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ABSTRACT: Accurate river flow forecasting is an important asset for stream and reservoir management, 
being often translated into substantial social, economic and ecological gains. This contribution aims at 
coupling satellite rainfall estimates and machine learning techniques for daily flow forecast. Two lead 
times, of 30 and 60 days, were tested for flows at Victoria Falls, in Southern Africa. Six distinct machine 
learning models were compared with optimized ARMA models and benchmarked against a Fourierseries 
approximation. Results show that the addition of rainfall data generally enhanced the performances of 
machine learning models at 30 days but did not improve forecasts at 60 days. Also, it was shown that 
traditional ARMA models do not make use of the rainfall information. Regarding a lead time of 60 days, 
the machine learning models appear to bear great advantages compared to ARMA models which, for such 
a lead time have shown practically no forecast capabilities. 
 
KEY WORDS: Artificial Neural Networks,Flow forecast, Kariba, Support-Vector Regression, Zambezi. 
 
1 INTRODUCTION 

Accurate river flow forecasting is an important asset for stream and reservoir management, being 
often translated into substantial social, economic and ecological gains. In the past, considerable advances 
have been accomplished on this subject, ranging from the development of physical distributed and 
lumped conceptual approaches to data-driven models. 

In the last decades, a wealth of alternative data-driven models has been proposed among which 
autoregressive moving-average (ARMA)(e.g. Anderson, 1977; Mohammadi et al., 2006; Valipour et al., 
2013), one of the most popular times series models for reservoir design and operation (Wang et al., 2009), 
autoregressive integrated moving-average (ARIMA)(e.g. Carlson et al., 1970), which is a non-static 
generalization of the ARMA model (Valipour et al., 2013), artificial neural networks (ANN)(Abrahart and 
See, 2000; Cigizoglu, 2005; Shamseldin and O'Connor, 2001), genetic programming (GP)(Londhe and 
Charhate, 2010; Wang et al., 2009), support vector regression (SVR)(e.g. Lin et al., 2006; Wang et al., 
2009), and k-nearest neighbors (KNN) (e.g. Sivakumar et al., 2002)are examples. The performances 
reported in literature vary greatly(Wu and Chau, 2010). 

Developed in the framework of the African Dams Project (ADAPT)(Mertens et al., 2013), a flow 
forecast system is proposed and evaluated for the Zambezi River at Victoria Falls. This section drains the 
over 360 000 km2 UpperZambezi catchment. Not far downstream that section laysKariba, the World’s 
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largest artificial reservoir by volume, whose operation greatly influences the Zambezi basin’s economy 
and ecosystem. Characterized by its large size, pronounced seasonal changes in its hydrological response, 
covering a range of climates from tropical to semi-arid, and being influenced by large and complex 
wetlands, the UpperZambezi catchment presents an interesting challenge with regard to flow forecasting. 
The location and main features of the catchment are presented in Figure 1. 

 

 
Figure 1 Location and detail of the Upper Zambezi River basin and main discharge gauging stations 

 
In particular, in the present contribution the flow of the Zambezi River is forecast for lead times of 

30 and 60 days based on gauge measurements and satellite rainfall estimates. Two distinct pre-processing 
procedures for the satellite rainfall data aggregation using flow length maps are evaluated. Alternative 
data-driven forecasting models are compared, namely ARMA and machine learning models such as 
multilayer perceptron ANNs (MLP), radial basis function networks (RBFN), nonlinear autoregressive 
with exogenous inputs ANNs (NARX), layer-recurrent ANNs (LR), least squares support vector 
regression (LSSVR), and LSSVR NARX. 

In section 2 the discharge and rainfall data employed in the study are presented. An overview of the 
applied methods is given in section 3. Section 4 is dedicated to the presentation and discussion of the 
main results of the study. Finally, conclusions are drawn in section 5. 

 
2 DATA 

The historical discharge data for Victoria Falls, provided by the Department of Water Affairs of 
Zambia,spans a period from 1958-11-7 to 2010-3-6. The series is characterized by a mean discharge of 
1100 m3/s and substantial decadal average flow variations (Matos et al., 2010). Data of additional gauging 
stations upstream of Victoria Falls were also analyzed: Chavuma Falls, Lukulu, Senanga and Shesheke. 
These data were provided by the Department of Water Affairs of Zambia, the Zambezi River Authority 
and the Global Runoff Data Centre, 56068 Koblenz, Germany. The series are represented in Figure 2. 

As aforementioned, the Upper Zambezi is a large basin which holds wetlands with a great influence 
on the Zambezi’s flow, the most important being the Barotse plains, which spreads between Lukulu and 
Senanga, and the Chobe-Zambezi confluence, between Sesheke and Victoria Falls (Figure 1).In Table 1 
the average daily lags which yield the highest cross-correlations between discharge series at each pair of 
gauging stations are presented. It can be seen that the Barotse plains delay the hydrograph by 
approximately 18 days, whereas the Chobe-Zambezi confluence has an impact of 10 days. From 
Chavuma Falls to Sesheke, and especially to Victoria Falls, the lags amount to nearly one month. 

The rainfall data was derived from the Tropical Rainfall Measuring Mission (TRMM), namely in the 
form of the TRMM Multi-satellite Precipitation Analysis (TMPA) 3B42 version 7a product (Huffman et 
al., 1995; Huffman et al., 2007) which produces merged microwave and infrared precipitation at 
three-hourly and 0.25° resolutions. 
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Figure 2 Historical series of daily records from the main discharge gauging stations in the Upper Zambezi River 
 

Table 1 Average lag (in days) between the main discharge gauging stations in the Upper Zambezi River 

 
 
Reliable daily or sub-daily satellite rainfall estimates have only been made available for the Upper 

Zambezi area from 1998 onwards – the period covered by TMPA 3B42 data. In order to meet the goals of 
the present contribution a period of overlapping daily rainfall and river discharge was sought. 
Accordingly, the focus of the remainder of the text will be on the period spanning from 1998-1-1 to 
2010-3-6. In Figure 3 the average yearly rainfall is depicted for the Upper Zambezi area and the period of 
interest. As can be seen, average annual rainfall values vary from nearly 2000 mm in the northern part of 
the catchment to 400 mm in the south. 

 

 
Figure 3 Average yearly rainfall estimated by the TMP 3B42 version 7a product from 1998-1-1 to 2010-3-6 
 
In order to fit and evaluate the performance of the different models a cross-validation procedure was 

implemented by partitioning the data into training (60% of the data), validation (20%) and test (20%) 
periods. In Figure 4 the three periods are illustrated along with the mean daily rainfall estimates over the 
catchment. 
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Figure 4 Studied discharge series at Victoria Falls showing training, validation and test periods. Mean daily rainfall 

over the Upper Zambezi displayed on top and the right axis. 
 

3METHODS 
 

3.1Applied models 
 

3.1.1 ARMA 
ARMA are mathematical models of the persistence, or autocorrelation, in a time series (Wu and 

Chau, 2010). Widely used in hydrology, anARMA(𝑝𝑝,𝑞𝑞) model is characterized by 𝑝𝑝, the autoregressive 
order, and 𝑞𝑞, the moving-average order. In the present case, given the evident seasonal behavior of the 
flood, and being that the model is applied to daily data, an external input in the form of a Fourier series 
approximation was combined with the ARMA model. 

In order to select the adequate model for each of the tested conditions, the values of 𝑝𝑝 and 𝑞𝑞 were 
made to vary from 0 to 10 in a stepwise procedure. The chosen model was the one with the minimum 
Akaike Information Criterion value. 

 
3.1.2 Multilayer perceptron 

The multilayer Perceptron (MLP) is the most common feedforward ANN. Numerous successful 
applications of this type of model have been reported in hydrology and, particularly, in attempts to 
forecast discharges (e.g. Baratti et al., 2003; Kumar et al., 2004). Being thoroughly described in the 
literature (e.g. Haykin, 1994), the MLP is a non-parametric static network commonly used for regressions 
tasks. In the application of the MLP there are a number of choices to be made, namely of the number of 
hidden layers and the number of nodes amongst them, the activation functions and the training 
algorithms. This, adding to the intrinsic stochastic behavior of the training procedure, renders the output 
of MLP models prone to substantial variations. 

In order to achieve some significance of the results, each MLP architecture was run 1000 times for 
each scenario, being the presented performances (always referring to the test period) the average of the 
best 100 validation performances in terms of Nash-Sutcliffe Efficiency Coefficient. Architectures of 5 and 
10 sigmoid nodes within one single hidden layer, followed by a linear output node, were tested. The 
Levenberg-Marquardt backpropagation algorithm(Hagan, 1994) was chosen for training. 

 
3.1.3 Nonlinear autoregressive with exogenous inputs ANN 

The nonlinear autoregressive with exogenous inputs ANNs (NARX) differ from the MLP due to a 
delayed feedback connection from the output layer to the input layer. In practice, this results in the 
capacity of the network to exhibit a dynamic behavior. Due to the presence of the feedback connection, 
the gradients that serve as a basis for the adjustment of the network to the training data must be 
approximated,which hinders training.Although obviously interesting in view of the task at hand, where 
each estimate is partially correlated to the preceding, the NARX model’s potential benefits must be 
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weighed against the likely loss of training performance. 
A single architecture of one hidden layer with 5 sigmoid nodes and a linear output node was tested. 

As before, the Levenberg-Marquardt backpropagation algorithm was chosen. Being much slower to train 
than the MLPs, for each scenario 20 models were fitted, being the presented test performances averages 
from the 20% networks that evidenced higher Nash-Sutcliffe coefficients for the validation period. 

 
3.1.4 Layer recurrent ANN 

The layer recurrent ANN (LR), or recurrent multiplayer perceptron (Haykin, 1994) is quite similar to 
the NARX ANN. In this type of network, however, it is not the output that is fed back, but the state of 
each node on the hidden layers. With an increased number of feedback connections the LR ANN can 
approximate sophisticated dynamic behaviors. This is, however, accomplished at the expense of 
additional training difficulties. 

The Bayesian regularization backpropagation algorithm (MacKay, 1992) was used to train the LR 
models. Attending to the specificities of this training algorithm, a relatively larger architecture was 
adopted, including 20 hidden sigmoid nodes in the hidden layer. Due to the highly demanding 
computational training requirements, 12 networks were trained for each scenario over 200 iterations, 
being the compared performances the average resulting from the four with the highest training 
Nash-Sutcliffe coefficient. 

 
3.1.5 Radial basis function networks 

The radial basis functions networks (RBFNs)(Broomhead and Lowe, 1988) are a type of static ANN 
fundamentally different from the aforementioned models. Typically comprised of two main layers, the 
RBFN projects the input space into a high dimensionality space of generalized distances to training points 
using kernels. Once the coordinatesin this high dimensionality space are known, the RBFN performs a 
multiple linear regression in order to compute its outputs. The Gaussian kernel was used in the present 
work. Consequently, the network has one free parameter, 𝜎𝜎, which controls the width of the kernel and 
ultimately tunes be behavior of the RBFN. 

The correct definition of the free parameter 𝜎𝜎is essential to attain good performances. In the present 
contribution, this value has been optimized using the Covariance Matrix Adaptation Evolution Strategy 
(CMA-ES) algorithm(Auger and Hansen, 2005; García et al., 2009; Hansen, 2006; Hansen, 2010), which 
is a random search evolutionary algorithm adequate to real-parameter optimization of non-linear, 
non-convex functions, in which the candidate solutions are sampled according to a multivariate normal 
distribution. 

 
3.1.6. Least squares support vector regression 

The least squares support vector regression (LSSVR)(Suykens et al., 2002; Suykens and 
Vandewalle, 1999) is a variation of the more widespread support vector regression concept(Drucker et al., 
1996), being the practical difference between the two models the fact that the latter minimizes a function 
based on the mean absolute error and LSSVRs minimize the mean squared error. Like RBFNs, LSSVRs 
apply kernels to project the inputs into a high dimensionality space. In the case of LSSVRs, however, the 
regression is subject to a principle of structural risk minimization.Like the RBFNs, LSSVR models with a 
Gaussian kernel have a free parameter, 𝜎𝜎, which should be optimized. Like before, the CMA-ES algorithm 
was used. 

LSSVR has the potential to improve the promising results of support vector regression found in 
similar studies (e.g. Lin et al., 2006) as, by minimizing the mean squared error instead of the mean 
absolute error, the integral of its forecasts converges to the true river runoff volume, which is not 
generically true for SVRs. Additionally to the static LSSVR, a LSSVR NARX implementation was 
attempted(Suykens and Vandewalle, 2000). 

 
3.2Tested forecasting approaches and error metrics 

The different models were applied using four alternative forecasting procedures. The first, 
schematized in Figure 5, is usual in ARMA implementations. It performs a one-step-ahead forecast and, 
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as lead times increase, estimates are fed into the model as inputs until the desired lead time is reached. 
In Figure 5, 𝑦𝑦�𝑖𝑖represents the desired estimate; 𝒙𝒙∗ a generalized vector of inputs comprised by 

estimates, 𝑦𝑦� (or observations 𝑦𝑦) and other ancillary variables,𝒙𝒙; the index 𝑖𝑖 indicates the time frame of 
interest; and 𝑾𝑾 is a matrix characterizing the parameters of the model. 

A purely feedforward technique was applied to the MLP, RBFN and LSSVR models. Using the same 
notation, this technique is illustrated in Figure 6. The main difference from the prior formulation is that 
earlier estimates are never used by the model, being that the forecast is made directly for a predetermined 
lead time (𝑙𝑙𝑙𝑙𝑙𝑙) based solely on ancillary variables and lagged observations. Consequently, no estimates 
are explicitly interdependent. 

  

Figure 5 One-step-ahead forecast model’s scheme Figure 6 Feedforward forecast models’ scheme 
 
Figure 7 shows the implementation of the NARX and LSSVR NARX models. While this 

implementation directly computes the estimate associated with a predetermined lead time, information 
from earlier estimates is also passed on to the model. A potential advantage of such a formulation when 
compared to the feedforward approach is the possibility of attaining added stability of the forecasts. A 
forth alternative, characteristic of the LR model, is illustrated in Figure 8. Being similar to the 
implementation adopted for the NARX models, instead of using past estimates, this method employs 
information from past states of the estimator as inputs (𝝋𝝋). 

After initial trials it was remarked that all the models performed better once a Fourier series 
approximation of the annual discharge cycle was introduced as an ancillary variable. This approximation 
followed the form of equation (1) with 𝐾𝐾 = 4, and 𝑇𝑇 = 365.In order to compare the alternatives, flow 
forecast performances are evaluated for different lead times in terms of Nash-Sutcliffe efficiency 
coefficient (Nash and Sutcliffe, 1970), Pearson correlation coefficient, Spearman correlation coefficient, 
relative accumulated runoff deviation, root mean squared error (RMSE), and mean absolute error (MAE). 

 

  

Figure 7 NARX forecast model’s scheme  Figure 8 LR forecast model’s scheme  
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The Nash-Sutcliffe efficiency coefficient (NS) attains a value of 1 for a perfect fit, a value of 0 for a 
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constant estimate equal to the average of the true values and can reach minus infinity for worse fits. The 
Pearson correlation coefficient is 1 for a perfect linear correspondence between estimates and true values, 
-1 for a perfect inverse linear correspondence and 0 for the absence of a linear relationship. The relative 
accumulated runoff deviation is the relative bias of the whole forecasted series. In the absence of bias it 
equals 0 whereas positive values indicate an overestimation and, conversely, negative values reflect an 
underestimation. The RMSE, as the MAE, are computed through sums of errors and depart from 0 as 
estimates and true values diverge. Their difference resides in the fact that the former is based on a sum of 
squares and the later on a sum of absolute values. As such, the RMSE is more sensitive to large deviations 
than the MAE.Being widely described in literature, the equations of these metrics will not be transcribed. 

The Spearman's rank correlation coefficient, 𝜌𝜌, is a non-linear metric of correlation which evaluates 
the degree to which estimates and true values can be related by any monotonic function. Varying between 
-1 and 1 it can be interpreted similarly to the Pearson correlation coefficient. 

 
3.3 Rainfall as an input 

The substantial time flows take to travel along the Upper Zambezi added to the regularization effect 
of the Barotse Plains and the Chobe-Zambezi confluence potentiate the accuracy of more or less distant 
forecasts. In this work, satellite rainfall estimates are input to the different models in order to test whether 
they improve forecast performances.The applied TMPA 3B42 version 7a data was pre-processed in two 
main steps: the aggregation of daily accumulation into 6 equidistant distance bands obtained by division 
of the longest flow path (Figure 9); and the smoothing of this data through the use of a moving average 
with a window of 20 days. 

Based on the 6 distance bands, the models were also trained using only rainfall data from the 3 most 
upstream bands, being these are the ones that exert most influence on the hydrographs at Victoria Falls 
when lead times larger than 30 days are considered. 

 

 
Figure 9 Illustration of the six rainfall bands applied in the study 

 
4 RESULTS AND DISCUSSION 

 
4.1 Using observed discharges as inputs 

The first results pertain to a lead time of 30 days obtain using solely past observed discharges and 
the Fourier approximation of the discharge as inputs.In Table 2 performances are quantified for each 
metric and model. For each metric, the bars in the background are proportional to the relative differences 
between models. The best model for each metric is highlighted in bold red font. 

The Fourier series approximation is independent of preceding flows and does not make forecasts but 
rather depicts the average annual hydrograph.As such, itprovides a good benchmark for the predictive 
capabilities of the other models regardless of lead time. Analyzing Table 2 it can be observed that most 
models are able topropagate information of past flows 30 days into the future. Both MLP models perform 
similarly to the fitted ARMA(6,2). The NARX model however, seems to outperform all others in the 
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majority of the metrics.The LR20 model proved to be of difficult calibration and should be considered an 
outlier. This, however, might be related to a high number of hidden nodes and the training algorithm that 
was used (Bayesian regularization). 

When a lead forecast of 60 days is endeavored (Table 3), the comparative results change 
appreciably. The ARMA(6,2) model seems to collapse into the Fourier series approximation, indicating 
that this linear model fails to use information from recent observations. Most of the other models show 
performances close to those attained for a lead forecast of 30 days. The best models seem to have been the 
MLP5 and LR20. As for the LSSVR results it can be remarked that, for both lead times, they lead to the 
smallest relative deviation, which is an important parameter for reservoir management. 

 
Table 2 Results for a lead time of 30 days using observed discharges and 6 rainfall bands as inputs 

 
 

Table 3 Results for a lead time of 60 days using observed discharges and 6 rainfall bands as inputs 

 
 

4.2Usingobserveddischarges and 6 rainfall bands as inputs 
To evaluate the potential benefits of adding rainfall information as input to the forecast, two 

modelswere dropped from the analysis: RBFN and LSSVR NARX. This decision was made dueto their 
poor performances and long and computationally demanding training and optimization.As can be seen in 
Table 4, when data from the accumulated rainfall in the 6 distance bands was added to the input vector 
results have improved marginally for the 30 days lead forecast, particularly those of the MLP and 
LSSVR. The ARMA(3,2) model shows little changes when compared to the earlier ARMA(6,2), hinting 
that the linear model has difficulties to make use of the rainfall series. Finally, the best model, NARX5, 
has actually displayed a loss in performance. 

 
Table 4 Results for a lead time of 30 days using observed discharges and 6 rainfall bands as inputs 

 

Model
Nash 

Sutcliffe Pearson Spearman
Relative 

Deviation RMSE MAE
Fourier 0.736 0.917 0.982 -0.243 21.730 304.587

ARMA(6,2) 0.833 0.919 0.983 -0.109 17.268 231.763
MLP5 0.826 0.929 0.978 -0.077 16.423 217.448
MLP10 0.831 0.921 0.980 -0.063 16.818 231.845
LSSVR 0.807 0.910 0.980 0.020 18.834 268.028
NARX5 0.870 0.939 0.984 -0.082 15.438 221.255
LR20 0.169 0.730 0.874 1.257 37.235 628.372

RBFN 0.844 0.930 0.972 -0.087 16.921 219.901
LSSVR NARX 0.785 0.897 0.971 -0.024 19.840 333.881

Model
Nash 

Sutcliffe Pearson Spearman
Relative 

Deviation RMSE MAE
Fourier 0.736 0.917 0.982 -0.243 21.730 304.587

ARMA(6,2) 0.749 0.892 0.979 -0.186 21.162 296.437
MLP5 0.843 0.931 0.967 -0.113 16.811 270.424
MLP10 0.810 0.911 0.970 -0.082 18.307 291.359
LSSVR 0.843 0.923 0.967 -0.054 17.076 297.893
NARX5 0.828 0.928 0.969 -0.146 17.803 277.856
LR20 0.847 0.926 0.958 -0.039 16.796 290.925

RBFN 0.762 0.889 0.933 -0.062 21.006 370.401
LSSVR NARX -0.478 0.615 0.842 -0.031 52.346 666.453

Model
Nash 

Sutcliffe Pearson Spearman
Relative 

Deviation RMSE MAE
Fourier 0.736 0.917 0.982 -0.243 21.730 304.587

ARMA(3,2) 0.833 0.922 0.984 -0.125 17.496 233.902
MLP5 0.849 0.925 0.972 -0.063 16.591 229.760
MLP10 0.824 0.912 0.970 -0.055 17.846 246.935
LSSVR 0.854 0.927 0.972 0.003 16.361 233.578
NARX5 0.856 0.933 0.970 -0.106 16.360 243.059
LR20 0.404 0.696 0.859 -0.262 31.398 480.762
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Regarding the 60 days lead forecast (Table 5), a general degradation of the model’s performances 
was remarked with the addition of the 6 series of accumulated rainfall. Indeed, it is possible that the 
relevant information that is eventually contained in these data does not outweigh the instability it induces 
in the model’s responses and training procedures. 

 
Table 5 Results for a lead time of 60 days using observed discharges and 6 rainfall bands as inputs 

 
 

4.3 Usingobserved discharges and 3 upstream rainfall bands as inputs 
Due to the hypothesis that the full 6 bands mightadd too much noise to the input vector, an 

additional effort using only the 3 most upstream bands was undertaken. This was aimed at removing the 
data of the downstream bands close to Victoria Falls, which based on the lagged correlation evaluation 
presented in Table 1 should not have much impact in the flows 30 or more days into the future. 

Results for a lead time of 30 days, presented in Table 6, show that a general increase in the models’ 
performances was attained. Relevant exceptions were the ARMA models, which, again, do not seem 
sensitive to rainfall data, and NARX5, which evidenced a minor degradation in nearly all metrics. 

 
Table 6 Results for a lead time of 30 days using observed discharges and 3 upstream rainfall bands as inputs 

 
 
Focusing on the60 days lead time performances,presented in Table 7, it can be remarked that the 

addition of the 3 upstream rainfall bands does not contribute to improved forecast and, although the 
estimates are better than those resulting from the use of the full set of 6 rainfall bands, for most models 
there is still a disadvantage in adding this type of rainfall aggregation to the inputs. One exception is the 
ARMA(7,2) model, which improved marginally compared with earlier results. 

 
Table 7 Results for a lead time of 60 days using observed discharges and 3 upstream rainfall bands as inputs 

 
 
Having the error metrics for the 6 scenarios and all the models been presented, the discussion should 

be interpreted in light of some limitations inherent to the study. In this and similar problems, longer series 
of data are always desirable and could, all too often, contribute to more concluding analyses. Due to the 

Model
Nash 

Sutcliffe Pearson Spearman
Relative 

Deviation RMSE MAE
Fourier 0.736 0.917 0.982 -0.243 21.730 304.587

ARMA(3,5) 0.749 0.891 0.976 -0.184 21.564 308.172
MLP5 0.747 0.885 0.940 -0.152 21.573 327.539
MLP10 0.756 0.885 0.939 -0.130 21.142 333.881
LSSVR 0.744 0.889 0.974 -0.150 21.826 284.675
NARX5 0.727 0.881 0.916 -0.147 22.736 335.041
LR20 0.505 0.760 0.903 -0.176 29.444 474.970

Model
Nash 

Sutcliffe Pearson Spearman
Relative 

Deviation RMSE MAE
Fourier 0.736 0.917 0.982 -0.243 21.730 304.587

ARMA(3,2) 0.833 0.922 0.984 -0.126 17.495 233.741
MLP5 0.871 0.937 0.979 -0.046 15.343 217.494
MLP10 0.849 0.931 0.974 -0.029 16.174 230.922
LSSVR 0.874 0.938 0.979 0.020 15.232 235.462
NARX5 0.860 0.930 0.977 -0.047 16.158 226.149
LR20 0.258 0.634 0.743 -0.255 35.678 536.823

Model
Nash 

Sutcliffe Pearson Spearman
Relative 

Deviation RMSE MAE
Fourier 0.736 0.917 0.982 -0.243 21.730 304.587

ARMA(7,2) 0.785 0.922 0.983 -0.201 19.838 281.355
MLP5 0.786 0.904 0.959 -0.130 19.826 303.393
MLP10 0.813 0.912 0.963 -0.115 18.569 296.512
LSSVR 0.745 0.898 0.976 -0.173 21.759 276.687
NARX5 0.761 0.898 0.938 -0.178 21.292 331.040
LR20 0.685 0.834 0.954 -0.138 22.322 349.399
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recent inception of satellite areal rainfall estimations, training, validation and test periods have been 
drawn from a sample of 4419 daily records, leaving a period of roughly two years for model testing, 
which could be considered short.Notwithstanding, the test period is both demanding on the forecasts and 
enlightening of the different model’s strengths and limitations, for it contains, by far, the highest flood on 
record (5651 m3/s, in 2009, comparable with a training peak of 4340 m3/s in 2004) and, consequently, 
enables comparisons where models are most uncertain: when extrapolations are made. 

The tested models have different geneses and, despite the best efforts of the modeler, can seldom be 
compared in truly fair circumstances. Moreover, a daunting number of variables can be tuned in order to 
boost model’s performances.Above, many such variables were adopted by convention, empirical rules, 
and brief exploration of alternatives, this meaning, in practical terms, that the presented results could 
certainly be improved and (improbably, albeit not impossibly) tend to different comparisons. 

Finally, the rainfall data was pre-processed by being aggregated in 6 distance bands and averaged 
according to a moving window of 20 days. Slightly different variations of this scheme were tested, but 
surely there are more advantageous procedures and/or additional steps that might enhance results. 

 
4.4 Proposed models 

From the analyses of the earlier results, it is evident that substantial differences can be expected in 
the forecasts from the various types of model. One common denominator was that all non-linear models 
have proven quite sensitive to noise in the input set, from which stems that rainfall data should only be 
added when there is good evidence that it leads to better forecasts. Additionally, more complex models 
tended to display higher variability among results, occasionally with cases of miss-training and test 
performances far below those of the Fourier series approximation. 

Overall, the addition of rainfall data was only relevant for the 30 days lead time forecasts butthis 
information was only harnessed by the non-linear models. The way in which the data are pre-processed is 
relevant in terms of performance. The dynamical recurrent models have proven to be more unstable than 
static ones. Although the NARX network with 5 hidden nodes has displayed promising performances, the 
LR and LSSVR NARX models generally failed to attain reliable responses. For their simplicity and 
reliability, it is considered that static models emerge as best and, among these, the simpler ones, namely 
MLP5, combine good performances with stable responses.The ARMA models, although surpassed in 
terms of performance in both lead times, have very interesting features of reliability and quantification of 
uncertainty and, based on the results, should not be dismissed for the proposed tasks. 

The LSSVR model, however inadequate for the 60 days lead time, resulted in the best performances 
for the 30 days lead time and was consistently the best estimator of flow volumes. Being a type of kernel 
regressor, a LSSVR model loosely “recalls” training events in order to produce estimates and, due to the 
structural risk minimization principle that it incorporates, when no similar events are available to be 
recalled, gradually tends to a “non-compromising” responsewhich may lead to misleading forecasts.  

From these considerations, the proposed models emerging from this study are the MLP and the 
ARMA. In Figure 11 characteristic forecast hydrographs are shown for a 30 days lead time. Also, 
histograms of forecast deviations are illustrated. 

 

 
Figure 11 Example of 30 days’ forecasts (left) and deviations (right) from the ARMA(6,2) and MLP5 3b (3 rainfall 

bands) models 
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In this case the MLP5 model with 3 rainfall bands added to the inputs performed better than the best 
ARMA alternative. Although this can be intuited when the deviation histograms are compared, the 
forecasted hydrographs can be misleading. In fact, the ARMA model appears to estimate the peak flood 
much better than the MLP; this, however, is not accurate. Having in mind that the hydrographs are 
estimated 30 days into the future, the ARMA model is actually estimating the peak after it was observed, 
having missed it when it occurred. The MLP’s forecast also misses the peak (although by a smaller 
difference), but forecasted the recessionmore accurately. 

A similar effect can be seen for the 60 days lead time (Figure 12), where the MLP5 model is visibly 
better. Here, after missing the 2008 flood’s peak altogether, the ARMA model starts overestimating the 
recession flows after the peak was observed, an effect that also influences the MLP’s estimates to a 
smaller degree. 

 

 
Figure 12Example of 60 days’ forecasts (left) and deviations (right) from the ARMA(7,2) 3b (3 rainfall bands) and 

MLP5 models 
 
5 CONCLUSIONS 

The present contribution aimed at coupling satellite rainfall estimates and machine learning 
techniques for daily flow forecast. Two lead times were tested: 30 and 60 days. The machine learning 
models were compared with a fitted ARMA model and benchmarked against a Fourier series 
approximation of the annual hydrographs. Results are promising and clearly show that, even considering 
lead times of 60 days, forecasts can be made with surprising accuracy when non-linear models are used. 

It was observed that satellite rainfall could enhance forecasts for the 30 days lead time, but 
improvements were only registered for the non-linear models. The additional noise conveyed by too 
detailed or unrelated rainfall input data appears to hinder the training and fitting processes. 

For the 60 days lead time, forecasts by the non-linear models clearly outperform those obtained 
using ARMA equations, the latter approaching the Fourier series approximation benchmark or, in other 
words, almost displaying no forecast capabilities. 

Among all the tested models, small MLP networks (30 and 60 days) and ARMA (30 days) models 
are recommended. However, dynamic NARX networks and static LSSVR alternatives are interesting and 
can justify further work that aims at resolving issues with training stability and the choice of parameters 
that avoid misleading forecasts for large flood events. 
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