion within the mixing length, and be able to observe the 

main conversion in the actual reactor. A cooling circuit was built up where the fluid is circulated using a 

rotary piston pump. The temperature within this circuit was controlled by a heater with a maximal 

performance of 100 W which was mounted in series with the reactor. 

Two plug-in reactors were used which are referred to as first and second generation reactors. The first 

generation reactor is a perfluoroalkoxy (PFA) capillary with an inner diameter of 1 mm and an outer 

diameter of 1.6 mm. The total length of the tube monitored by the IR camera is 5 cm. In the first 

generation reactor, cooling was not applied and therefore, under vacuum, nearly adiabatic conditions can 

be assumed.  

In the second generation reactor, a cooling channel was integrated. By using conventional arrangements as 

shown in Figure 4.5a, the temperature profile of the reaction channel cannot be determined by infrared 

thermography. An alternate arrangement by switching the channels can solve this problem as depicted in 

Figure 4.5b. In this case, the reaction occurs in the annular channel where its thermal profile can be 

followed with the IR camera. Due to the symmetrical arrangement, a homogeneous heat transfer is 

warranted. However, the fabrication of this reactor turned out to be difficult as both tubes need to be 

perfectly centered in the μm-range. Therefore, a reactor with a cross section as shown in Figure 4.5c is 

used in this study. 
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(a) (b) (c) 

Figure 4.5: Three possible configurations. a) Reaction channel is inside of the cooling channel, b) cooling channel is 

inside of the reaction channel, c) parallel reaction and cooling channels. 

A snapshot of the second generation microreactor is depicted in Figure 4.7. The upper reaction channel is 

covered by a thin Polyether ether ketone (PEEK) layer of 250 μm. Due to the low thermal conductivity of 

PEEK (λPEEK = 0.29 W/mK) [216] and the small thickness of the layer, diffusion of heat in the plane is 

avoided and thus, the loss of signal resolution is minimized. In addition, if the heat transfer resistance at 

the outside of the reactor channel is high (close to adiabatic conditions), the surface temperature of the 

reactor is close to the temperature inside the channel (see Figure 4.6). 

 

Figure 4.6: Schematic view on the heat transfer resistances in radial direction in the present reactors. 

Rconv,R-W = Inner convective resistance between wall and reaction mixture, Rwall = resistance in the reactor wall, 

Rcon,W-V = outer lumped resistance between vacuum and wall. 

The bottom channel is used as cooling/heating channel whose temperature profile is not accessible. The 

heat exchange is carried out through the wall which separates both channels and has a thickness of 

300 μm. The height of the channels (h) is 200 μm. Due to the small height, almost homogeneous 
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temperature distribution within the cross section can be assumed. The width (w) is 500 μm and the total 

length of the parallel channels is L = 10 cm. Due to the physical arrangement of the setup, a reactor length 

of Lobs = 4.5 cm can be monitored through the ZnSe window. 

 

Figure 4.7: 2nd generation reactor: snapshot of the microreactor. 

4.3.2 Calibration of the Setup 

Using the setup described above, a method for quantitative thermal imaging was developed. As mentioned 

before, the radiation emitted by a surface is a function of many factors such as the emissivity, the angle of 

emission and the spectral transmittance through the IR-window. As the unknown sum of these factors 

influences the signal, the observed temperature θ will deviate from the real temperature inside the 

microchannel Treal. The method presented in this work is based on an external calibration of the IR-camera 

which subsequently allows obtaining the real temperature inside the microchannel. 

For calibration, an inert fluid (ethylene glycol) with known constant temperature was passed through the 

microchannel with minimized heat losses. The fluid temperatures were measured at the reactor inlet and at 

the outlet by thermocouples. The outlet temperature of inert fluid was equal to its inlet value within a 

range of tolerance of 0.5 °C. The overall precision of the method increases with suppressed difference of 

temperature between inlet and outlet. This regime can be reached by reducing the heat losses along the 

channel and simultaneously increasing the flow rate (reducing the residence time). For each calibration 
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temperature, one thermal image was taken as well as the real temperature measured by the thermocouples 

placed inside the tube. The thermal image indicates an observed temperature θ for every pixel of the 

image, which has to be calibrated with the known temperature Treal (see Figure 4.12). For every point in 

the image, an nth order polynomial is developed which has the form of Treal = f(θ) by processing using a 

commercial software, MathWorks Matlab 7.0 . 

The overall precision of the presented method is ± 1 °C for the temperature range 30 °C - 50 °C. The 

experimental inaccuracy is composed of the following factors:  

 The signal/noise level of the IR camera: ± 0.1 °C 

 Shift of temperature between intervals of internal calibration of the camera: ± 0.7 °C  

 Precision of the calibrated thermocouples: ± 0.5 °C 

 Temperature difference between inlet and outlet during calibration: ± 0.5 °C 

If necessary, a higher accuracy can be obtained by directly using platinum thermal resistance 

thermometers and averaging the pictures. However, for the present work, the achieved accuracy was 

estimated to be sufficient. 

4.3.3 Experimental Conditions 

To validate the presented methodology, the temperature profiles in two different systems i.e. with a 

reactive and non-reactive system were quantitatively determined. The calibration of the setup with 

ethylene glycol was carried out before each series of experiments to assure reliable results. 

In the reactive system, a fast exothermic reaction is carried out in the 1st generation reactor, which is 

connected in series with the micromixer. As residence time in the visible area varies from 0.5 s to 3 s, a 

reaction with characteristic reaction time in the order of seconds is required, referred as type B reaction (in 

Kockmann et al. [55]). In the present work, the hydrolysis of Tetraethoxysilane (TEOS) was used as 

model reaction. As TEOS has limited solubility in water, the reaction is carried out using ethanol as 
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solvent to create a homogeneous system. The reaction rate can be controlled by varying the concentration 

of hydrochloric acid which catalyzes the transformation.  

      H+
2 5 2 3 2EtOH4 4

Si OC H +4H O Si OH +4CH CH OH  (4.4) 

However, one has to be careful when carrying out this reaction in microchannels. As a consecutive 

polymerization of the product occurs, the risk of channel clogging is high. Therefore, it was decided to 

work only with one specific mixture which was found to be stable: solution A contains 67 % v/v of TEOS 

in ethanol. Solution B contains 42 % v/v of water, 17 vol. % v/v of fuming hydrochloric acid (37 % w/w 

in water) in ethanol. Subsequently, solution A and B are mixed in a volumetric proportion of 2:1. Using 

these proportions, the molar ratio of TEOS to water is 0.8. The obtained characteristic reaction time is in 

the order of 5 s at 25 °C and the adiabatic temperature rise measured in a calorimeter is ∆Tad = 37 °C. The 

kinetics of this reaction were published by Bessarabov and Shalubov [217], however, they have not been 

validated within the range of high concentrations of catalyst and reactants as given above. 

In the non-reactive system, the second generation reactor was used for carrying out heat exchange 

experiments. Thereby, in the upper channel ethanol was passed at 25 °C and the bottom channel was 

supplied by butanol at 58 ± 3 °C. The profile of the upper channel was monitored with the IR camera. 

Subsequently, the heat transfer coefficient of the reactor was determined by numerical simulation and 

compared to theoretical estimations. 

4.4 Results 

First, the overall heat losses in the setup are identified and then quantified. Subsequently, the calibration 

and the temperature profiles in the reactive system are obtained. Finally, the heat transfer coefficient in the 

non-reactive system is estimated. 
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4.4.1 Characterization of Heat Losses 

To determine the heat losses in the system, hot ethylene glycol was pumped through the first generation 

reactor at a velocity of 2 cm/s. The temperature was measured with thermocouples at the inlet and outlet 

of the reactor as depicted in Figure 4.8 as a function of time and pressure in the vacuum box. When the 

vacuum pump was switched on, the pressure inside the box was decreased to 2·10-2 mbar. The vacuum 

pump was then switched off resulting in increased pressure inside the box. At 2·10-2 mbar the measured 

temperature was found to increase as shown in Figure 4.8 indicating the influence of vacuum on heat 

losses through capillary surface. 

 

Figure 4.8: Temperature difference between inlet and outlet of the first generation reactor with a flow of 2 cm/s of 

ethylene glycol. 

Assuming that all the heat losses are due to convection, an apparent heat transfer coefficient can be 

determined using following relation for ideal plug flow reactor [17]:  
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Where, u, Uloss, Tamb and aouter are linear velocity, apparent heat transfer coefficient, ambient temperature 

and specific exchange area of the channel, respectively. The specific exchange area is defined as the ratio 

between surface area at the capillary outer surface and volume of the liquid inside. The temperature 

difference between reactor inlet and outlet is ∆T over a reactor length of ∆z in this case. The physical 

properties such as density (ρeg) and specific heat capacity (cp,eg) refer to mean values of the liquid. 

 

Figure 4.9: Apparent heat transfer coefficient of the first generation reactor with a flow of 2 cm/s of ethylene glycol. 

The heat transfer coefficient as a function of time for different pressures is plotted in Figure 4.9. At 

atmospheric pressure, the resulting apparent heat transfer coefficient is ~13 W/m2K. By switching on the 

vacuum pump, the pressure drops to 2·10-2 mbar. Simultaneously the heat transfer coefficient decreases to 
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~7 W/m2K. An increase of pressure up to 10 mbar has no major influence on the apparent heat transfer 

coefficient indicating no further visible impact of reduced pressure on the heat losses. To better 

understand the nature of the remaining ~7 W/m2K corresponding to a heat dissipation of 0.11 W, these 

were estimated using a simplified scheme of the set-up, as shown in Figure 4.10. 

 

Figure 4.10: Simplified configuration of the setup to determine heat losses. 

The three mechanisms of heat transfer were analyzed: convection, conduction (through thermocouples and 

tubes) and radiation. The convective heat transfer coefficient was estimated using Krischers correlation 

[37] for convective heat transfer along horizontal cylinders (see Figure 4.11). A value of convective heat 

transfer coefficient UConv ≈ 0.5 W/m2K was obtained which corresponds to about 0.008 W or 7 % of the 

total heat losses indicating that a vacuum of about 10-2 mbar efficiently suppresses convection. 
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Figure 4.11: Heat transfer coefficient as a function of ambient pressure 

The losses through conduction can be estimated using the Fourier law. The heat losses ( condQ ) in the 

highly conductive thermocouples λNi = 91 W/mK and in the low conductive but thicker perfluoroalkoxy 

(PFA) capillary λPFA = 0.25 W/mK (assuming a homogeneous cylinder with a diameter of 1.55 cm) should 

be considered: 
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 (4.6) 

Thus, the conduction losses through axial conductivity in the capillary are negligible, whereas the losses 

through the thermocouples account for about 30 % of the total losses. By removing these thermocouples, 

the losses can be avoided. At last, the radiation losses can be determined through the Stephan-Boltzmann 

law: 
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Where ε is the emissivity of PFA, which is assumed to be close to 1 in the range of measurement [218]. 

Hence, the radiation losses constitute about 60 % of the total heat losses at 67 °C. These losses cannot be 

avoided as the emitted radiation is used to determine temperature. 

4.4.2 Temperature Profiles of the Reactive System 

In this section, the calibration of the thermal image is demonstrated before showing the temperature 

profiles obtained with the model hydrolysis of TEOS.  

4.4.2.1 Calibration for 1st Generation Reactor 

For the five calibration experiments shown in Figure 4.12, ethylene glycol was pumped at flow velocities 

above 20 cm/s through the reactor with constant temperatures between 30 °C and 50 °C. The temperature 

difference between inlet and outlet was kept below 0.5 °C. 

A typical calibration of a pixel from Figure 4.12 fitted to 2nd order polynomial is shown in Figure 4.13. 

With this function, any observed temperature θ of pixel with coordinates (x = 16, y = 19) can be 

transformed into the real temperature inside the reactor Treal. In general, a 2nd order polynomial was 

observed to fit well having a coefficient of determination > 0.99. The R2-value for every pixel of the 

image is shown in Figure 4.14. It can be noted that pixels located on the border of the reactor are less 

accurate and should therefore not be used to determine the axial temperature profile. Therefore, to track 

axial temperature profiles, an average over several pixels located in the middle of the channel was used. 
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Figure 4.12: Calibration images of the 1st generation reactor taken at 5 different temperatures. 

 

Figure 4.13: Calibration curve for pixel (x = 16,y = 19) situated on the left hand side of the picture. The R2-value for 

the fit is 0.99. 
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Figure 4.14: Coefficient of determination (R2-value) for every pixel of the image after calibration of the 1st 

generation reactor. 

4.4.2.2 Temperature Profiles in 1st generation reactor 

Four temperature profiles with the hydrolysis of Tetraethoxysilane without cooling were recorded and are 

shown in Figure 4.15. The observed window is located 5 cm from the outlet of the micromixer.  

 

Figure 4.15: Temperature profile of 1st generation reactor during the hydrolysis of Tetraethoxysilane. The inlet of 

the 5 cm long reactor is located 5 cm from the outlet of the micromixer. 

At a flow velocity of 10 cm/s, no temperature rise was observed. The low conversion at this flow velocity 

can be explained by the short residence time. When the velocity was decreased to 3.2 cm/s, the hot spot 
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moved to the observing window and temperature rose to 34 °C. Diminishing the flow velocity down to 

2.9 cm/s and then to 1.7 cm/s made possible to observe the hot spot at its full magnitude of 47 °C. 

However, in an ideal adiabatic system at full conversion, a temperature rise up to 62 °C would be 

expected. Two phenomena are responsible for the difference between theoretical adiabatic temperature 

and maximum observed temperature: heat losses and segregation of the reactants. The impact of the 

former effect can be quantified using the apparent heat transfer coefficient calculated in the 

characterization section. Thus, a total loss of less than 1 °C can be attributed to the non-ideal adiabatic 

conditions. The remaining difference of temperature is ascribed to the incomplete conversion due to 

insufficient mixing of the reactants. The Reynolds number inside the caterpillar mixer at this flow rate is 

relatively low (Re = 144), leading only to a limited amount of secondary flows. In addition, the flow ratio 

of 2:1 (A:B) and the difference of density between the two flows are not favorable for homogenization. To 

further analyze the mixing quality, solution B was colored using Methylene Blue. As depicted in Figure 

4.16, at the outlet of the caterpillar mixer segregation of the flows was observed. Due to gravitational 

forces, solution A flows on top of the denser solution B. 

 

Figure 4.16: Segregation of the flows at the outlet of caterpillar mixer due to difference in density and flow ratio of 

2:1 (A:B) at a total flow rate of 1 ml/min. 

The further mixing of the flows in the first generation reactor occurs mainly by diffusion, as no mixing 

structures are embedded. The characteristic diffusion time required for complete mixing is in the order of 

minutes (Dm ≈ 10-9 m2/s), explaining the gap between maximum observed temperature and theoretical 
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adiabatic temperature. Hence, the information gained from the quantitative temperature profile retrieved 

via “pixel-by-pixel” calibration was successfully used to understand the phenomena inside the 

microstructured reactor. 

4.4.3 Temperature Profiles in the Non-reactive System 

The second generation reactor was used for an estimation of the heat transfer coefficient at constant flow 

of 92 cm/s of hot butanol at 58 ± 3 °C in the bottom channel. In the top channel, three different flow rates 

of cold ethanol (25 °C) were applied. The corresponding temperature profiles observed through the ZnSe-

window within the first 4.5 cm (z = 0…4.5 cm) are given in Figure 4.17. The values measured with 

0.5 mm thick thermocouples at the inlets (TTop,in) and the outlet (TTop,out) are given in Table 4.1. 

It has to be pointed out that the thermocouple at the reactor inlet was placed 1 cm before the location 

defined as z = 0 on the thermal image and the one at the outlet at 1 cm after z = L = 10 cm. Thus, heat is 

exchanged already before reaching the point defined as z = 0, which leads to Ttop(z = 0) > Ttop,in. The same 

effect is observed at the reactor outlet, where heat exchange is occurring after z = 4.5 cm before reaching 

the outlet thermocouple. 

 

Figure 4.17: Temperature profiles in 2nd generation microreactor at different flow rates. 
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Table 4.1: Temperature measured by thermocouples at the inlet and outlet of the top and bottom channel; the flow 

rate in the bottom channel was 92 cm/s. 

Flow rate in the top 
channel [cm/s] 

Ttop,in Ttop,out Tbottom,in Tbottom,out 

42 27.2 39.6 60.9 54.5 

25 26.9 43.6 60.2 54.6 

8 26.5 45.2 56.3 52.5 

 

As expected, decreasing the flow rate in the upper channel leads to higher temperatures at its outlet. In 

general, a discrepancy between temperature measured by thermocouples and the temperature depicted at 

distances z = 0 and z = L is observed due to the heat exchange occurring in the connections.  

There are two options to determine the heat transfer coefficient of the reactor. The temperatures can be 

measured by thermocouples which results in a mean heat transfer coefficient all over the part including the 

connections. The second possibility is to determine the heat transfer coefficient using the profiles obtained 

with IR camera. A simple heat balance between the flow in the upper channel and the bottom channel is 

considered with the heat transfer coefficient Uex used as fitting parameter. The equations to be solved are 

given in the following:  
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 (4.8) 

Assuming that the heat exchange only occurs through the wall located between the channels, the specific 

heat exchange area is aex = 5000 m2/m3. As the physical properties of ethanol and butanol are very similar, 

the density and the heat capacity of both are assumed to be equal and independent of temperature in the 

considered range. The resulting deviation is less than 3 %, so ρbottom = ρtop = 775 kg/m3 and 

cp,bottom = cp,top = 2400 J/kgK. The temperature profile for the upper channel is known. To find the heat 

transfer coefficient, an initial temperature for the bottom channel is required. This temperature is obtained 
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using the values measured by thermocouples (Tbottom,in and Ttop,in) followed by a heat balance supposing an 

adiabatic connection piece: 

 top top,in top bottom bottom bottom( - ( 0)) ( - ( 0))u T T z u T T z       (4.9) 

The values obtained for the global heat transfer coefficient are summarized in Table 4.2 and the 

corresponding plots are given in Figure 4.18. 

 

Figure 4.18: Temperature profiles (gray line) and corresponding simulation (dark line) in 2nd generation 

microreactor. 

Table 4.2: Global heat transfer coefficient determined at different flow rates. 

u [m/s] 0.42 0.25 0.08 

Uex [W/m2K] 629 598 494 

 

The plot shows that the measured data vary within +- 0.5 °C. This can be explained by the fact that each 

axial value of temperature is obtained by calculating the mean over two pixels which cover a width of 
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2x200μm of the channel. Depending on the position of the two pixels within the channel, this temperature 

can slightly vary. 

As the flow and the temperature profile are fully developed at z = 0 (flow developing length is 3 mm, from 

[219]), a dependence of the heat transfer coefficient is not expected. The different values obtained are 

within the range of precision and can be partly explained by an increased influence of the heat losses 

during the calibration process. If the experiment is carried out over a too narrow temperature range (at the 

higher flow rates ∆T ≈ 5 °C), the heat transfer coefficient gets slightly overestimated. For comparison with 

literature correlations, a mean value of Uex, mean = 574 W/m2K is supposed. 

To understand the contribution of the different heat transfer resistances, the results can be compared to the 

values obtained using correlations given in literature [37]. Therefore, three resistances are considered: the 

resistance at the ethanol/PEEK interface R1, the resistance inside the PEEK R2 and the resistance at the 

PEEK/butanol interface R3. The global heat transfer coefficient is given by: 
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As a first approach, identical physical properties of ethanol and butanol are assumed i.e. R1 = R3. For the 

estimation of these resistances, the channels’ hydraulic diameter is used and the equivalent resistance is 

calculated. Since the flow is already developed, the Nusselt number for an isothermal wall has attained its 

limit value of Nu∞ = 3.4 for rectangular ducts with aspect ratio 0.4 [219]: 
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The resistance inside the PEEK wall can be calculated with λPEEK = 0.25 W/mK [220]: 
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Thus, the global heat transfer coefficient (U’ex) is 457 W/m2K which is in the same order of magnitude as 

the value estimated from the experiments (Uex, mean = 574 W/m2K). About 50 % of the total resistance 

comes from the PEEK wall, the other 50 % are due to the heat transfer between liquid and wall. 

4.5 Conclusions 

A method based on infrared thermometry has been developed allowing quantitative on-line monitoring of 

axial temperature profiles within microreactors with an accuracy of 1 °C and a resolution of 2500 

data points/cm2. Heat losses by convection were efficiently suppressed by placing the microreactor at a 

pressure of 10-2 mbar. Thereby, the overall heat losses were reduced down to 15 % as compared to 

ambient environment. The method was applied to a microcapillary without cooling where highly 

exothermic and fast hydrolysis of tetraethoxysilane was carried out. The location and the magnitude of the 

hot spot have been determined as a function of the flow rate. Furthermore, using this novel method of 

quantitative temperature measurement, insufficient mixing of the reactants was detected. The developed 

method has also been applied to a cooled system where the overall heat transfer coefficient was 

determined being in good agreement with literature data. 
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4.6 Notations 

A Surface area, [m2] 

cp
 

Mean heat capacity, [J/(kg K)] 

c Concentration, [mol/m3] 

c’ Speed of light, [m/s] 

d Channel diameter, [m] 

h Channel height, [m] 

h' Planck’s constant, [J·s] 

k Rate constant, [(m3/mol)n-1/ s] 

kB Boltzmann constant, [J/K] 

L Radiance, [W·sr−1·m−2] 

L Length of the reactor, [m] 

l Length of thermocouples/tubes, [m] 

n Reaction order 

Q  Heat flux, [W] 

R Heat Transfer resistance, [K/W] 

R2 Coefficient of determination, [-] 

tr Characteristic reaction time kc0
n-1), [s] 

T Temperature, [K] 

u Flow velocity, [m/s] 

U Global heat transfer coefficient, [W/(m2K)] 

w Channel width, [m] 

x Abscissa, [m] 

y Ordinate, [m] 

z Axial coordinate, [-] 
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Greek 

 Absorbance, [-] 

 Wall thickness, [m] 

∆ Symbol for difference 

ε Emissivity, [-]  

λ Thermal conductivity, [W/(m K)] 

λ' Wavelength, [m] 

 Signal measured by the thermal camera, [°C] 

 Mean density, [kg/m3] 

Dimensionless numbers 

Nu Nusselt number h·dh/lFluid, [-] 

Re Reynolds number u·dh/ν, [-] 

Subscript  

0 Initial condition 

ad Adiabatic 

amb Ambient 

bottom Related to the bottom channel 

cond Conduction 

conv Convection 

EG Ethyleneglycol 

ex Experimental 

loss Related to heat losses 

max Maximal 

Ni Nickel 

PEEK Polyether Ketone 
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PFA Perfluoroalkoxy 

R Reactor 

rad Radiation 

R-W Reactor-Wall 

TC Thermocouple 

Top Related to the top channel 

W-V Wall-Vacuum 
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Chapter 5  

REACTIVE MIXING PROFILES IN A 

MICRO-CROSS MIXER 

At the short residence times experienced in microstructured reactors while performing fast exothermic 

reactions, efficient mixing of the inlet flows plays a crucial role. In the present chapter mixing of two flows 

leading to a fast exothermic reaction in a T-mixer with circular cross section is monitored via the 

temperature profile using quantitative infrared thermography. It is shown that mixing at such short time 

scales remains challenging, and two solutions are proposed: the use of micro-batch flow and of 

structures. 

5.1 Introduction 

The high heat transfer rates achieved in microstructured reactors [17] render this type of equipment ideal 

to control temperature of rapid exothermic reactions and to accelerate the kinetics of existing slower 

reactions by increasing temperature and/or pressure [11, 34, 46]. As shown in Figure 5.1, depending on 

the characteristic reaction time tr = 1/(k·c0
n-1) and the characteristic mixing time tmix of the system, the 

reaction can be carried out in four different regimes: 

 tmix ≤ 0.01·tr: No influence of mixing on the overall transformation rate 

 tmix ≤ 0.1·tr: Negligible influence of mixing on the overall transformation rate 

 0.1·tr ≤ tmix ≤ 10·tr: Overall transformation rate is influenced by mixing of the reactants 
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 tmix ≥ 10·tr: Overall transformation rate is controlled by mixing of the reactants 

To work in a regime where the effect of mixing can be neglected, characteristic mixing time needs to be at 

least one order of magnitude smaller than characteristic reaction time [125]. When working with rapid 

exothermic reactions with characteristic reaction times smaller than 1 s, in many cases mixing time which 

is in the order of milliseconds to seconds [160] cannot be neglected. Therefore, mixing of the reactants 

plays an essential role in the formation of temperature profiles in microstructured reactors. 

 

Figure 5.1: Different regimes of operation of a chemical reaction in a microstructured reactor. 

Hence, before carrying out a fast chemical reaction in a microstructured reactor, it is necessary to estimate 

the order of magnitude of mixing time. As a first approach, in a regime where mixing is dominated by 

convection rather than by diffusion, mixing time can be approximated by the relation proposed by Falk et 

al. [160]: 

   ...  s W/kgmixt      0 450 450 15  (5.1) 

where  is the specific power dissipation. In most of the cases, more detailed information is required, 

which can be obtained either by numerical simulation or experimentally. 
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 The numerical approach has been successfully used during the past 10 years to understand the basic 

mechanism of mixing in different types of micromixer [107, 141, 147, 154, 221]. It is generally used for 

geometrical optimization of the mixer avoiding costly iterations of fabrication and testing of devices [147, 

154, 222]. Thereby, the simulations have to be carried out in three dimensions and at sufficiently high 

resolution requiring high computational power. Especially when working with liquids, the low molecular 

diffusion coefficient can lead to artifacts due to numerical diffusion [146, 147, 223]. 

Several experimental methods to describe mixing quality in microstructured reactors can be found in 

literature [224, 225]. They are mainly subdivided in physical and chemical methods of characterization.  

The group of physical methods is based on the addition of tracer to the inlet flows. In the simplest method, 

fluid containing a dye is mixed with a transparent fluid. The homogenization of the color is used as 

indicator for mixing quality, which has to be monitored along the length of the reactor [226, 227]. As this 

kind of method only gathers data within two dimensions, the precision is limited. One can imagine a case 

where two solutions of different densities are contacted: the heavier solution flows on the bottom of the 

microchannel, whereas the less dense solution flows on top. If observed from the top, one might conclude 

that both solutions are perfectly mixed due to the apparent homogeneous color all over the channel, which 

is not the case. By using fluorescent dyes such as fluorescein or rhodamine in combination with confocal 

microscopy [228-231], three dimensional profiles can be obtained which allows overcoming the 

abovementioned drawback. However, the resolution of these physical methods is limited by the sampling 

volume, which cannot record mixing on the molecular level. 

When using chemical methods, mixing quality is determined by the conversion/formation of a chemical 

compound, indicating the quality down to the molecular level. The most straightforward approach is the 

monitoring of the formation or consumption of a chemical compound along the length. Acid base 

reactions in presence of an indicator [232, 233] or the coloration of rhodamine [228] constitute important 

examples of this category. When working with a single reaction, the same disadvantages apply as for the 

physical methods: visible access to the reactor must be warranted, and only qualitative data is obtained as 
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generally 2-dimensional images are taken. By carrying out specific complex competitive chemical 

reactions, the mixing quality can be deduced from the yield of the reaction. In the past 10 years, a lot of 

effort has been put into obtaining quantitative data from such reaction systems [160, 185, 234, 235]. 

Among other test reactions [236-238], the Villermaux-Dushman reaction system was widely applied to 

microstructured reactors [160, 234, 239]. Thereby, the development of an approach for quantitative 

interpretation of the results enables comparison of mixing between different reactors [160]. 

Many of the chemical and physical methods presented in literature are based on an aqueous system at 

equal flow rates. The results obtained in such testing systems can differ from the behavior of the real 

reaction system mainly due to changes in viscosity, density and flow ratio. In this chapter, a method is 

presented to track mixing profiles of rapid exothermic reaction directly by quantitative infrared thermal 

mapping. The data collected along the axial coordinate contains integral information of the whole cross 

section, preventing misinterpretation such as in other chemical systems with one single reaction. 

Experiments are carried out in a micro-cross mixer which has three inlets and one outlet each at an angle 

of 90° one from another. Two model reactions are carried out: the dilution of sulfuric acid (70 % w/w) 

with water and the organic cyclization of pseudoionone in the presence of acid [240, 241]. Whereas the 

first reaction is quasi-instantaneous and controlled by mixing, the second reaction is carried out in a 

regime strongly influenced by mixing. The effective reaction times obtained under homogeneous and 

under micro-batch flow were compared. Thereby, micro-batch flow is defined as a slug flow pattern 

induced by the addition of a carrier fluid through the third inlet. Both reactants mix in droplets of typically 

1-2 mm length which behave as internally mixed micro-batch reactor [240, 242].  

5.2 Experimental Part 

The main components of the setup are listed and briefly described before presenting the two model 

reactions, i.e. the dilution of sulfuric acid in water and the cyclization of pseudoionone in presence of 
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sulfuric acid. In the present series of experiments biphasic systems are used, which lead to a non-

negligible change of the inner heat transfer resistance. The consequences of this effect for the experiments 

are analyzed in the final part of this section. 

5.2.1 Experimental Setup 

The core of the experimental setup is the continuous flow micro-cross mixer, where the reactants are 

contacted and the temperature profile is measured. Before presenting it, an overview of the complete setup 

is shown. 

5.2.1.1 Overview of the Setup 

In Figure 5.2 the solutions containing the reactants are pumped via two syringe pumps to the micro-cross 

mixer. An additional syringe pump provides the reactor with inert liquid (in this case 

toluene/perfluorohexane) for the creation of a micro-batch type flow pattern (slug flow).  

The reactor is placed in a vacuum box under a pressure of 10-2 mbar, where convection can be almost 

completely suppressed. Nevertheless, the losses by radiation cannot be avoided, and need to be considered 

due to the high outer surface to channel volume ratio (see section 5.2.1). The visible access to the vacuum 

box (Figure 5.3) is given by two ZnSe windows (50 mm × 20 mm × 1.8 mm) allowing temperature to be 

measured in the reactor itself or in the subsequent capillary. 

To carry out the calibrations at different reactor temperatures, one of the inlets is equipped with a 

controllable heater (0-100 W). The temperature at the reactor inlet and outlet is measured by two K-type 

thermocouples with an outer diameter of 0.5 mm. 
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Figure 5.2: Schematic overview of the experimental setup. 

 

Figure 5.3: In-house constructed vacuum box with two IR-transmissive ZnSe windows. 

 

5.2.1.2 The Micro-cross Mixer 

The micro-cross mixer made of polytetrafluoroethylene (PTFE) is placed inside the vacuum box directly 

under one of the two ZnSe windows. The physical dimensions of the device are given in Figure 5.4. 
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Figure 5.4: Micro-cross mixer with up to three inlets and one outlet: a) Two dimensional schematic containing the 

dimensions in millimeter and b) three dimensional representation of the reactor highlighting the mixing 

channel. 

As opposed to the setup used for reactive mixing in Chapter 4, where mixing was carried out in a “black 

box” (the caterpillar mixer), the goal of this device is to observe the temperature profile immediately from 

the point of contact of the reactive solutions. To minimize diffusion in the plane and have an optimal 

temperature signal on the reactor surface, the wall thickness on the top part of the reactor was kept at 

100 m. This also explains the specific shape of the reactor: whereas initially the piece was box-shaped 

(10 mm × 40 mm × 30 mm) allowing the four connections for capillaries of 6 mm to be drilled, material 

was removed in the center of the part to reduce the surface thickness above the channel to 100 m. This 

thin upper wall is maintained at a length of 16 mm, representing the reactor part apt for quantitative 

measurements with the infrared camera. Furthermore, it has to be pointed out that the long reaction 

channel (40 mm) was drilled from two sides: from the top and the bottom in Figure 5.4a). As a 

consequence, at the contact point of the two drilled channels, they are shifted by 300 m due to the limited 

precision of the drills. This point is located about 7 mm from the cross junction and plays an essential role 

for mixing as shown in section 5.3, and is referred to as “mixing element” in the following. 
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The micro-cross mixer consists of three inlets and one outlet with circular cross section. In the case of a 

homogeneous reaction with two reactants, only two of the inlets are used, the third one being blocked. 

When shifting to a micro-batch flow system, the third inlet is fed with an inert liquid. Thereby, the contact 

angle between liquid and reactor plays an essential role. The wetting phase (toluene/perfluorohexane) 

needs to have a smaller contact angle than the non-wetting phase containing the reactants and forming the 

micro-batches. As a consequence, the reactor needs to be fabricated of a hydrophobic material, i.e. Teflon 

(PTFE). 

5.2.2 The Model Reaction Systems 

Two chemically distinct transformations were carried out each under homogeneous conditions and under 

micro-batch flow. In the following, the specificities of each transformation including concentrations and 

adiabatic temperature rise are detailed. Subsequently, the flow patterns obtained with these reactions are 

discussed. 

5.2.2.1 Model Reactions 

The two transformations carried out in this study are the dilution of sulfuric acid in water and the 

cyclization of pseudoionone to the protonated form of -ionone/-ionone in the presence of sulfuric acid. 

Dilution of sulfuric acid: 

The dilution of sulfuric acid is considered as having a characteristic reaction time much smaller than the 

range of mixing times achieved during this study. Hence, the formation of heat is directly linked to the 

mixing of the two solutions. The dilution of sulfuric acid comprises many reactions such as dissociations 

and formation of hydrates. The equilibrium of the different species depends on the concentration of the 

sulfuric acid solution. As a result, the enthalpy of dilution of acid in water depends on the initial and final 

concentration of the solutions and can be determined using the data given by Müller et al. [243] which is 

plotted in Figure 5.5. 
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In the present case, a solution of ~ 70 % w/w sulfuric acid in water is diluted with a stream of pure water 

(volumetric ratio 1:1) yielding ~ 41 % w/w sulfuric acid in water. Under adiabatic conditions, the 

observed temperature rise equals 28 °C. The physical properties obtained for the different mixtures of 

water and sulfuric acid are summarized in Table 5.1. 

 

Figure 5.5: Enthalpy of dilution of sulfuric acid in water as function of the concentration of sulfuric acid in the 

aqueous solution. Data adapted from [243]. 

Table 5.1: Physical properties of the compounds used for the dilution of sulfuric acid taken from graphs in 

Müller et al. [243]. 

 
Density [kg/m3] Heat capacity [J/(kg K)] Viscosity [m2/s] 

Sulfuric acid 
1840 1340 1.34·10-5 

70 % w/w 
1615 1890 5.63·10-6 

41 % w/w 
1310 2670 2.23·10-6 

Water 
997 4187 10-6 
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Cyclization of Pseudoionone: 

The cyclization of pseudoionone is a complex reaction [240, 241] whose simplified reaction scheme is 

shown in Figure 5.6. Even though the interpretation of the results is challenging, this reaction was chosen 

as it represents an industrially relevant reaction used in the synthesis of vitamin A and in perfumery [241]. 

Sulfuric acid and pseudoionone would form a biphasic system; however, the presence of the solvent, 

1-nitropropane, added to both solutions enables the formation of one single phase. With a ratio of sulfuric 

acid to pseudoionone of 5:1, this reaction consists in a quasi-instantaneous protonation followed by the 

very fast (but not instantaneous!) cyclization. With decreasing concentration of acid, the kinetics of the 

reaction is slowed down. As opposed to the dilution of sulfuric acid, this reaction is operated in a regime 

strongly influenced but not strictly controlled by mixing, as the second reaction step is very fast, but, not 

quasi-instantaneous. 

 

Figure 5.6: Simplified scheme of the quasi-instantaneous protonation of pseudoionone.  

In the present study, the reaction was carried out with concentrations of pseudoionone ranging from 1 M 

to 1.5 M and of sulfuric acid from 6 M to 8 M. The physical properties of the different compounds of the 

reaction and of the respective solutions obtained by dilution with 1-nitropropane are summarized in Table 

5.2.  
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Table 5.2: Physical properties of the compounds used for the homogeneous cyclization of pseudoionone. 

 
Density [kg/m3] Heat capacity [J/(kg K)] Viscosity [m2/s] 

1-Nitropropane 998 1972 7.90·10-7 

Pseudoionone 895.1 1930 6.38·10-6 

-ionone 940 - 1.15·10-5 

Sulfuric acid 1840 1340 1.34·10-5 

Solution A* 970 1962 2.17·10-6 

Solution B* 1372 1596 8.28·10-6 

Product 
mixture* 

1169 1757 5.60 ·10-6 

*Calculated properties assuming initial solution of 1.25 M of pseudoionone (A) and 7.5 M of sulfuric acid (B) . Due 

to the lack of data regarding -ionone, physical properties of the very similar -ionone are used. 

5.2.2.2 Flow Pattern 

The main objective of the present study was the comparison of overall transformation rate during classic 

homogeneous mixing with mixing under micro-batch flow conditions, where enhanced mixing 

performance was expected. Therefore, both flow patterns had to be created for the two model reactions. 

 

Figure 5.7: Two types of flow regimes analyzed in the present work: a) Homogeneous mixing and b) mixing in 

micro-batches (slugs)  

To work under homogeneous conditions, the third inlet of the micro-cross mixer was blocked. The two 

reacting solutions were fed at an angle of 90° to the reaction channel (T-type configuration). Within the 

tested operation conditions (Re ≈ 1-50) the channel geometry and the flow velocity lead to two 
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distinguishable parallel streams interlacing due to a tangential velocity compound, which is referred to as 

“swirling” flow in the following. Thereby, diffusion of the molecules is the ultimate step of mixing, 

leading to homogenization on the molecular level. If mixing in a channel with a diameter of 500 m 

occurs solely by diffusion, this rather slow process takes at least several seconds to be completed. In 

parallel to the direct diffusion of the streams, shearing leads to the reduction of the characteristic size of a 

structure in orthogonal direction to its elongation, accelerating the overall mixing process [160]. 

The inlet concentrations for both reactions can be found in Table 5.3. 

Two phase flow patterns were created by supplemental addition of a carrier fluid. For the first reaction 

system toluene was chosen, and for the cyclization of pseudoionone perfluorohexane [240] was used. The 

flow pattern was altered my modifying the flow velocity. At low flow velocity micro-batch flow (slug 

flow) is favored due to the predominance of surface forces [40, 240]. Thereby, both reactants are mixed in 

droplets with a size between 1-2.5 mm. By increasing the flow rate, the relative importance of the surface 

forces diminishes leading to a similar flow pattern as observed in the homogeneous case (swirling flow). 

The inlet concentrations and resulting adiabatic temperature rises obtained under heterogeneous conditions 

are listed in Table 5.3, and the physical properties of the carrier phase in Table 5.4. 

Table 5.3: Inlet concentrations and adiabatic temperature rises for the different experiments. 

 
Reaction Inlet 1 Inlet 2 Inlet 3 ∆Tad 

Homogeneous 
Dilution Water H2SO4: 70 % w/w - 28 °C 

Cyclization PI: 0.8 M H2SO4: 6 M - 25 °C 

Micro-batch 
flow 

Dilution Water H2SO4: 75 % w/w Toluene 30 °C 

Cyclization PI: 1.2 M H2SO4: 7.5 M Perfluorohexane 29 °C 

Table 5.4: Physical properties of the carrier phase used during micro-batch flow regime. 

 Density [kg/m3] Heat capacity [J/(kg K)] Viscosity [m2/s] 

Toluene 867 1720 6.80·10-7 

Perfluorohexane 1669 722 4.01·10-7 
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5.2.3 Quantitative Thermal Imaging of Multi-phase Flows 

The “pixel-by-pixel” thermal imaging method presented in Chapter 4 allows temperature to be determined 

inside a reaction channel by measuring the infrared signal emitted by the surface of the microchannel. In 

principle, such a method of calibration and measurement can only work if the heat transfer resistances 

between reactor surface and reaction channel remain unchanged. To illustrate the problematic, one can 

imagine the heat transfer between the reaction channel and the ambient air as limited by three distinct 

resistances as shown in Figure 5.8: the resistance between liquid and wall RL-W, the wall itself RW and the 

transfer from the wall to the surrounding RW-Amb. After calibration, the reactor temperature can be deduced 

from the wall temperature only if the three resistances remain unchanged. If, for example, the outer 

surface is exposed to strong convection diminishing RW-Amb to almost zero, the surface temperature 

becomes close to ambient temperature, independently of the temperature in the reaction channel. Thus, a 

variation of the resistance induces error. 

 

Figure 5.8: Scheme of the heat transfer resistances between reaction channel and ambient temperature. TR: Reaction 

channel temperature; TS: Reactor surface temperature; Tamb: Ambient temperature; RL-W: Convective resistance 

between liquid and wall; RW: Conductive resistance in the wall; RW-Amb: resistance between wall and ambient. 

By placing the microreactor under vacuum, the outer resistance (mainly radiative) can be kept constant 

with respect to the flow rate. The second resistance, i.e. the wall can be assumed not to vary as well. The 

only critical point of the system is the convective heat transfer inside the reaction channel, which changes 

depending on the flow pattern inside the channel [37, 125, 244]. The highest local resistance is observed 

in developed laminar flow, where the local heat transfer in a circular channel can be described by 

Nu∞ = 3.66 [245]. The local Nusselt number is improved if the laminar flow and temperature profile is 

developing or with the appearance of radial exchange of heat by convection. Such a radial exchange 
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occurs for example in mixers or when working under slug type flow regimes in 2-phase systems [246, 

247], as carried out in this study. 

To counter the sensibility of the system to a variation of the inner heat transfer resistance, a specific 

reactor design strategy has to be applied. By increasing the value of the outer resistance to an extent that 

RW-Amb >> RL-W + RW, the influence of the inner resistance is diminished, and the surface temperature is 

close to the temperature inside the reactor. In practice, this is achieved by putting the reactor under 

vacuum, and by keeping the wall between reaction channel and measurement surface thin. Nevertheless, 

to estimate the error induced by a change of inner resistance, a thermal Finite Elements Analysis was 

carried out using the commercially available software Ansys Workbench 12. 

 

Figure 5.9: Geometry (a) and boundary conditions (b) solved with the commercial software Ansys Workbench 12. 

The boundary layer of the fluid is modeled with a 100 m-thick layer inside the fluid channel (gray). 

Two boundary conditions were placed on the cross section of the micro-cross mixer geometry: a constant 

temperature of TR = 40 °C inside the microchannel and a convective heat exchange of 5 W/m2K with the 

ambient temperature of 25 °C at the reactor surface. Thereby, the convective heat exchange is a lumped 

parameter comprising convection and radiation. To simulate the variation of the heat transfer coefficient h 

within the boundary layer of the reaction channel, inside the microchannel of 500 m a layer of 100 m of 

material (depicted in gray) with variable conductivity was placed. The conductivity of this material was 

varied between h/10 = 0.15 W/(m·K) and h = 1.5 W/(m·K) corresponding to a 10-fold increase of the 

inner convective heat transfer. In addition, this experiment was carried out for a wall thickness of  = 100 

a) b) 
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m and 5 ×  = 500 m to highlight the effect of the thin wall. The temperature profiles obtained in the 

four cases are depicted in Figure 5.10. 

 

Figure 5.10: Demonstration of the effect of inner heat transfer resistance and wall thickness on the surface 

temperature of the micro-cross mixer. Boundaries: T = 40 °C inside the microchannel; Heat losses at the 

surface: 5 W/m2K. Mesh: 117 000 elements 

In the case of thin walls of 100 m, the difference in surface temperature for a 10-fold increase of the 

inner resistance (0.8 °C) lies below the precision of the method (± 1 °C). For the same experiment with 

thicker walls, the temperature on the reactor surface is slightly lower; however, the influence of the inner 

heat transfer resistance remains negligible due to the much higher outer heat transfer resistance. Hence, 

this method can be readily applied to slug type flow pattern as long as wall thicknesses below 500 m and 

low heat losses are assured at the reactor surface. 



 
5 Reactive Mixing Profiles in a Micro-cross Mixer 

144 
 

5.3 Results 

At first, the heat losses of the system under non-reacting conditions were determined. Subsequently, 

reproducibility of the curves under reactive conditions is discussed before presenting the results obtained 

with the first and second model reaction i.e. water and sulfuric acid (dilution) on the one hand, and 

pseudoionone and sulfuric acid on the other hand (cyclization). In both cases, a regime where effective 

kinetics are controlled by homogenization of the liquids is assumed. Thus, the obtained temperature 

profiles can be used to extract information about mixing rate. 

5.3.1 Heat losses 

When working under an ambient pressure of 10-2 mbar, the convection heat losses per unit area can be 

efficiently reduced to almost zero. Nevertheless, radiative heat losses cannot be suppressed (see Chapter 

4). As a result, a low surface specific heat loss coefficient is obtained (by lumping radiation and 

convection into one coefficient). However, as the ratio between channel volume and heat exchange area 

with the surrounding is considerable (in the order of 350 000 m2/m3), the volumetric heat loss coefficient 

cannot be neglected [248]. To estimate the amount of these losses, inert liquid was pumped through the 

micro-cross mixer. Three different systems with different inner heat transfer resistances were tested: pure 

butanol, pure water and a biphasic system consisting of slugs of water in pseudoionone as continuous 

phase. Thereby, the inlet temperature was varied in the range between 45-60 °C and the flow velocity u 

between 3.4 cm/s and 6.8 cm/s leading to gradients between 0.5 °C/cm and 3 °C/cm. To simplify the 

modeling of the losses, plug flow behavior was assumed, and the volumetric heat loss coefficient Ualoss 

was obtained by fitting: 

  amb/ ( ) -loss p

dT
Ua u c T T

dz
     (5.2) 
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 Where the mean density  and the mean heat capacity cp are estimated using the according values of the 

pure compounds at 25 °C. The resulting heat loss coefficient is depicted in Figure 5.11. 

 

Figure 5.11: Volumetric heat loss coefficient determined in the micro-cross for different liquid systems. Dashed 

line: Average value of 8.22 · 105 W/m3K. Dotted Lines: Deviation of ± 15 % from average value. 

As expected, even though the inner heat transfer resistances in the three systems differ by at least a factor 

4 [244], no impact on the overall heat losses was noticeable. The bulk amount of heat loss is limited by the 

heat transfer inside the PTFE material and by convection on the reactor surface. An average value of 8.22 

· 105 W/m3K was obtained with all the values being contained within an interval of ± 15 %. The relatively 

high deviation is due to the fact that this method is operated at its limits of precision. 

To conclude correctly in the upcoming section, the heat losses need to be considered especially at low 

flow velocity. The temperature losses at different flow rates are summarized in Table 5.5 for the 2-phase 

system consisting of micro-batch flow of pseudoionone and H2SO4 in nitropropane, with perfluorohexane 

as continuous phase (33 % v/v) to show the impact of heat losses. 
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Table 5.5: Heat losses at a mean temperature of 40 °C for the micro-batch flow system with pseudoionone and 

H2SO4 in nitropropane, and perfluorohexane as continuous phase (33 % v/v). 

Flow velocity [cm/s] ∆T loss[°C] 

0.85 11.5 

2.12 4.6 

8.15 1.2 

  

5.3.2 Reproducibility of the Temperature Profiles 

When measuring temperature curves formed during mixing phenomenon, reproducibility is a crucial issue. 

During mixing of two or more fluids a complex stationary regime forms, involving inertia, pressure-

gradient and surface forces. Especially in the transition phase from slug flow regime to swirling flow, this 

stationarity is easily disturbed leading to a change of flow pattern. In Figure 5.12 a first example of 

reproducibility of mixing of sulfuric acid and water in micro-batch flow is given. For this system, at a 

flow velocity as low as 0.85 cm/s, the flow can be considered as stable resulting in good repeatability of 

the temperature curves. 

As a second representation of reproducibility, the curves shown in Figure 5.13 were chosen. These 

profiles were recorded during homogeneous mixing of pseudoionone and sulfuric acid at a flow velocity 

of 13.6 cm/s. Whereas run 1 and run 3 overlap well, run 2 demonstrates the sensitivity of such 

measurements. Even though the trend is similar, the latter curve shows a steeper rise in temperature 

indicating faster mixing of the reactants at the mixing element (see section 5.2.1.2). This type of 

phenomenon can be explained by the sensitivity of the system, which reacts to the slightest perturbances 

such as induced by discontinuous pumping or external vibrations. 
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Figure 5.12: Reproducibility of temperature curve compared in three runs of sulfuric acid and water in micro-batch 

flow at a velocity of 0.85 cm/s. 

 

Figure 5.13: Reproducibility of temperature curve compared in three runs of homogeneous mixing of pseudoionone 

and sulfuric acid at a flow velocity of 13.6 cm/s. 

In the case of appearance of fluctuations, only the reproducible curves, i.e. run 1 or run 2 in the present 

case, was used for further processing. 



 
5 Reactive Mixing Profiles in a Micro-cross Mixer 

148 
 

5.3.3 Mixing in homogeneous systems 

Homogeneous mixing of sulfuric acid and water, and subsequently, of sulfuric acid with pseudoionone 

(cyclization) was carried out without the third inlet of the micro-cross mixer resulting in a contact angle of 

both mixing streams of 180°. 

5.3.3.1  Dilution of Sulfuric Acid 

The axial temperature profiles obtained for the homogeneous mixing of sulfuric acid and water are 

depicted in Figure 5.14. 

 

Figure 5.14: Comparison of axial temperature profiles obtained during homogeneous mixing of sulfuric acid and 

water. 

The initial temperature monitored at the coordinate z = 0 differs from the inlet temperature of 25 °C. In 

fact, a considerable temperature rise between 7 °C and 10 °C occurs immediately at the beginning of the 

mixing process. This increase represents the heat release during the first contact of the reactants and its 

magnitude depends on the interfacial area between the two inlet streams and on the diffusion coefficient 

(depth of penetration). It can be seen that with decreasing flow rate, the initial temperature increases 
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which can be explained by residence time: the more time a molecules spends in the intersection (at z  0), 

the more diffusion occurs at this precise position, which, in turn, leads to a higher initial temperature. 

Temperature rises almost linearly along the length due to shearing and diffusion. At the axial position 

z = 7 mm, a slight effect of the mixing element (see section 5.2.1.2) is observed which gets more 

pronounced at higher flow rate. Thereby, the formation of secondary flows enhances mixing rate shortly 

after the element.  

To simplify the description of the above system, for further calculation only the first 6 mm of the reactor 

without the mixing element are considered. In this part, the heat production is controlled by shearing and 

diffusion, and the flow can be readily described with the Hagen-Poiseuille equation. 

As already mentioned, the temperature is the result of interaction between heat produced by the reaction 

and heat loss to the surrounding. To estimate the conversion along the length, the heat losses need to be 

considered by integration: 

    ' '
'

' 'p loss amb r

dT dc
u c Ua T T u H

dz dz
           (5.3) 

 
     

0 0

' ' 'p loss
amb

r r

c Ua
dX dT T T dz

c H u c H

 
      

    
 (5.4) 

Assuming a constant reaction enthalpy, the following expression is obtained: 

 
 '

0

' 0

'
z z

ambloss

ad p adz

T TT T Ua
X dz

T c u T






    

     (5.5) 

Using equation (5.5), the conversion can be expressed as function of the axial distance from the junction. 

The only additional data required to solve the equation is the adiabatic temperature rise ∆Tad and the 

volumetric heat capacity of the mixture cp . 
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When diluting sulfuric acid with water, the heat release is not proportional to conversion. Hence, further 

corrections need to be made considering the reaction enthalpy at different dilution stages [243].  

The resulting curves obtained by numerical integration are plotted in Figure 5.15.  

 

Figure 5.15: Axial conversion profile obtained for homogeneous mixing of sulfuric acid and water. 

Even though the flow velocity undergoes a 10-fold increase, the axial temperature gradient remains almost 

constant for all the curves. Thereby, highest conversion is obtained at the lower flow rates, whereas no 

change in conversion is observed for flow velocities above 12 cm/s. The explanation to this behavior lies 

in the diffusion phenomenon. One has to consider the ratio of characteristic diffusion time to residence 

time of the molecules in the reactor, i.e. the Fourier number Fo = tdiff/, where td = d2/(4·Dm) and  = L/u . 

The former is constant and in the order of 6 s (for the diffusion of protons in water Dm = 10-8 m2/s [249]), 

and the latter parameter varies from 1 s down to 100 ms leading to Fo ≈ 6…60. At Fo < 10 number, 

characteristic diffusion time is less than one order of magnitude greater than residence time. Therefore, the 

observed temperature profile is a superposition of both mixing processes: creation of interfacial area by 
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shearing and penetration by diffusion. At higher Fo, the diffusion becomes negligible, and heat release is 

mainly controlled by shearing. 

While the 10-fold increase does not affect considerably the axial temperature gradient, the temporal 

gradient is strongly affected. When looking at the curves monitored at a flow velocity of 8.5 cm/s and at 

17 cm/s, the fact that they are identical when plotted versus the z axes results in mixing that is twice as 

efficient on the temporal scale at the higher flow rate. To compare the mixing rates at the different flow 

velocities, the conversion rate was deduced according to the following calculations: 

 
0 0

 
z z

X X
u

z  

            
 (5.6) 

The mixing rates obtained at different flow velocities are plotted in Figure 5.16. 

 

Figure 5.16: Linear trend of initial conversion rate plotted as function of flow velocity obtained for homogeneous 

mixing of sulfuric acid and water. 

A linear behavior of conversion rate with flow velocity is observed. The first order polynomial is 

described by the equation: 
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   0
/ ' '

z
dX d a u b


    (5.7) 

With the slope a’ = 16.9 m-1 and the y-intercept b’ = 0.27 s-1. Assuming a first order reaction for mixing, 

the characteristic reaction time defined as tr = tmix = 1/keff is obtained by taking the invert of conversion 

rate:  

    
0

1

0

1
/

' 'z
mix z

t dX d
a u b







     

 (5.8) 

Using equation (5.8), two extreme cases can be distinguished: 1) mixing strongly influenced by the 

diffusion between the two inlet streams (Fo = tdiff/ << 1), and 2) mixing where diffusion between the two 

ingoing streams plays a minor role as the process is too slow compared to the residence time in the reactor 

(Fo >> 1). Whereas in the former case high conversion is attained in any configuration, in the latter case 

the conversion at the reactor outlet relies on the formation of secondary surface area due to shearing (see 

section 5.2.2.2). In the first case, the extreme is Fo = 0 where residence time is infinitely long for the 

given system. In this case, the flow velocity tends towards 0 leading to: 

    
0

1

0

1
/ 3.6 s

'z
mix z

t dX d
b







      (5.9) 

 For the other extreme, Fo >> 1, the mixing time can be expressed as following: 

    
0

1 1

0

1
/

'z
mix z

t dX d u
a u




 


     
 (5.10) 

Such a behavior of mixing time with respect to flow velocity confirms the findings of Falk et al. [160], 

who obtained the same results with the Villermaux-Dushman reaction system.  

To understand the effect of flow rate on the conversion at the outlet of a microreactor (the overall 

conversion at position L), the Damköhler number defined as DaImix =  / tmix is used for each of the two 

regimes described above: 
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 Mixing controlled by diffusion (Fo >> 1) 

 1
mix

mix diff

DaI u
t t

      (5.11) 

The DaImix shows that in this regime, conversion at the outlet decreases with increasing flow rate. 

This is due to the fact that diffusion has less time to occur at higher flow rates which leads to less 

conversion. 

 Mixing controlled by shearing (Fo << 1) 

 mix
mix

L a u
DaI

t

  
 

u
. 0.1const   (5.12) 

Amazingly, for a given system (L and a fixed), the conversion at the reactor outlet is independent 

of the flow velocity inside the channel. As an increase of flow velocity reduces residence and 

mixing time to the same extent, the conversion at the reactor outlet is not affected when working 

at high Fo. This behavior is observed for the curves with flow velocities equal and higher than 

8.49 cm/s. 

It has to be pointed out, that this result is only valid in a regime where the flow profile is described by the 

Hagen-Poiseuille equation. With the appearance of secondary flows (eddies), the relationship between 

pressure drop and flow velocity is described with an exponent q > 1 ( qp u  ). Thereby, an increased 

flow velocity results in supplemental power dissipation compared to the linear case, which, in turn leads to 

higher conversion at the reactor outlet. 

5.3.3.2 Cyclization of Pseudoionone 

The temperature profiles obtained from the cyclization of pseudoionone with sulfuric acid are given in 

Figure 5.17.  
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Figure 5.17: Comparison of axial temperature profiles obtained during homogeneous mixing of pseudoionone and 

sulfuric acid. 

Compared to the results obtained with sulfuric acid, the initial temperature rise at the axial position z = 0 is 

much smaller. The equivalent conversion lies around 0.01-0.05 compared to a conversion of 0.22-0.25 in 

the intersection for the former system. This can be explained on the one hand, by the diffusion coefficient, 

which is one order of magnitude smaller than in the previous system. On the other hand, as this reaction 

can be considered as instantaneous only at ratios of sulfuric acid and pseudoionone close to 5, which is not 

fulfilled locally, the reaction is controlled by the slower kinetics in these areas.  

The mixing element (see section 5.2.1.2) plays an essential role in mixing. As conversion due to creation 

of secondary surface area is the dominant phenomenon, a more pronounced effect of the mixing element is 

observed. Applying the same procedure as before, the conversion rate can be plotted as function of flow 

velocity. 
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Figure 5.18: Linear trend of initial conversion rate plotted as function of flow velocity obtained for homogeneous 

mixing of a solution of pseudoionone and of sulfuric acid. 

Due to the small conversion during the first 6 mm and the restricted ability to resolve small temperature 

gradients, it remains challenging to draw quantitative conclusions in this area. Nevertheless, a linear trend 

of conversion rate is observed. 

5.3.4 Mixing in Micro-batch Flow System 

The reactions previously presented in homogeneous mode, were carried out in micro-batch flow. An 

immiscible and inert liquid is fed through the third inlet resulting in the formation of slug flow pattern at 

lower flow rates and swirling parallel flow pattern at higher flow rates where the surface forces are 

dominated by inertia forces.  

5.3.4.1 Dilution of Sulfuric Acid 

The temperature profiles obtained in the system sulfuric acid-water-toluene are depicted in Figure 5.19. 
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Figure 5.19: Comparison of axial temperature profiles obtained during mixing in micro-batch flow of sulfuric acid 

and water. 

As seen in the homogeneous case, high temperatures form already in the intersection point itself. From the 

initial temperatures, one can deduce an initial conversion in the order of 0.2 which is comparable to the 

homogeneous case. After the intersection, a strong temperature gradient is observed for the three lower 

flow rates, whereas this behavior is not seen for the higher flow rates. The latter curves resemble the 

profiles observed in the homogeneous case. The difference between these two set of curves can be 

explained by a change of flow pattern: while at low flow rates the pattern is the desired micro-batch flow, 

the inertia forces become predominant for flow velocities above 20 cm/s. In fact, this change of flow 

pattern was observed in the PFA tube located at the outlet of the cross reactor: when shifting to higher 

flow velocities a swirling flow appeared, as described in section 5.2.2.2. 

When comparing the initial conversion rates at different flow velocities, the difference between the two 

flow patterns is evident (Figure 5.20) 
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Figure 5.20: Comparison of conversion rates obtained during mixing in micro-batch flow of sulfuric acid and Water. 

A linear increase of initial conversion rate is observed within the window of micro-batch flow achieving 

values between 2 s-1 and 10 s-1 which correspond to characteristic mixing times of a few hundred ms. 

When moving to higher flow rates, a drop of conversion rate is seen: about three times higher flow 

velocities are needed to obtain mixing rate similar to the ones observed with the micro-batch flow pattern.  

5.3.4.2 Cyclization of Pseudoionone 

When the heterogeneous system was operated at flow velocities lower than 0.85 cm/s, no stationary 

temperature profiles were formed on the reactor surface since the single slugs were seen travelling through 

the channel. For the system with lower diffusion coefficient, temperature curves obtained in the micro-

batch flow clearly differ from temperature curves obtained at higher flow rates (Figure 5.21).  
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Figure 5.21: Comparison of axial temperature profiles obtained during mixing in micro-batch flow of pseudoionone 

and sulfuric acid. 

As before, in the micro-batch regime much higher conversions are attained. However, due to the 

insufficient length of the reactor, the conversion at the outlet is only in the order of 0.5 (compared to 1 for 

the previous system). When looking at the capillary connected to the outlet of the reactor, temperature was 

found to be rising for several more centimeters. Interestingly, an influence of the mixing element is 

already seen at the lowest flow rates showing the enhanced recirculation inside the micro-batch due to a 

change of orientation of the slug. As expected, the conversion rates found in Figure 5.22 are relatively 

small resulting in mixing times in the order of a few seconds. The points monitored at flow rates higher 

than 8.49 cm/s don’t follow the linear trend of the previous points, indication the change of flow regime.  
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Figure 5.22: Comparison of conversion rates obtained during mixing in micro-batch flow of pseudoionone and 

sulfuric acid. 

5.3.5 Comparison of the Systems 

In Figure 5.23, all of the linearized mixing rates curves obtained in this work are plotted together.  

When comparing effective conversion rates in the dilution of sulfuric acid system (denoted with squares) 

with the cyclization system (denoted with triangles), one clearly recognizes a faster overall transformation 

rate in the former. This can be mainly attributed to a fast homogenization of water and sulfuric acid, which 

can be explained by the fast diffusion coefficient of protons in water. The poor heat release in the 

cyclization system is a superposition of two effects: as mixing is incomplete, the required ratio for 

instantaneous reaction of acid/pseudoionone is only reached in a small volume of the reactor. Hence, in 

addition to the mixing limitation, kinetic limitation is observed.  
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Figure 5.23: Comparison of mixing rates obtained in the four types of systems analyzed in this study. 

Hence, mixing times measured with chemical systems based on protons in aqueous system, such as acid-

base neutralizations or the Villermaux-Dushman [160] reaction system, always represent “best case” 

results. Thereby, one has to keep in mind that diffusion times for organic compounds are at least one order 

of magnitude higher. 

On the other hand, for both reactions the comparison between homogeneous mixing and mixing in micro-

batch flow shows better mixing in the latter case. Whereas the difference is impressive for the dilution of 

H2SO4 (factor 3-4), the benefit for the cyclization reaction is limited to about a factor of 1.5. Hence, 

moving from a classical homogeneous mixing system to micro-batch flow pattern is beneficial if an 

increased mixing time is required. However, mixing time can only be reduced to a limited extent, as at 

some point an increase of flow velocity leads to a change of flow pattern leading to a drop of mixing rates. 
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5.4 Conclusion 

A chemical method based on infrared thermal imaging to measure mixing time as a function of axial 

coordinate was successfully applied to highly exothermic single phase systems as well as to multi-phase 

systems. An integral value of mixing quality within the whole cross section (for high Sc/Pr i.e. ratio of 

diffusivity of mass and of heat) was obtained, preventing artifacts such as observed with many classical 

methods. 

This novel method was applied to two different quasi-instantaneous reactions: the dilution of sulfuric acid 

in water and the  cyclization of pseudoionone to the protonated form of -ionone in the presence of 

sulfuric acid. It was demonstrated that mixing rates of the former system are up to one order of magnitude 

higher than for the latter system due to the fast diffusion of protons in water. In both cases, an increase of 

mixing rate was observed by switching from homogeneous conditions to micro-batch flow regime. This 

increase was much more pronounced for the fast diffusing system (3 to 4-fold). Moreover, it has to be 

pointed out that even though an improved mixing time can be achieved using micro-batch flow, this type 

of flow regime is very challenging to stabilize. Especially when numbering-up, high pressure drops and 

low manufacturing tolerances are required to achieve the needed precision [66]. 

Finally, the effect of flow velocity on conversion at the reactor outlet (equivalent to DaImix) was analyzed, 

and it was shown that at high Fourier numbers (mixing controlled by diffusion) the conversion at the 

outlet increases with decreasing flow velocity, whereas at low Fourier numbers (mixing controlled by 

shearing) the conversion at the outlet of the reactor is independent of flow velocity: on the one hand, 

higher flow velocity leads to faster mixing, on the other hand, the residence time is reduced. 
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5.5 Notations 

a Specific surface area, [1/m] 

a’ Fit variable, [1/m] 

b’ Fit variable, [1/m] 

cp
 

Mean heat capacity, [J/(kg K)] 

c Concentration, [mol/m3] 

c’ Concentration, [mol/m3] 

d Channel diameter, [m] 

Dm Molecular diffusion coefficient, [m2/s] 

h Heat transfer coefficient, [W/(m2·K)] 

Hr Reaction enthalpy, [J/mol] 

k Rate constant, [(m3/mol)n-1/ s] 

L Length of the reactor, [m] 

n Reaction order 

p Pressure, [Pa] 

R Heat Transfer resistance, [K/W] 

tdiff Characteristic diffusion time , [s] 

tmix Characteristic mixing time , [s] 

tr Characteristic reaction time kc0
n-1), [s] 

T Temperature, [K] 

T’ Temperature, [K] 

u Flow velocity, [m/s] 

U Global heat transfer coefficient, [W/(m2K)] 

X Conversion, [-] 

z Axial coordinate, [-] 
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z' Axial coordinate, [-] 

Greek 

 Wall thickness, [m] 

∆ Symbol for difference 

ε Specific power dissipation, [W/kg]  

 Mean density, [kg/m3] 

 Residence time, [s] 

Dimensionless numbers 

DaImix Damköhler number  /tmix 

Fo Fourier number td/ 

Nu Nusselt number h·dh/lFluid, [-] 

Re Reynolds number u·dh/ν, [-] 

Subscript  

0 Initial condition 

∞ Infinity, after infinite length 

ad Adiabatic 

amb Ambient 

eff Effective 

loss Related to heat losses 

L-W Liquid-Wall 

R Reactor 

S Surface 

R-W Reactor-Wall 

W Wall 

W-Amb Wall-Ambient 
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Chapter 6   

DEVELOPMENT AND EXPERIMENTAL 

INVESTIGATION OF A MULTI-INJECTION 

REACTOR 

This chapter gathers the knowledge collected in the previous chapters (the theoretical behavior of multi-

injection reactors, monitoring temperature in microchannels and efficient mixing of liquids) to develop an 

efficient multi-injection reactor. Using the technology of low temperature co-fired ceramics (LTCC), a 

multi-injection reactor embedding herringbone mixing structures is designed and manufactured. With the 

model reaction, i.e. cyclization of pseudoionone, it is demonstrated how process intensification can be 

achieved with this kind of devices while maintaining temperature control. 

6.1 Introduction 

In this introductory part, at first the multi-injection reactor concept is addressed. Herein, the experience 

gained from the numerical simulations (Chapter 3) is reviewed together with existing prototypes described 

in literature. Subsequently, the model reaction chosen for this study, i.e. the cyclization of pseudoionone, 

is discussed by addressing its thermodynamics, kinetics and processing modes. In the third part of the 

introduction, the motivation for carrying out the cyclization of pseudoionone in a multi-injection reactor is 

put forward. 
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6.1.1 Multi-Injection Reactor  

The injection of one reagent at several points along the length of a tubular reactor to gain in selectivity 

was studied and optimized numerically in publications by Cougnon et al. and Lu et al. [250, 251]. 

Whereas in the present study the motivation to use multiple injection points lies in the thermal control of 

the reactor, in the cited publications the focus was put on the creation of an optimized concentration 

profile for the molecules travelling through the reactor. In the past, the injection of feed at several points 

in a fixed bed reactor has also been carried out to maintain thermal control over a reactor [252]. Such 

cold-shot injection reactors are especially used to create optimal temperature profiles for exothermic 

reactions with equilibrium issues: whereas high temperature is favorable for the kinetics, low temperature 

is needed for thermodynamics.  

Only recently the multi-injection reactor concept has been applied to the small scale [170, 171]. As the 

reactor performance of these heat transfer limited processes is directly related to the characteristic cooling 

time of the reactor (tr = ·cp/(U·a)), high space-time yields can be achieved using multi-injection milli- or 

microreactors. Thereby, the hot spot temperature is mainly controlled by the amount of injection points, 

preventing the use of excessively small channel dimensions. As trade-off, one has to accept a broadened 

residence time distribution of the injected flow and a high pressure drop related to the flow distribution.  

Barthe et al. [170] and Roberge et al. [171] described the development and characterization of a multi-

injection reactor. Their main goal was to increase selectivity in a model reaction involving organo-metallic 

reagents, i.e. the reaction of phenylethyl magnesium bromide with 2-chloropropionylchloride, by 

controlling the axial temperature profile. Productivities up to 100 g/min were achieved in a 35 mm3 

continuous multi-injection reactor. The exothermic and quasi-instantaneous reaction showed sensitivity to 

mixing quality and hot spot temperature. A glass reactor (Figure 6.1) was designed in a modular flexible 

manner for the use in multiple processes. For each specific function required for an optimal performance 

in a multi-injection reactor, a separate module was built: 
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 DT: pre-cooling of the feed 

 MF: flow distribution, splitting one flow into four using channel length to create equal pressure 

drop. Equal flow distribution is attained by +- 8 % relative variation. 

  MJ: multi-injection unit, containing 4 injection points. Each injection point is followed by a 

mixing zone containing mixing elements. Each mixing zone leads into a residence time channel of 

5 mm width, 0.6 mm height and 0.8 m length designed to evacuate the heat produced before 

reaching the following injection point. 

 

 

Figure 6.1: Scheme of a modular multi-injection reactor adapted from Barthe et al. [170]. 

In the reactor presented by Barthe et al. [170], the key design criteria for an efficient multi-injection 

reactor are respected: 

1) Injection of a controlled flow rate of reactant at each injection point. 

2) Assure complete mixing of the reactants at the end of the mixing zone by efficient mixing 

structures. 

3) Evacuation of heat within the larger residence time channel before the subsequent injection. 
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To avoid accumulation of mass and heat, it is essential that each function is lead to completion before the 

induction of the subsequent step. 

6.1.2 Cyclization of Pseudoionone 

The cyclization of pseudoionone in the presence of sulfuric acid was chosen as model reaction, with 

-ionone and-ionone being the desired products. This reaction represents the class of cyclization 

reactions, which are widely carried out in the fine chemical industry. Due to their olfactory properties, the 

ionones are used for the creation of essential oils and in various other products in perfumery [241]. 

Furthermore, -ionone is an important compound in the synthesis of vitamin A molecules.  

While the pure reactants (pseudoionone and sulfuric acid) form two separate phases, by using an 

appropriate solvent (e.g. nitropropane or nitromethane) one can achieve a homogeneous system. In the 

following, the studies carried out under heterogeneous conditions are reviewed before summarizing the 

results obtained in homogeneous systems. 

First reports about the cyclization of pseudoionone can be found already in 1946, where E.E. Royals [253] 

demonstrated that the yield of -ionone increases with dissociation constant of the catalyzing acid. With a 

mixture of sulfuric acid and glacial acetic acid he achieved a yield of 71.5 % after more than 35 min of 

reaction at 20 °C. By operating at higher temperatures of 110 °C, Karshan et al. [254] managed to increase 

the molar ratio of pseudoionone:acid to 20:1. They obtained a yield of 97 % of cyclized ionones 

(14.6 % -ionone and 85.2 % -ionone) after 40 min in a batch reactor. Panfilov et al. [255] carried out 

the reaction using hydrofluoric acid as catalyst in semi-batch mode. At lower temperatures, they achieved 

yields as high as 93 % of -ionone at 5 °C with ratios of pseudoionone:acid of 1:11 down to 1:15. Other 

authors propose the use of continuous processes for the cyclization of pseudoionone. Hertel et al. [256] 

carried out the cyclization of pseudoionone in a continuous glass tube with 2 cm diameter and a thin film 

reactor respectively. They evacuated the heat of reaction by evaporative cooling of a low boiling solvent 
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and obtained -ionone yields of 83 % within a reaction time in the order of a few seconds at 41 °C. With a 

similar approach, Rheude et al. [257] produced -ionone in a reaction mixing pump yielding 92 % surface 

area in the gas chromatograph. 

Working under homogeneous conditions gave access to the intrinsic kinetics of the system. The reaction 

mechanism was first studied by Semenovskii et al.[258, 259] using nitropropane and nitromethane as 

solvent to form a single-phase system of sulfuric acid and pseudoionone. They claimed that the rate of 

reaction is independent of the isomer configuration of pseudoionone. Thereby, the cyclization leads 

mainly to the formation of -ionone (90 %) accompanied by a parallel formation of -ionone (10 %). 

Under certain reaction conditions, -ionone can be transformed to -ionone (isomerization). 

Kashid et al. [240, 241] recently published a study giving deeper insight into the reaction mechanism of 

cyclization. At first, they carried out kinetic measurements of the relatively slow and slightly endothermic 

isomerization reaction in a batch reactor with nitropropane as solvent maintaining the molar ratio of 

pseudoionone to H2SO4 at 1:4.8. An increase of this ratio led to a diminished yield of the sum of -ionone 

and -ionone. The isomerization turned out to follow first order kinetics with respect to -ionone with an 

activation energy of 65 kJ/mol and a frequency factor of 5.4·1010 1/s [241]. As a second step, the overall 

very exothermic cyclization of pseudoionone to the final product -ionone was studied [240]. Due to the 

rapidity of the reaction, they switched from a batch vessel to a microreactor based system. This allows on 

the one hand, sampling after short residence time, and on the other hand, evacuation of the heat produced 

during the exothermic reaction steps. By introducing a non-miscible solvent (perfluorohexane), they 

managed to obtain a narrow residence time distribution. The proposed reaction scheme is depicted in 

Figure 6.2. The first step is a quasi-instantaneous protonation of the pseudoionone molecule, followed by 

the very fast cyclization of the molecule to the intermediate (6). The low activation energy obtained for 

these reaction steps indicate a mixing influenced regime. Intermediate (6) is in equilibrium with the 

protonated -ionone and -ionone, and a part of the intermediate is irreversibly transformed to the 

protonated form of -ionone. In the last reaction step, quenching by the addition of water, the final 
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products -ionone, -ionone and -ionone are obtained. Herein, the selectivity to -ionone is negligible in 

comparison to -ionone and -ionone due to the chosen conditions. When working at higher temperatures 

(> 10 °C), a loss of selectivity towards the sum of -ionone and -ionone was observed due to 

polymerization of the products [241, 253]. 

Kashid et al. [241] also determined the enthalpies of the different reaction steps by combining calorimetric 

measurements with the theoretical method of group contribution. The obtained enthalpies are summarized 

in a scheme in Figure 6.3. Herein, the protonation and the cyclization turn out to be extremely exothermic 

steps. Hence, in combination with the high reaction rate, this very fast and highly exothermic step 

(-128 kJ/mol) makes it particularly critical to carry out this reaction. The second key point regarding heat 

release is the quenching of the reactants. However, a temperature rise at this point is less critical than in 

the first step, where subsequent reactions can be triggered. 
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Figure 6.2: Reaction scheme of cyclization of Pseudoionone.  

 

Figure 6.3: Reaction enthalpies proposed by Kashid et al. [241]. PI: pseudoionone, : -ionone -ionone. The 

reaction enthalpy of – 30 kJ/mol is obtained by superposition of the deprotonation enthalpy (71 kJ/mol) and the 

enthalpy released by the dilution of sulfuric acid to 60 % w/w. 
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Despite the effort that has been done in the past decades, the state of the art of industrial production of 

-ionone remains a semi-batch production with dosing times around 60 min at temperatures around 0 °C. 

As a consequence, low space-time yields are achieved and a part of the product is lost due to consecutive 

polymerization. A more extensive review on this reaction can be found in literature [241].  

6.1.3 Scope of the work 

In this chapter, a multi-injection microreactor is designed and used to carry out the cyclization of 

pseudoionone to -iononeand -ionone. The reactor design is directed by the two-fold aim: 

1) Process intensification and optimization for the combined yield of -ionone and -ionone. 

2) Experimental demonstration of the temperature profile in a multi-injection reactor. 

Regarding the first point, the primary target is to obtain a maximal yield of -ionone and -ionone. 

Thereby, it is crucial to prevent the highly exothermic, and therefore, dangerous product decomposition 

(polymerization), which leads to a loss in yield of the sum of -ionones and -ionones. As the target 

molecule of the overall process is -ionone, it is preferential to shift the composition towards -ionone. As 

the isomerization from -ionone to -ionone is only slightly endothermic, this reaction can be easily 

carried out in a subsequent isothermal residence time loop [240].  

The second aim, i.e. the experimental study of the temperature profile using an infrared thermography 

based method sets some constraints to the reactor design, especially regarding its size. 

In the upcoming sections, the novel reactor design is presented followed by the experimental setup and the 

obtained results. 
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6.2 Design of the Multi-injection Reactor 

The development of a multi-injection reactor was carried out in collaboration with the Ceramics 

Laboratory (LC) and the Laboratory of Microengineering for Manufacturing 2 (LPM2) of EPFL. At the 

beginning, a list of requirements was set up, highlighting the needs for a successful design. Subsequently, 

it was found that these requirements could be met by manufacturing the multi-injection reactor using low 

temperature co-fired ceramic (LTCC) materials. As a first proof of concept, two different mixing 

structures were constructed and tested. Finally, the most suitable structures (the herringbone mixer) was 

integrated in the final multi-injection reactor design which is shown at the end of this section. 

6.2.1 List of Requirements 

As already mentioned in the description of the scope of the work, the reactor design is a compromise 

between the requirements for the best possible process performance and the boundaries needed for the 

quantitative monitoring of temperature inside the reaction channels. Hence, the list of requirements can be 

subdivided into two parts: The requirements by the process and the requirements by the method. The 

requirements are listed according to their priorities, starting from the most important aspect. 

Requirements by the process: 

 The material is corrosion resistive up to temperatures of 100 °C, withstanding the extreme 

concentrations of sulfuric acid (> 55 % w/w) 

 Efficient microstructures ensure complete mixing at the end of the mixing zone 

 Integrated cooling system with high volumetric heat transfer coefficient to evacuate the heat of the 

exothermic reaction 

 Allow for sufficient residence time i between the injection points to prevent accumulation of heat 

and mass: i > tcool and cool > tr,eff 
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 A maximal pressure drop of 1 bar which can be handled by the available syringe pump 

 Maximize the amount of injection points 

Requirements by the method: 

 Due to the trade-off between resolution and field of vision, the reactor is comprised within an area 

of 6 cm × 6 cm to measure with a resolution of 150-200 m. 

 The cooling channel does not interfere with the infrared signal emitted by the reaction channel. 

 The wall separating the reaction channel from the ambient on the camera side is thinner than 

500 μm to reduce the effect of inner channel resistance on the surface temperature. 

 Low conductivity in the plane for the best possible contrast 

6.2.2 Microstructured Reactor from Low Temperature Co-fired Ceramics 

Low temperature co-fired ceramics (LTCC) was chosen as a manufacturing technology to build up the 

ceramic multi-injection reactor. It is derived from the thick-film technology area (film thicknesses of 

typically 10 m) [260], where it has been used for the creation of electronic substrates for high frequency 

applications. Within this area of applications, noble metals are used as conductors and electrodes as they 

exhibit thermodynamic stability under air at the common range of operation temperatures (800 °C – 

1100 °C). However, these noble metals have relatively low melting temperatures: Ag, Au and Cu at 

961 °C, 1063 °C and 1083 °C. Hence, to prevent melting of the electrodes during the sintering process 

(“co-firing” of both), the processing temperature of LTCC has to be below their melting point. The 

substrates are typically sintered at temperatures between 800 °C and 900 °C. 

 The properties of the LTCC substrates render this material very attractive for the development of 

microstructured reactors: it is chemically inert even in harsh environments and one can easily create 

complex 3-D structures through punching, milling and laser cutting processes [261-263]. The application 
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of this technology to the field of microfluidics is very recent, and the use of LTCC for such a complex 

development as the multi-injection reactor has not been reported so far [260, 264-268]. 

Figure 6.2 shows a simplified fabrication process scheme of the LTCC technology [267]. The reactor is 

fabricated out of several plain layers of LTCC tapes. The commercial glass-ceramic composition DuPont 

951 was chosen for the construction because of its chemical inertness against acids and bases [269-271]. 

Ceramics are composed of non-organic, non-metallic elements that are sintered at high temperature 

forming the ceramic. Such tapes are commercially available in different thicknesses between 50 and 250 

m. In the first step, the designed channel patterns are applied by means of laser ablation (1064 μm 

Nd:YAG, LS9000 Laser Systems GmbH) (A). Subsequently, the tapes are stacked together using a pin-

alignment leading to a 3 dimensional structure (B). The lamination of the stacked tapes was achieved 

through the novel progressive lamination process that not only enables inter-penetration of ceramic 

particles in the LTCC by diffusion of the organic binders, but, also guarantees the quality of embedded 

cavities (C) [269]. The firing of the stack is generally carried out in two phases: removal of the organics 

via evaporation and oxidation at about 400 °C followed by the liquid phase sintering [272] of the ceramic 

layers at 900 °C [267] (D). Thereby, shrinkage of the reactors in the order of 30 % has to be taken into 

account. In the final steps of the process, the reactor is cut to the right size and the fluidic connections are 

made (E, F). 

 

Figure 6.2: Schematic of the fabrication of Low Temperature Co-fired Ceramic microstructured reactors. A: 

Structuring by laser ablation B: Stacking of the layers C: Isostatic lamination D: Firing E: Dicing F: Fluidic 

opening by laser ablation. Image adopted from Große et al. [21]. 
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The physical properties and the flexibility of the process render LTCC greatly attractive for the 

development of the multi-injection reactor with the requirements as described in the previous section: 

 Within this study, the LTCC material was shown to be extremely corrosion resistant towards 

strong sulfuric acid: the sintered material sustained 14 days in 60 % w/w of aqueous sulfuric acid 

without weight loss or visible changes. 

 Due to the high precision obtained with laser ablation, fine structures with dimensions down to 

200 μm can be created. 

 Due to the stacking procedure, the creation of three dimensional structures and superposed 

channels is enabled. 

 The thermal conductivity of 3.3 W/(m·K) [273] is low enough to avoid loss of contrast by 

diffusion in the plane (x-y). 

 The low thickness of the layers (z-direction) essentially nullifies the heat transfer resistance in the 

wall as compared to the resistance within the reaction channels resulting in high heat transfer 

rates. 

6.2.3 Mixing zone 

As illustrated in Chapter 5, fast and complete mixing of the inlet streams is crucial when carrying out 

rapid exothermic reactions with short residence time in the reactor. Due to the low diffusion coefficients in 

liquid phase [274], the small sizes of microstructured reactors do not assure fast mixing. Especially in the 

case of organic solutions, mixing structures are needed to prevent accumulation of the reactants in the 

multi-injection reactor. 

Several mixing structures can be found in literature [38, 275], among which two distinct designs were 

chosen: the tangential mixer [275, 276] and the herringbone mixer [110, 153-156, 277]. Both structures 
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were manufactured on 25 mm × 62 mm plates using low temperature co-fired ceramics and tested 

regarding their suitability for the integration in the multi-injection reactor (see section 6.4.1). 

In the tangential mixer, the fluid flows through a series of narrow channels followed by a recirculation 

zone (Figure 6.5A). The recirculation increases the mixing quality with increasing Reynolds number 

[276]. In the ideal case, this type of mixer can be assimilated to a cascade of continuous stirred tank 

reactors. As a consequence, when working with an amount of structures less than 10, one has to take into 

account a broadened residence time distribution. For the present design, it was chosen to work with eight 

consecutive recirculation zones with a diameter in the x-y plane of 2 mm and a channel height of 500 m. 

The width of the transfer channels connecting one zone with the following was set to 500 m. The total 

reactor volume from the contacting point of the reactants to the reactor outlet is 18 l. A scheme and a 

picture of the complete mixer design is given in Figure 6.5A. 

 

Figure 6.4: Mixing of the herringbone mixer by creation of transverse flow compounds (from [155]). 
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The herringbone mixing structure was first time shown to work about 10 years ago [277]. Since that time, 

several studies have been carried out regarding the mixing mechanism and the geometric optimization of 

this structure using numerical simulation [153-156]. The addition of grooves on the bottom of the channel 

induces a flow velocity component that is normal to the flow direction. By alternating the direction of the 

grooves, the two inlet flows are successively “folded” on top of each other even at low Reynolds number 

(Re < 10). As shown in Figure 6.5, a sequence of grooves with same orientation constitute half a cycle. 

Thereby, the grooves reach only a certain percentage  of the total channel height H. 

 

Figure 6.5: Scheme of the tangential mixer (A) and the herringbone mixer (B). The dimensions are given in 

millimeter. 

(A) 

(B) 
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For the present herringbone mixer, 7.5 cycles of 10 grooves per half cycle were built up. The groove 

thickness is 100m with a space of 100 m between the grooves (2/q = 200 m). The channel cross 

section is 560 m × 500 m ((h + h· × W = H × W) with The mixer with a total channel 

length of L = 68 mm and a volume of approximately 19 l is depicted in Figure 6.5B. 

6.2.4 The Multi-injection Reactor Design 

The overall size of the multi-injection reactor plate is 65 mm × 35 mm. The mixing and cooling channels 

are confined to a window of 30 mm × 30 mm in the center of the plate, which can be almost completely 

monitored by the infrared camera. The amount of injection points was set to three due to the limited 

availability of surface on the plate. For an efficient mixing of the reactants, the herringbone structure was 

chosen (see section 6.4.1). 

The reactor was constructed out of a total of 11 layers of ceramic green type (Dupont 951). Some of these 

layers are identical to each other which is used to built-up the required thickness, e.g. to obtain an overall 

height of the herringbones of 150 m (before shrinkage), 3 layers of 50 m are needed. After firing, 

shrinkage of the layer thicknesses of 15 % has to be considered. Hence, 8 different structures were created 

by laser ablation (see Figure 6.6), and are shortly described in the following together with their thickness 

in the unfired state: 

 The connection plane (156 m) contains an overall of 11 holes with a diameter of 1 mm allowing 

all the connections to be done from the top of the reactor. The system used to make the 

connections is described in 6.3.1.1. With a thickness of only 156 m (before shrinkage), the 

influence of the inner heat transfer resistance on the temperature signal can be neglected, as the 

main heat transfer resistance lies between the wall and the surrounding. 

 The fluidic channel (508 m) layer creates the void space above the herringbone structures. 

Together with the herringbone layer, the resulting cross section is 560 m × 500 m ((h + h· × 
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W) in the mixing module and 560 m × 2000 m in the residence time module. The total length of 

one mixing module is 66 mm followed by 33 mm of residence time module before reaching the 

subsequent injection point. 

 The herringbone layer (150 m) contains a total of 7 cycles of herringbones with the same 

geometry as described in 6.2.3. 

 The cooling wall 1 (156 m) separates the reaction channel from the cooling channel. Its low 

thickness provides almost no resistance to heat transfer between both channels. 

 The cooling layer (508 m) contains three identical cooling channels having each 9 mm of width 

and about 5 cm of length. Each of these channels is exactly superposed to one single module of 

mixing and residence time on the fluidic channel layer. For manufacturing reasons and to avoid 

maldistribution of coolant between the channels, this layer is fed by separate inlets. 

 The cooling wall 2 (254 m) separates the cooling channel from the reactant inlet channel. Its low 

thickness provides almost no resistance to heat transfer between both channels. 

 The inlet layer (508 m) has the function to preheat the inlet flow before it reaches the first 

injection point located on the top of the reactor. The channel dimensions are identical to the 

dimensions of the residence time module. 
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Figure 6.6: Scheme of the second layer of the multi-injection reactor containing the dimensions in millimeter (left), 

and the complete reactor built-up from 11 layers of green tape (right). 

For the stability of the green tape during the manufacturing process, the channels are crossed by “bridges”. 

As their positions are shifted from one layer to another, the passage of the liquid is not hindered. 

6.3 Experimental Part 

This section focuses on the setup built to carry out the measurements with the previously described 

reactors, and on the methods used to characterize the reactors. 
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6.3.1 Experimental Setup 

The integration of the mixers and the multi-injection reactor into an experimental setup is described in this 

section. First it is shown, how the flat laser ablated holes can be connected to standard tubing. 

Subsequently, an overall picture of the setup and methods of analysis is given. 

6.3.1.1 Embedding the Reactor into the Setup 

To make the connections between the standard 1/8” tubing and the inlet of the ceramic microstructured 

reactors, a connection device was manufactured out of alumina. By fixing the reactor into this 

construction, leak proof connections can be made between the perfluoroalkoxy (PFA) tubes and the 

reactor openings by using commercially available ethylene tetrafluoroethylene (ETFE) flangeless ferrules. 

A snapshot of the device fabricated for the multi-injection reactor allowing the 11 connections to be done 

is given in Figure 6.7.  

 

Figure 6.7: Device constructed to connect the multi-injection reactor to standard 1/8” tubing using flangeless 

ferrules. 
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6.3.1.2 Overview of the Setup 

The reactor embedded in the connection device is integrated in a similar setup as described in the previous 

chapters. To have reproducible results, the boundary conditions of the reactor were fixed by two different 

manners leading to two distinct setups: 

1) The tangential and herringbone mixer, which do not contain an integrated heat exchange channel, 

were analyzed in the vacuum box as presented in chapter 4. While, the heat losses by convection 

are efficiently suppressed, the heat losses by radiation cannot be suppressed, leading to a lumped 

heat loss coefficient in the order of 1.4·106 W/(m3K) to 2.1·106 W/(m3K). 

2) The multi-injection reactor with integrated cooling unit (containing a liquid as coolant) was 

monitored under a constant convective flow of air. Thereby, the aim was to maintain the heat 

losses via the cover of the reactor to the environment constant by avoiding natural convection, 

which exhibits a strong dependence on temperature and disturbances from the outside. As the heat 

losses coefficient on the top surface of the channel is much lower than the heat transfer coefficient 

with the cooling channel (effect on the overall heat balance is less than 15 %), the vacuum box 

was omitted. 
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Figure 6.8: Setup for experimental analysis of the multi-injection microreactor. 

The reactants are fed through four separate syringe pumps, thus, avoiding flow maldistribution. For the 

experiments, two homogeneously miscible solutions A and B are prepared: 

A) 1.25…2.75 M pseudoionone in 1-nitropropane 

B) 7.5…12 M sulfuric acid in 1-nitropropane 

The main physical properties of the compounds are summarized in Table 6.1 together with an estimation 

of the properties of the solutions. 
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Table 6.1: Physical properties at 25 °C of the compounds used for the homogeneous cyclization of 

pseudoionone. 

 
Density [kg/m3] Heat capacity [J/(kg K)] Kinematic viscosity [m2/s] 

1-Nitropropane 998 1972 7.90·10-7 

Pseudoionone 895.1 1930 6.38·10-6 

-ionone 940 - 1.15·10-5 

Sulfuric acid 1840 1340 1.34·10-5 

Solution A* 970 1962 2.17·10-6 

Solution B* 1372 1596 8.28·10-6 

Product 
mixture* 

1169 1757 5.60 ·10-6 

*Calculated properties assuming an initial solution of 1.25 M of pseudoionone and 7.5 M of sulfuric acid. 

 It is worthwhile to point out that the sulfuric acid solution is fed through the main channel (reactant A) 

whereas the pseudoionone solution is fed to the three injection points (reactant B). If the flows were 

inverted, the yield would be shifted towards higher amounts of -ionone due to an insufficient ratio of 

acid to pseudoionone within the first injection points. The products are quenched at the outlet with a 

150 g/l solution of sodium carbonate at 0 °C. Temperature at the inlets and outlets is measured by 0.5 mm 

thick K-type thermocouples and pressure is monitored at the first injection point using pressure gauges 

with a working range of 0…28 bar and a precision of ± 0.15 bar. 

6.3.2 Methods of Analysis 

The main tool of analysis used in the present study was the quantitative monitoring of temperature using 

an infrared thermography based method similar to the method presented in the previous chapter. The 

product composition at the reactor outlet was characterized using a gas chromatograph. 
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6.3.2.1 Quantitative Infrared Measurement 

As mentioned in section 6.3.1.2, the temperature profiles of the two micromixers (the herringbone and the 

tangential mixer) were monitored in the vacuum box. To get quantitative data, a “pixel-by-pixel” 

calibration of the setup was carried out prior to the measurements as thoroughly described in chapter 4.	

Compared to the mixers, the volume of the multi-injection reactor is larger due to longer channels. As a 

consequence, heat losses between inlet and outlet play a more important role, which decreases the 

accuracy of the “pixel-by-pixel” calibration. For this reason, the calibration procedure was adapted to the 

multi-injection reactor: a uniform emissivity can be assumed all over the reactor surface due to its flat and 

homogeneous surface. As the signal emitted by the reactor is not interfering with an infrared transparent 

window, the dependence on emission angle can also be neglected (see chapter 4). Hence, the calibration 

between liquid temperature inside the reactor channel and signal measured by the camera can be carried 

out at one single point, and be used for the whole reactor. To validate the assumptions, the calibration was 

carried out at the three injection points respectively: 

Inert liquid (Butanol) was fed at temperatures between 25 °C and 50 °C to one of the three injection point 

inlets at high flow rates. The temperature was monitored by a thermocouple directly at the inlet of the 

injection point and compared to the average of the camera signal  over 10 pixels located on top of the 

respective injection channel. Due to the short distance between thermocouple and calibration pixels 

(≈ 4 mm), and because of the high flow rates (≈ 20 ml/min), it can be assumed that the temperatures were 

identical at the two locations within ± 0.25 °C. The calibration plot in Figure 6.9 shows that a 

homogeneous emissivity of  = 1 can be readily applied all over the reactor allowing temperature to be 

monitored within an overall precision range of ± 1 °C. 
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Figure 6.9: Calibration of camera signal to the temperature measured by thermocouples at three injection point 

inlets. 

 

6.3.2.2 Gas chromatography 

After separating the organic phase from the aqueous phase, analysis of the product distribution is carried 

out in a Perkin-Elmer Auto System XL chromatograph equipped with a programmed split/splitless injector 

and a flame ionization detector employing a Stabilwax (Cross-bond Carbowax-PEG, Restek, USA) 

capillary column (i.d. = 0.32 mm, length = 30 m, film thickness = 0.25 μm). The calibration of the 

chromatograph was carried out with 90 % pseudoionone supplied by Aldrich, 96 % -ionone supplied by 

Acros, and 90 % solution of -ionone supplied by Aldrich. Thereby, the calibration curve was found to be 

quasi identical for the three molecules. As internal standard, 99.5 % butanol by Alfa Aesar was added to 

the outlet solution before the injection into the chromatograph. A typical chromatogram showing the 

analyzed molecules is given in Figure 6.10. To obtain a representative product composition, the analysis 

of each sample was performed three times. 
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Figure 6.10: Chromatogram showing a typical product distribution after cyclization of pseudoionone. The molecule 

designated as “Intermediates (5)” was found to be 6,10-dimethylundeca-3,5-dione-10-hydroxy-2-one [240]. 

Ethanol was used for the dilution of the product mixture to obtain concentrations in the measurable range. 

6.4 Experimental Results 

At first, quantitative infrared thermography was used as tool to evaluate both mixing structures, and chose 

the one to be integrated into the multi-injection reactor. Subsequently, the multi-injection reactor was 

characterized thermally on the one hand, regarding the heat transfer under non-reactive conditions, and on 

the other hand, regarding the temperature profile during the cyclization of pseudoionone. Finally, the 

product composition at the reactor outlet was determined with respect to flow rate, temperature and inlet 

concentrations. 

6.4.1 Mixing structure 

To avoid accumulation of reactant in the multi-injection reactor, an efficient mixing structure had to be 

found that is able to provide almost complete mixing of the reactants which is especially challenging due 

-ionone (10)

-ionone (12)
Pseudoionone (1) Intermediates (5)

Butanol 

1-nitropropane 

Ethanol 
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to the considerable difference of density (≈ 0.4 kg/m3) between the two inlet streams (sulfuric acid and 

pseudoionone). Therefore, the temperature profiles were monitored in the two selected mixing structures, 

i.e. the tangential mixer and the herringbone mixer, that have been shown to work efficiently with aqueous 

solutions in literature [38, 110, 153-156, 275, 277]. The temperature profile provides integral information 

of the conversion of the reactants inside the mixing structure, provided the system is adiabatic. Assuming 

a quasi-instantaneous reaction, conversion is directly proportional to the advancement of mixing inside the 

reactor. As especially radiation heat losses cannot be completely avoided, a characteristic heat losses time 

in the order of tloss ≈ 1 s had to be taken into account.  

In the following, the profiles obtained with the tangential mixer and with the herringbone mixer are 

separately presented, before comparing one with another. 

6.4.1.1 Tangential Mixer 

Quantitative temperature profiles of the strongly mixing controlled reaction between pseudoionone 

(1.2 M) and sulfuric acid (7.5 M) are given in Figure 6.11. The adiabatic temperature rise of the mixture is 

Tad = 37 °C. As an orientation, a total flow rate of 1 ml/min corresponds to a flow velocity of 0.067 m/s, 

a residence time of about 1 s in the mixer and to a Reynolds number of around Re ≈ 10 (at the contacting 

point, assuming an average viscosity of the mixture). 
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Figure 6.11: Mixing profiles obtained in the tangential mixing structure while mixing pseudoionone (1.2 M) with 

sulfuric acid (7.5 M). 

For flow velocities lower than 0.17 m/s, almost no formation of heat is observed. Only at flow rates above 

4.2 ml/min (0.28 m/s), a noticeable conversion of the reactants is seen. To confirm the poor quality of 

mixing at low flow rates, microscope pictures were taken during the mixing of water with dyed water in 

an identical reactor with glass cover. The results in Figure 6.12 show that at low Reynolds numbers (Re < 

60), mixing occurs solely by diffusion.  

When exceeding velocities of 0.5 m/s (corresponding to Re ≈ 70), more than 50 % of the adiabatic 

temperature is reached, while at 0.67 m/s already 80 %, indicating almost complete mixing. When 

comparing with the microscope results obtained with water in Figure 6.12, one can clearly notice the 

appearance of secondary flow leading to fast homogenization. 
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Figure 6.12: Mixing of dyed water with pure water at low (top) and higher (bottom) Reynolds number. 

As expected, this type of mixing structure relies on the formation of secondary flows, which do not clearly 

appear until Re ≈ 70. Hence, when applying this type of structure to the model reaction, one needs to work 

at flow rates higher than 7 ml/min (velocities higher than 0.47 m/s) in order to benefit from efficient 

mixing. 

6.4.1.2 Herringbone Mixer 

The results obtained with the herringbone mixing structure are depicted in Figure 6.13. As this reactor has 

approximately the same volume as the tangential mixer, the same approximation for Reynolds number and 

residence time holds: 1 ml/min corresponding to a flow velocity of 0.06 m/s, ≈1.1 s and Re ≈ 10 (at the 

contacting point). 
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Figure 6.13: Mixing profiles obtained in the herringbone mixing structure while mixing pseudoionone 

(1.2 M) with sulfuric acid (7.5 M). 

Compared to the tangential mixer, where an onset of the reaction is observed at a length of about 12 mm, 

this type of mixer leads to an immediate and almost linear increase in temperature. At flow rates as low as 

2 ml/min (0.12 m/s), efficient mixing of the reactants is observed. This corresponds to a 4-fold reduction 

of the required Reynolds number compared to the previous structure. Furthermore, even when lowering 

flow velocity down to 0.04 m/s, temperature rises up to 35 °C. As heat losses become considerable at such 

high residence times, it is likely that the drop in temperature at lower flow rates can be ascribed to the 

increasing importance of the losses rather than to a loss of mixing quality. More interestingly, this 

structure which is supposed to fail at higher Re numbers [156] exhibits its best performance at Re ≈ 130. 

This deviation might be explained by the fact that the Reynolds number is obtained by using average 

physical parameters of both inlet solutions.  

6.4.1.3 Comparison of the Structures 

For a comparison of both mixing structures, the heat losses were taken into account as follows: 
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Thereby, the volumetric heat loss coefficient was estimated by flowing hot inert liquid (butanol) through 

the structure prior to the experiments, leading to values of 2.1·106 W/(m3K) and 1.4·106 W/(m3K) for the 

tangential and the herringbone mixer respectively. For simplification, no dependence on the flow velocity 

was considered. Assuming a first order behavior, the conversion at the outlet of the reactor was 

transformed into the Damköhler number: 

 ln( )DaI X  1  (6.2) 

The Damköhler numbers obtained for both mixers are shown in Figure 6.14. 

 

Figure 6.14: Conversion at the mixer outlet (DaI = /tr,eff) as a function of the flow rate. 

The trend observed for the tangential mixer is exactly opposed to the curves expected from a reaction 

working in the kinetic regime, where an increase of flow rates results in a reduced residence time and 

hence, in a linearly diminishing DaI = /tr,eff. In the present case, the increase of the flow rate not only 
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affects DaI, but, overproportionally reduces tr,eff due to the creation of vortices. This turbulent aspect of 

the laminar flow leads to an increased conversion with increasing flow rates. 

Figure 6.14 shows that for the tangential mixer a minimum flow rate of about 7 ml/min is required to 

obtain sufficient conversion (X = 0.73 corresponding to DaI = 1.30) at the reactor outlet. On the other 

hand, a constant high value of Damköhler number is observed for the herringbones mixer in the range of 

2 ml/min to 13 ml/min (0.12-0.8 m/s). The points at lower flow rates were removed due to insufficient 

accuracy to make solid conclusions. Nevertheless, a much broader range of flow rates is accessible when 

using the herringbone structure. For this reason, the latter structure was chosen for the integration into the 

multi-injection reactor. 

6.4.2 Characterization of Heat-Transfer in the Multi-Injection Reactor 

The temperature profiles developed within the mixing structures presented in the previous section are a 

result of the interaction between the heat source, i.e. the exothermic reaction, and the heat losses to the 

surrounding. As opposed to these mixing structures, the multi-injection reactor has an additional 

integrated cooling layer to maintain the reaction at a constant level of temperature. To evaluate the heat 

transfer performance between the cooling layer and the reaction layer, heat exchange experiments were 

carried out. Thereby, the channels on the reaction layer are fed with ethanol and butanol respectively (via 

the first injection point) at room temperature, which is heated up by the coolant passed with a temperature 

of 40 °C / 50 °C. Two types of coolants are used: isopropanol and water with thermal conductivities of 

0.138 W/(mK) [37] and 0.638W/(mK) [37] at 45 °C, respectively. As the heat losses by radiation and 

convection are neglected for the estimation of the heat transfer coefficient, the value obtained for the 

volumetric heat transfer coefficient is a superposition between the actual heat transfer coefficient and the 

heat losses to the surroundings. Hence, the real heat transfer coefficient between the reaction and the 
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cooling layer is always higher than the value obtained from the experiments. A typical profile obtained 

with ethanol in the reaction channel and water in the cooling channel is presented in Figure 6.15.  

 

Figure 6.15: Temperature profile measured (experiment) and modeled (model) in the multi-injection reactor using a 

simple heat transfer model with constant coolant temperature. The gray rectangles indicate the location of the 

three larger residence time channels. Cooling channel: water at 39 °C and flow rate > 80 ml/min. Reaction 

channel: ethanol at 10.6 ml/min (0.63 m/s). Modeling: see descriptions in the text. 

When looking at the heat balance, the experiment can be described using the following simplified 

equations: 
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Hence, assuming that the volumetric heat transfer coefficient Uaglobal is identical in the mixing channel (H 

× W = 560 m × 500 m) and in the residence time channel (H × W = 560 m × 2000 m), one would 

expect a steeper temperature gradient dT/dz in the residence time channel due to the 4-fold reduced flow 

velocity. However, the curve obtained in Figure 6.15 shows no clear difference between the larger 
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residence time channels and the narrow mixing channels. From this observation, it was concluded that the 

volumetric heat transfer coefficient in the wider channels is about 4 times smaller than in the structured 

mixing channels. This difference was ascribed to two phenomena: 

1) The presence of structures leading to an improved convection in radial direction. 

2) In spite the fact that the heat exchange occurs mostly through the bottom of the reaction channel, 

due to the short distances, the side walls are not adiabatic. Hence, the specific heat exchange area 

is 2-fold smaller for the wider channels. 

For the modeling, a lumped volumetric heat transfer coefficient was calculated, assuming a uniform flow 

velocity in empty channels with a cross section of H × W = 560 m × 500 m all over the reactor. The 

value obtained for the mixing channels is Uaglobal = 1·107 W/(m3K) corresponding to a characteristic 

cooling time of 0.2 s. At this place, it has to be pointed out again that the volumetric heat transfer 

coefficient in the larger channels is 4-fold smaller than Uaglobal. 

Furthermore, it has to be pointed out that the initial temperature in Figure 6.15 differs from room 

temperature, as heat exchange occurs within a length of 6 mm prior to the area monitored by the infrared 

camera.  

The volumetric heat exchange coefficients obtained under different conditions are summarized in Figure 

6.16. 
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Figure 6.16: Comparison of the heat transfer coefficient estimated by heat exchange experiments with two different 

heat exchange media, i.e. water ( = 0.638 W/(mK)) and isopropanol ( = 0.138 W/(mK)). 

Generally, the volumetric heat transfer coefficient is increasing with the flow rate which was varied up to 

10.6 ml/min. The increased heat transfer was ascribed to the improved radial mixing with flow rate due to 

the herringbone structures, as demonstrated in section 6.4.1. While changing the cold flow from ethanol to 

slightly more viscous butanol had no noticeable impact, the volumetric heat transfer coefficient in the 

working range (about 0.18 m/s corresponding to 3 ml/min) was improved almost 2-fold by changing from 

isopropanol to more conductive water as coolant. By comparing the results obtained with isopropanol and 

with water respectively, one can estimate the relative impact of the heat transfer resistance on the reaction 

layer and on the cooling layer side respectively. The overall heat transfer resistance between reaction layer 

and cooling layer is described as follows: 
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Thereby, C’ and B are two parameters describing the thermal resistance located on the reactor and on the 

cooling side respectively. As with the available experiments the wall resistance cannot be distinguished 

from the reaction layer side resistance, both resistances are lumped into one constant C: 
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1 1
1  (6.5) 

Thus, the ratio between the resistance obtained with isopropanol ROH and with water RH2O is: 
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The ratio of both resistances obtained at a flow rate of 3 ml/min is 1.8 (see Figure 6.16). Solving the first 

order equation system, a value of M = 0.18 is obtained. Hence, the impact of the resistances can be 

determined as follows: 

 e
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Whereas in the case of cooling with isopropanol more than 50 % of the resistance is located on the cooling 

layer side due to the larger channel and the absence of mixing structures, when exchanging the coolant to 

water the resistance drops to about 20 % of the total resistance. 

For the experiments described in the following sections, isopropanol was always used as a coolant 

allowing temperatures around 0 °C to be accessed. The coolant was fed with a minimum flow rate of 

80 ml/min leading to a maximal temperature difference of 4 °C between inlet and outlet.  
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6.4.3 Thermal Characterization of the Cyclization of Pseudoionone in the Multi-injection Reactor 

The cyclization of pseudoionone was performed in the multi-injection reactor by injecting three equal 

flows of pseudoionone solution (1.5 M) into the main stream of sulfuric acid solution (7.5 M) keeping the 

total flow ratio at 1:1. Under adiabatic conditions, a temperature rise of 48 °C would occur. Furthermore, 

at temperature above 70 °C, the highly exothermic and unwanted polymerization of the products is 

triggered. Hence, it is crucial to control temperature during this reaction. For the following series of 

experiments, the coolant (isopropanol) temperature was kept at 48 °C. To extract the temperature profile 

from the thermal image (Figure 6.17 left), the exact position of the reactor channels had to be identified 

prior to the experiments. This can be done by injecting pulses of hot fluid, allowing the channels to be 

distinguished from the rest of the reactor surface. Subsequently, the thermal image of the reactor surface 

can be transformed into the temperature profile inside the reaction channels (Figure 6.17 right). 

By taking the average temperature over the cross section, the 1-dimensional temperature profile was 

deduced (Figure 6.18). As expected, temperature rises along the three herringbone mixers and decreases in 

the residence time channels. However, especially for the first mixing structure located in the bottom of the 

picture, a wavelike increase of temperature is observed. The explanation for this behavior can be found in 

the thermal image: the three temperature minima are reached at the positions close to the cold reactor edge 

(bottom of the picture), whereas the maxima are reached when the flow passes through the regions located 

close to the center of the plate. In fact, the cooling is more effective on the reactor edge due to increased 

heat losses compared to the reactor center where slight thermal interactions between the channels cannot 

be neglected. Furthermore, the hot spot after each injection point is reached just in the beginning of the 

residence time channel, which is due to the about 4-fold reduced volumetric heat transfer coefficient (see 

section 6.4.2) in combination with ongoing mixing/reaction. 
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Figure 6.17: Temperature profile during the cyclization of pseudoionone in the multi-injection MSR with one 

injection point (left) and with three injection points (right). In the bottom pictures, the top pictures are covered 

by a mask highlighting the reaction channels. The first injection point is located in the bottom of the picture. 

Initial concentration of the two inlet solution: cH2SO4 = 7.5 M and cPI = 1.5 M; Total flow rate: 3 ml/min (0.18 

m/s); Tad = 48 °C;   Tc = 48 °C. 

 

Figure 6.18: Axial temperature profile during the cyclization of pseudoionone in the multi-injection reactor with one 

injection point and with three injection points. Conditions identical to Figure 6.17. The gray rectangles indicate 

the location of the three larger residence time channels. 
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Using the multi-injection reactor, the temperature rise can be kept below 6 °C compared to the cooling 

temperature, which is the equivalent of an 8-fold reduced hot spot temperature compared to the adiabatic 

temperature rise. The low hot spot temperature is mainly attained due to three distinct effects: 

1) The high heat transfer coefficient attained in microchannels 

2) The gradual mixing in the herringbone structure leads to a decelerated release of heat, thus, 

reducing the overall transformation rate. 

3) The injection of pseudoionone at three distinct injection points. 

To analyze the impact of the latter phenomenon, in Figure 6.18 the temperature profile obtained with 

3 injection points was compared to the one obtained by injecting the whole flow of pseudoionone via 

the first injection point. In the latter case, the temperature rises up to a maximum value of 62 °C, 

corresponding to a temperature rise of 14 °C with respect to the cooling channel. Hence, the increase 

in temperature is more than 2-fold higher than with 3 injection points. The maximum temperatures 

found at different flow rates within the two configurations (1 and 3 injection points) are given in 

Figure 6.19. 

As expected, an enhanced temperature control all over the flow rate range is observed using three injection 

points. The slight increase in temperature with the flow rate is mainly due to two reasons: 

1) The overall transformation rate is increased with flow rate due to the reduced mixing time 

2) The evacuation of heat between two injection points is less effective due to the reduced residence 

time. 

 



 
6 Development and Experimental Investigation of a Multi-injection Reactor 

202 
 

 

Figure 6.19: Maximum temperature while carrying out cyclization of pseudoionone in the multi-injection reactor 

with one injection point and with three injection points. Initial concentration of the two inlet solutions: 

cH2SO4 = 7.5 M and cPI = 1.5 M; Tad = 48 °C; Tcool = 48 °C. 

6.4.4 Product Distribution in the Multi-injection Reactor 

The distribution of the products at the reactor outlet was characterized by gas chromatography with a 

precision of ± 5 %. As not all of the molecules could be detected, a mass balance analysis was performed 

after each experiment. Thereby, a deficit of the mass balance indicates either that the molecules are in an 

intermediate form not monitored by the gas chromatograph or have entered the unwanted consecutive 

polymerization. To distinguish both phenomena, the yield of the intermediate isomers 

6,10-dimethylundeca-3,5-dione-10-hydroxy-2-one is used as indicator for the occurrence of the first type 

of mass balance deficit. 

In the following, the effect of flow rate and temperature on product distribution is analyzed at the 

reference concentrations of cPI = 1.25 M and cH2SO4 = 7.5 M which is in the working range of the industrial 
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state of the art batch process. Subsequently, the possibility to work at increased reactant concentrations i.e. 

at reduced amounts of solvent in the multi-injection reactor is investigated. 

6.4.4.1 Yield as Function of Flow Rate 

The effect of the flow rate on mixing quality was already extensively discussed in section 6.4.1 and it was 

concluded that with a flow rate above 2 ml/min (0.12 m/s), complete mixing can be assured. However, it 

was difficult to make a clear statement regarding mixing quality at lower flow rates due to the increasing 

impact of heat losses. In Figure 6.20, the product composition at the reactor outlet was determined at 

different flow rates for a fixed working temperature of 51 °C. 

 

Figure 6.20: Yields and conversion at the outlet of the multi-injection reactor during cyclization of pseudoionone as 

function of flow rate. Temperature: 51 °C, initial concentrations of the respective solutions: cPI = 1.25 M; 

cH2SO4 = 7.5 M.  

Conversion all over the velocity range is above 0.95. Thereby, the lowest values are monitored at the 

lower range of flow velocities, with a constant conversion of almost 1 at flow velocities higher than 

0.12 m/s. As in an ideal kinetically controlled system the conversion increases with the residence time, 

one can conclude that mixing plays an essential role in this range of flow rates. At a total flow rate of less 
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than 2 ml/min (0.12 m/s) the inefficiency of mixing has an impact on the product composition, confirming 

the results obtained in section 6.4.1.1. The yield of -ionone and -ionone is lower compared to the higher 

flow rates where a yield of Y + is achieved. The increased concentration of intermediates 

indicates that the loss of yield is due to the presence of intermediate molecules rather than due to the loss 

to the unwanted consecutive reactions. The increased segregation at lower flow rates leads to areas of low 

concentrations of acid. Kashid et al. [241] demonstrated that below a ratio of acid:pseudoionone of 2.4:1, 

the reaction cannot be completed.  

To assure good mixing quality, experiments are carried out at a flow rate of 3 ml/min (0.18 m/s). 

6.4.4.2 Yield as Function of Temperature 

In the first series of experiments, the flow rate was kept constant at a total of 3 ml/min corresponding to a 

residence time of 1 ≈ 4.1 s for the molecules entering via the first injection point, of 2 ≈ 2.5 s for the 

molecules entering via the second injection point and 3 ≈ 1.1 s for the molecules entering via the third 

injection point. Simultaneously, the temperature in the cooling unit was varied between 0 °C and 80 °C 

with isopropanol as coolant at a flow rate > 80 ml/min. The coolant temperature could be kept constant 

with a maximum difference between inlet and outlet of 4 °C at 80 °C. The yields obtained are depicted in 

Figure 6.21. 
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Figure 6.21: Yield and conversion at the outlet of the multi-injection reactor during cyclization of pseudoionone as 

function of coolant temperature. Thereby  and  denote -ionone and -ionone, and intermediates (5) are two 

isomers of 6,10-dimethylundeca-3,5-dione-10-hydroxy-2-one. Total flow rate: 3 ml/min (0.18 m/s), initial 

concentrations of the respective solutions: cPI = 1.25 M; cH2SO4 = 7.5 M. 

The conversion of the reactants is close to 1 all over the temperature range, indicating almost complete 

mixing of the reactants. Thereby, slightly lower conversions (0.98) were observed at the lower 

temperatures, which is either a kinetic effect or linked to a decreased mixing quality at increased viscosity. 

It results in an increased amount of intermediates at low temperature and causes a slight deficit of mass 

balance. In turn, the yield of the sum of -ionone and -ionone is at 0.8 at temperatures around 0 °C and 

increases until a plateau of Y + reached at 30 °C. The plateau is constant in the range of 30 °C to 

60 °C, which constitutes an optimal operation window. The on-set of the unwanted consecutive 

polymerization reaction is observed at temperatures above 70 °C. The short residence time of this 

microstructured reactor allows working at much higher temperatures compared to a classical batch system, 

where the residence time in the order of 1 h causes a loss of Y + at temperatures above 10 °C [241]. 
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When looking at the product distribution between -ionone and -ionone in Figure 6.22, with higher 

temperatures the ratio of /( + increases with temperature as the kinetics of the isomerization reaction 

is accelerated.  

 

Figure 6.22: Product repartition of -ionone and -ionone with respect to cooling temperature. Total flow rate: 

3ml/min, initial concentrations of the respective solutions: cPI = 1.25 M; cH2SO4 = 7.5 M. 

Thereby, 80 % -ionone is obtained at temperatures around 0 °C and about 80 % of -ionone at 65 °C. As 

for the target process, the yield of -ionone has to be improved, high temperatures are favorable. Thereby, 

working under almost isothermal conditions as shown in the previous section allows the optimum point to 

be approached while preventing the induction of unwanted consecutive reactions. Hence, by carrying out 

the cyclization at 50 °C, one can estimate the additional residence time needed in an isothermal loop for a 

conversion of 0.99 from pseudoionone to -ionone to be in the order of ≈ 2 s [240, 241]. Compared to the 

semi-batch process with a residence time in the order of hours, a space-time yield improvement of a factor 

more than batch/Multi-Injection ≈ 500 is achieved due to the improved temperature control. 
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6.4.4.3 Reducing the Amount of Solvent 

As final step, the inlet concentrations were raised with the aim of reducing the required amount of the 

solvent 1-nitropropane and of the excess reactant sulfuric acid. This was done in two consecutive steps: 

1) The concentration of the inlet solution of pseudoionone (PI) was approximately doubled from 1.25 M to 

2.75 M while raising the concentration of sulfuric acid from 7.5 M to 12 M. Thereby, the ratio of acid to 

pseudoionone was diminished from 6 to 4.4. 2) In a next step, the acid concentration was further reduced 

to 7.5 M yielding a ratio of acid:pseudoionone of 2.7. While increasing the inlet concentrations, on the one 

hand, the adiabatic temperature rise increases, which renders temperature control a key issue. This was 

overcome by the multi-injection reactor (see Figure 6.24), where the temperature rise was limited to below 

10 °C. On the other hand, the increased viscosity of the solution limits the throughput with the setup used, 

as pressure drop above 1 bar could not be realized with syringe pumps. The working conditions and the 

product distribution achieved are summarized in Table 6.2 and in Figure 6.23. 

When comparing the product quality of Set 1 to the Reference, an almost identical product distribution is 

observed with a slightly lower yield of -ionone. The appearance of a non-negligible amount of 

intermediates can be linked to the reduced flow rate compared to the reference, and could be eliminated by 

increasing the flow rate with appropriate pumps. While changing from the reference to set 1, the required 

amount of solvent is reduced from 600 g / (liter of solution) to 250 g / (liter of solution). 

A further reduction of the ratio sulfuric acid:pseudoionone as shown for Set 2 considerably reduces the 

yield of Y + while an important amount of intermediates is found. This confirms the results published by 

Kashid et al. [240, 241], who showed that a ratio in the order of 5 is required for the reaction to complete. 
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Figure 6.23: Yields and conversion obtained at the outlet of the multi-injection reactor during cyclization of 

pseudoionone. The respective experimental conditions are given in Table 6.2. 

Table 6.2: Conditions used for comparison of increased concentration in Figure 6.23. 

 
Flow velocity [m/s] Temperature [°C] ∆Tad [°C] 

Reference 0.18 60 °C 37 °C 

Set 1 0.12 27 °C 81 °C 

Set 2 0.18 27 °C 85 °C 

 

In the temperature profile obtained with the concentration Set 2 (Figure 6.24), a hot spot temperature of 

38 °C corresponding to a temperature rise of 10 °C, i.e. 13 % of the adiabatic temperature rise, is found. 

Thus, even at high concentration this reaction can be carried out in a controlled manner using the multi-

injection reactor. 
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Figure 6.24: Axial temperature profile while carrying out cyclization of pseudoionone in the multi-injection reactor 

with three injection points. The reaction conditions are summarized in Set 2 in Table 6.2. 

6.5 Conclusions 

 Within this study, it was successfully demonstrated how quantitative thermal mapping can be used as a 

tool to characterize and develop efficient microstructured reactors. By measuring the temperature profiles 

under quasi-adiabatic conditions and deducing the mixing profile inside a tangential and a herringbone 

mixer, it was shown that the herringbone mixing structure provides efficient mixing in a large range 

within the laminar flow regime (Re = 20…130).  

The incorporation of the herringbone structure in a multi-injection microreactor enabled carrying out the 

highly exothermic and quasi-instantaneous model reaction under continuous flow while reducing the hot 

spot temperature 8-fold compared to conventional large scale batch reactors, where a temperature near 

adiabatic temperature rise would be obtained. The improved temperature control was ascribed to three 

aspects of the reactor: 
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1) The high heat transfer coefficient attained in the microchannels (Ua ≈ 4·106 W/(m3K)) 

2) The gradual mixing in the herringbone structure leads to a decelerated release of heat, thus, 

reducing the overall transformation rate. 

3) The injection of pseudoionone at three distinct injection points provided a 2-fold reduced hot spot 

temperature compared to an operation mode with one single injection point. 

Within a temperature range of 30 °C to 60 °C, a combined yield of -ionone and -ionone of 

Y + was achieved with a residence time of 4.1 s. Using this type of setup, a more than 500-fold 

improved space-time yield was achieved compared to the conventional semi-batch setup with typical 

processing times in the order of hours. Furthermore, by doubling the concentrations, the solvent quantity 

required during the reaction was reduced by a factor of 2. 

Finally, during this study, low temperature co-fired ceramics was shown to be a very flexible technology 

permitting an integrated design of microstructured reactors which exhibit high chemical resistance to 

harsh acidic and basic environments. 
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6.6 Notations 

a Specific surface area, [1/m] 

B Fit variable, [1/m2] 

C
 

Fit variable, [W/(m3K)] 

c Concentration, [mol/m3] 

cp Heat capacity, [J/(kg K)] 

h Height of the void channel, [m] 

Hr Reaction enthalpy, [J/mol] 

L Channel length, [m] 

M Fit variable = C/B,[W/(mK)] 

q Groove wave factor, [-] 

R Volumetric Heat Transfer resistance, [(m3K)/W] 

tcool Characteristic cooling time · cp/Uacool, [s] 

tloss Characteristic heat loss time · cp/Ualoss, [s] 

T Temperature, [K] 

u Flow velocity, [m/s] 

Uaglobal Global volumetric heat transfer coefficient, [W/(m2K)] 

Ualosses Global heat losses to surrounding coefficient, [W/(m2K)] 

W Channel width, [m] 

X Conversion, [-] 

Y Yield, [-] 

z Axial coordinate, [-] 

z' Axial coordinate, [-] 

 

Greek 

 Factor describing the ratio of herringbone height to void channel height,[-] 

 Designates the ionone molecule 
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 Designates the ionone molecule 

 Designates the ionone molecule in its protonated state 

 Designates the ionone molecule in its protonated state 

 Thermal conductivity, [W/(mK)] 

∆ Symbol for difference 

ε Emissivity, [-] 

 Mean density, [kg/m3] 

 Residence time, [s] 

Dimensionless numbers 

DaI Damköhler number  /tr,eff 

Re Reynolds number u·dh/ν, [-] 

Subscript 

0 Initial condition 

ad Adiabatic 

cool In the cooling layer 

eff Effective 

loss Related to heat losses 

LTCC Low temperature co-fired ceramics 

PI Pseudoionone 

Wall Wall 

W-Amb Wall-Ambient 
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Chapter 7   

GENERAL CONCLUSIONS 

Compared to the conclusions made in every single chapter, this chapter summarizes the outcome in a less 

detailed manner, while making the links between the individual conclusions of each chapter. 

Process intensification of rapid and highly exothermic reactions with microstructured reactors 

(characteristic dimensions in the range of 100-1000 m) has been first analyzed numerically.  Thereby, 

special attention was put to maintain temperature within a narrow window, i.e. isothermal conditions in 

the ideal case.  One of the main simplifications done during the modeling was the assumption of a reaction 

controlled by its very fast or even quasi-instantaneous kinetics, neglecting the influence of mixing. The 

outcome of the three concepts of hot spot reduction is summarized in the following: 

1) Increasing thermal conductivity of the microchannel walls to spread the heat formed at the hot 

spot along the whole channel: Two distinct scenarios were observed. a) If the inlet 

temperature is equal to the cooling temperature, backmixing of heat leads to an increase of 

inlet temperature, which, in turn, results in an earlier and more pronounced run-away. b) If the 

inlet temperature is lower than the cooling temperature, at high thermal conductivity the heat 

from the hot spot is used to heat up the inlet stream, leading to a reduced hot spot temperature. 

Hence, this concept works only with the presence of a heat sink in the reactor, such as a cold 

inlet stream or endothermic reactions. 
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2) The multi-injection reactor, i.e. stepwise injection of one of the reactants along the main 

channel: Thereby, the heat production is spread over the reactor length, leading to a 

minimized maximum temperature. In the model, the hot spot temperature diminished with an 

increasing amount of injection points. Furthermore, instead of dosing equal amounts of 

solution at each injection point, it was shown that increasing the amount from one injection 

points to the next can lead to a further reduction of temperature of 15 %. 

3) The micro-annular reactor, i.e. continuous injection of one of the reactants along the main 

channel of the reactor with a concentric shape. It is the analog to a multi-injection reactor with 

a quasi-infinite amount of injection points. In the model, for quasi-instantaneous reaction a 

zero order behavior was observed as dosing is the rate limiting step. As a consequence, an 

almost isothermal temperature profile is obtained if effective characteristic reaction time is 

one order of magnitude smaller than residence time. 

The decisive difference between model and reality lies in the mixing of the reactants. Especially for quasi-

instantaneous reactions, despite the small sizes of microstructured reactors, they operate in a regime 

strongly influenced or even controlled by mixing. It was demonstrated that mixing in circular channels 

without structured walls is not fast enough, leading to incomplete reactions at the outlet of the reactor. 

Only by designing efficient structures, such as the herringbone and the tangential mixer, one can assure 

the reaction to occur within the reactor, and obtain the desired product quality. Thereby, one has to operate 

at the minimum Reynolds number required for the structure to mix efficiently. The minimal value for 

sufficient mixing in the tangential and the herringbone mixer found in this study are: 

 
Tangential:           70 Re

Herringbone:        20 Re




 (6.9) 

Despite the fact that the micro-annular reactor showed the best results in the simulation, the integration of 

such efficiently mixing structures in a perfectly concentric reactor is technically very challenging. For this 
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reason, the multi-injection reactor was chosen as the device for process intensification of quasi-

instantaneous reactions. 

A calibration method for infrared thermography was developed which allows monitoring of temperature 

inside microchannels with a precision of ± 1 °C. The main requirement of the method for the reactor 

design is a thin top cover (< 500 m). Compared to thermocouples, a much higher resolution of 

100 points/mm2 is achieved while preventing artifacts due to the non-intrusive way of measurement. As 

validation of the method, it was shown that temperature profiles can be determined in non-reactive 

systems to obtain heat transfer coefficients for example, and in reactive systems to measure effective 

reaction kinetics. 

In the last part of the study, an efficient multi-injection reactor was developed using low temperature co-

fired ceramic technology (LTCC) with its versatile advantages such as inertness to harsh reaction 

conditions and straightforward creation of 3-d structures. While carrying out the model reaction, i.e. 

cyclization of pseudoionone to -ionone and -ionone, an 8-fold reduction of hot spot temperature 

compared to the adiabatic temperature rise was demonstrated by quantitative infrared thermal mapping. 

Furthermore, this technique allowed the decreased product quality at low flow rates to be attributed to low 

mixing quality. When working at a sufficient velocity of 0.18 m/s corresponding to a throughput of about 

20 g of pseudoionone per hour, within a temperature range of 30 °C to 60 °C, a combined yield of -

ionone and -ionone of Y + was achieved with a residence time of 4.1 s. Thereby, the highly 

exothermic and unwanted consecutive polymerization was efficiently suppressed due to the excellent 

temperature control and the short residence time. Using this type of setup, a more than 500-fold improved 

space-time yield was achieved compared to the conventional semi-batch setup with typical processing 

times in the order of hours. Furthermore, the solvent quantity required during the reaction was reduced by 

a factor of 2. 
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As mentioned in the beginning, by definition quasi-instantaneous reactions are operated in a regime where 

the overall transformation rate corresponds to the mixing rate. Thus, the application of the multi-injection 

reactor developed in the present thesis is not limited to the cyclization of pseudoionone, but, it can be used 

for any quasi-instantaneous reaction such as acid-base reactions or organo-metallic reactions.
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