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Introduction
Since its introduction [9], landscape genomics has developed quickly with the increasing availability of both molecular and topo-
climatic data. The current challenges involve processing large numbers of models and disentangling selection from demography.
Several methods address the latter, either by estimating a neutral model from population structure [3] or by inferring simul-
taneously environmental and demographic effects [6]. Here we present Samβada, an integrated software for landscape genomic
analysis of large datasets. This tool was developed in the framework of NextGen with the objective of characterising traditional
Ugandan cattle breeds using single nucleotide polymorphisms (SNPs) data.

Methods
Samβada uses logistic regressions to estimate the probability that an individual carries a specific genetic marker given the
habitat that characterises its sampling site [8]. The genetic data is recoded as binary variables and their association to the
topo-climatic data is assessed with log-likelihood ratio (G) and/or Wald tests [4]. Models are ranked according to their scores
to ease post-processing analyses.

Large SNP panels and whole-genome sequences often require sharing the computational load. When requested, Samβada
splits the molecular data to distribute processing and merges the results subsequently .

While global regression models assess the overall relationships in the data, spatial patterns of associations give information
about local processes at work. Samβada can measure the level of spatial autocorrelation in both molecular and environmental
datasets using local and global Moran’s I [1].

Data
Blood and skin samples were collected form 102 Ugandan cattle along with their geographic coordinates. The samples were
genotyped with the 800k BovineHD assays (Illumina Inc., San Diego, USA)), rendering 2.113.358 binary markers for analysis.
The environment was described with 73 variables: monthly values of temperature and precipitation from WorldClim [7], and
slope and aspect derived from the digital elevation model STRM3 [5].

Results
Models were assessed according to their G score, 1549 significant associations involving 323 loci were found (p = 0.01 before
Bonferroni). Fig. 1 shows the distribution of p-values for models involving maximum temperature in April, a variable commonly
found to predict allele frequencies. Most associations were found in chromosomes 5, 14, 20 and X. The most significant model
involves the SNP BovineHD0500019261 on chromosome 5 (Fig. 2). A bivariate LISA map presents the spatial association
between this marker and the mean temperature in April (Fig. 3).

Discussion
High-density SNP assays allow detecting genomic regions potentially involved in local adaptation. In our study, loci under
selection are associated with latitude, and the most relevant local correlations were found in Uganda’s North and South. This
might indicate a demographic effect since cattle breeds differ between these regions, but it may also reflect local adaptation as
many environmental parameters are correlated with latitude. The SNP BovineHD0500019261 maps to the gene CHST11 which
is involved in cartilage make up.

Our study shows that landscape genomics can handle large molecular datasets. However the sampling size is critical (n=102)
to assess model significance. Bonferroni correction might be too conservative for whole-genome sequencing and alternative
approaches such as False Discovery Rate might be considered.
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Figure 1: Distribution of p-values for regression models
with maximum temperature in April. Each horizontal line
shows a possible threshold, eigher using Bonferroni correc-
tion or False Discovery Rate [2]. The labels indicate how
many models are significant at this level, the number of
associated SNPs are in parenthesis.

Figure 2: Solid line shows the overall SNPs density on chro-
mosome 5. Horizontal plots represents the SNPs that were de-
tected for different thresholds. These SNPs were grouped when
they were closer than 2 · 106 bp. Each cluster is summarized
by the number of SNPs it spans (below) and among these, the
number of SNPs under selection (above). The vertical spac-
ing between plots is arbitrary. The arrow points out the SNP
BovineHD0500019261.

Figure 3: Bivariate local Moran’s I between BovineHD0500019261_GG and the mean temperature in April (background layer)
for the 102 Ugandan cattle. This indicator measures the spatial correlation between the state of the marker and the temperature
averaged over the 20 nearest sampling points. Dots shape indicate where the marker is present (square) or absent (circle)
and their color shows the type of association (red=high-high, dark blue= low-low, pink=high-low and light blue=low-high,
white=non-significant (p=0.01, 10’000 permutations). The sampling phase was planned following a regular grid to ensure an
even spatial representation.
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