
Asynchronous Forward Bounding (AFB):

Implementation and Performance Experiments

Álexandra Olteanu
alexandramihaela.olteanu@epfl.ch

Supervisors:
Thomas Léauté (thomas.leaute@epfl.ch)

Prof. Boi Faltings (boi.faltings@epfl.ch)

EPFL Artificial Intelligence Laboratory (LIA)
http://liawww.epfl.ch/

August 18, 2011

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147997412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://liawww.epfl.ch/

Contents

1 Introduction 3
1.1 DCOP . 3
1.2 Project Overview . 3

2 AFB Implementation 4
2.1 DCOP Definition . 4
2.2 AFB Description . 4
2.3 AFB implementation . 6

2.3.1 Overview . 6
2.3.2 AFB Pseudocode . 8
2.3.3 Optimizations . 15

3 AFB Experiments 16
3.1 Real life problem experiments 16

3.1.1 Kidney Exchange Problem Overview 16
3.1.2 Experimental Setup 18
3.1.3 Results . 19

3.2 Max-DisCSP experiments . 25
3.2.1 Max-DisCSP overview 25
3.2.2 Experiment setup . 25
3.2.3 Results . 26

4 Conclusion 28

5 Future work 29

2

1 Introduction

1.1 DCOP

In Artificial Intelligence, the field of Distributed Constraint Optimization
(DCOP) addresses problems in which a group of agents must, in a dis-
tributed manner, choose values for a set of variables such that the cost of
a set of constraints over the variables is either minimized or maximized. In
this framework, the constraints are known and enforced by distinct partic-
ipants (agents) and the variables can be assigned values from predefined
domains. So the variables and constraints are distributed among multiple
agents, which communicate with each other.

Advantages of using distributed versus centralized solvers, as described
in [1], include the cost of formalizing the problem — in the centralized envi-
ronment, each participant has to formulate its constraints on all imaginable
options beforehand —, privacy — in the centralized scenario, the solver will
see all the constraints —, load balancing and redundancy leading to more
reliable systems, while asynchronous parallel execution can make the system
more efficient. Common real-life applications include meeting scheduling in
large organizations, where privacy needs make centralized constraint op-
timization difficult; allocating sensor nodes to targets in sensor networks,
where the limited communication and computation power of individual sen-
sor nodes makes centralized constraint optimization difficult; coordinating
teams of unmanned air vehicles, where the need for rapid local responses
makes centralized constraint optimization difficult.

A simple branch and bound algorithm for solving DCOPs is SyncBB [6].
This is a distributed complete algorithm, but which does not make use of
parallel computation. Asynchronous Forward Bounding (AFB) as presented
in [3] can be seen as an improvement on SyncBB, which tries to make better
use of parallel computation.

1.2 Project Overview

The goal of this project was to implement, test, and evaluate the AFB algo-
rithm. The algorithm was implemented in Java, as part of the open-source
FRODO platform for DCOP [7]. Because there was no previous implemen-
tation of AFB in FRODO, a significant part of the project consisted in
designing and implementing AFB.

We have evaluated our implementation of AFB against other DCOP
algorithms already implemented in FRODO on two classes of benchmark
problems:

• the distributed kidney exchange problem [5]. This is a problem class
that has been studied in the centralized setting, but which is new to
the DCOP community.

3

• Randomly generated Max-DisCSPs, in an attempt to reproduce the
results in [4].

2 AFB Implementation

2.1 DCOP Definition

Formally, a DCOP is represented by a tuple < A,X,D,R >, where:

• A is a finite set of agents {A1, A2, ... ,An}

• X is a finite set of variables {X1, X2, ... ,Xm}. An agent can be
responsible for one or more variables.

• D is a set of domains {D1, D2, ... ,Dm}, where Di contains a finite
set of values that can be assigned to variable Xi

• R is a set of relations (constraints). Each constraint, C, defines a
non-negative cost for every possible assignment of values to a subset
of variables. If a constraint involves only two variables, it is called a
binary constraint.

An assignment is a pair including a variable and a value from the variable
domain. A partial assignment, PA, is a set of assignments in which each
variable appears at most once. The cost of a partial assignment is the sum
of all applicable constraints among the variables in the PA, with respect to
their assigned values. A full assignment is a PA that contains all variables
in X. The goal in DCOP is to find a full assignment with minimal cost.

2.2 AFB Description

The AFB paper we used as main reference [3] presents a one-variable per
agent version of the AFB algorithm, assuming also that all constraints are
at most binary.

A total order among agents is assumed (A0 is assumed to be the first
agent in the order, and An−1 is the last). This order induces agent priorities,
with A0 having the highest priority and An−1 the lowest.

The main concept in the AFB algorithm is a partial assignment (PA).
This holds assignments to variables up to a current index. One single most
recent (up-to-date) version of this partial assignment can exist at each point
in time, which we call the current partial assignment (CPA). The CPA is
passed via messages between agents, and represents the partial assignment
that agents attempt to extend into a complete and optimal solution by
adding assignments of their own variables to it. The CPA also holds the
accumulated cost of constraints between all assignments it contains, as well

4

as a unique timestamp, which will help to identify which is the most up-to-
date PA. Due to the asynchronous nature of the algorithm, multiple CPAs
may be present at any moment in time, but the most up-to-date CPA will
be the one with the highest timestamp.

Only one agent performs an assignment on the CPA at a time. Copies
of the CPA are sent forward and are asynchronously processed by multiple
agents. A new assignment is sent forward in messages called FB CPA, to all
agents whose assignments are not yet on the CPA. These are lower priority
agents and their variables have unassigned values. This kind of message
requests a lower priority agent to compute an upper bound on the cost
increment caused by adding an assignment to its variable. The estimated
cost is sent back to the agent who sent the FB CPA in a FB ESTIMATE
message. This agent uses all the received bounds to prune sub-spaces of the
search-space which do not contain a full assignment with a cost lower than
the best full assignment found so far.

The computation of the bound is described in [3] as follows. Denote by
cost((i,v), (j,u)) the cost of assigning value v to agent Ai and value u to
agent Aj , i.e. the summed cost of all applicable constraints. For each agent
Ai and each value v ∈ Di , the minimal cost of the assignment (i,v) incurred
by an agent Aj , is denoted by: hj(v) = minu∈Djcost((i, v), (j, u)). The total
minimal cost of assigning value v to variable i is then:

h(v) =
∑
j>i

hj(v) .

A bound estimate, denoted f(v), for a given PA and v ∈ Di, can be
computed as:

f(v) = h(v) +
∑

cost v has with assignments in the PA.

The bound Ai returns in an FB ESTIMATE message is the lowest possible
value for f(v), across all v ∈ Di :

bound estimate for agent Ai = minv∈Dif(v)

This forward-bounding mechanism is the key to AFB’s asynchronous na-
ture. While the CPA is owned by one agent — the one currently making
an assignment — many copies are sent forward and a collection of agents
compute concurrently the lower bounds for that same CPA. Thus, the unas-
signed agents are constantly working, either when they receive the CPA, or
when they need to compute bounds for some other partial assignment.

The estimations from all lower priority agents can be accumulated and
summed up by the agent that initiated the forward bounding process to
compute a lower bound on the cost of a complete assignment extended from
the CPA. If the received estimations indicate that the CPA cost exceeds the

5

current known upper bound, the agent will generate a new CPA (i.e. assign
a new value to its variable) with a higher timestamp and continue the search
with this new CPA. If, in turn, it cannot generate anymore assignments or
itself, it will initiate a backtrack, causing the previous agent in the ordering
to assign a new value to its variable.

A more detailed definition of a CPA cost and the bounds, as described
in [3], is as follows:

• Past Cost: the cost of all constraints for higher priority variables
already assigned in the CPA

• Local Cost for a certain value assignment to the current variable: the
cost that assigning the particular value to the variable would add to
the CPA (this comes from constraints with lower priority variables)

• Future Cost for a certain value assignment to the current variable:
the lowest possible cost variables with lower priority would add, given
that the particular value is assigned to the variable.

The lower bound on the cost of a partial assignment is, in fact, then the
sum of these three costs.

Notice that it is possible that the assigning agent already sent its CPA
forward by the time the estimations for that assignment are received. Thus,
whenever receiving any type of message, one should check that this is still
up-to-date. This is done via the timestamp mechanism. In short, each
agent keeps a local assignment counter which it increases whenever it per-
forms an assignment. Whenever it sends a message containing a PA, the
agent copies its current counter onto the message. Each message, therefore
each PA, has associated a vector containing the counters of all the agents it
passed through. The i-th element of the vector corresponds to the assign-
ment counter of agent i. To determine the most up-to-date timestamp, a
lexicographical comparison of the vectors is performed.

2.3 AFB implementation

2.3.1 Overview

Our implementation makes use of the FRODO existing modules Variable-
Election and LinearOrdering to construct the variable ordering. This gives
a variable ordering or priority. The first variable in the ordering has the
highest priority, while the last variable in the ordering has the lowest prior-
ity.

The design is inspired by the SyncBB design, but several different ap-
proaches of data encapsulation are made to better model the interactions in
AFB.

The code can be found in a new package, ch.epfl.lia.frodo.algorithms.afb.

6

Figure 1: Constraints selection for cost computing at variable i.

Three major extensions to the algorithm originally described in [3] are
included in the implementation:

• an agent can hold multiple variables, which is a common assumption
in practical implementations of DCOP algorithms;

• the constraint graph can have multiple components;

• n-ary constraints are supported.

The first two modifications are easily incorporated by the use of VarInfo
and CompInfo classes, which encapsulate component and variables specific
information. When an agent receives a message, it needs to first identify
the correct CompInfo, i.e. component it is regarding and also VarInfo, i.e.
variable, that will process it. This is similar to the SyncBB implementation,
though modification had to be made to allow message sending between all
possible agents. Unlike SyncBB, an AFB agent (which we will now refer to as
a variable) needs to send messages to all lower priority variables, requesting
upper bound estimates. These agents need to reply with these estimates to
higher priority variables. So, in general, each variable needs to be able to
communicate with all other variables.

The literature only assumes binary constraints, so we had to define a
way to extend these to n-ary. There are two issues to look at:

• which constraints to take into account when computing the Local
Cost for a variable assignment, with respect to a given PA;

• which constraints to take into account for the computation of the h
estimate, given a certain variable assignment. This does not depend on
the current PA (no other variable assignments are taken into account)
and is an estimation of the best Future Cost that can be expected.

Figure 1 tries to clarify our approach. The Past Cost is not affected
by generalizing the constraints type to n-ary. All constraints regarding any

7

number of variables of higher priority than the current variable, i, account
to the Past Cost (ternary constraint c0 and binary constraint c1 in the
graph). All constraints in which the current variable, i, is the last variable
in the constraint (with the respect to the variable ordering) account for the
Local Cost (in the graph: unary constraint c5, binary constraints c2 and
c4, as well as ternary constraint c3). All constraints that involve the current
variable, i, and variables with lower priority than i account for the Future
Cost (in the graph: binary constraint c6 and ternary constraint c7). Notice
that each such constraint must include i, so constraints like c8 and c9 are
not included.

Constraints like c10, which include variable i, but not as first or last
variable in the constraint are excluded also, because counting them would
cause a double effect. For example, c10 should already be counted for the
Future Cost of variable i-1. If we count it in the Future Cost of variable i
also, variable i-1 would receive a future bound estimate which counted c10
twice and this would not be correct.

The implemented algorithm was tested for correctness with JUnit tests,
similar to the SyncBB algorithm. These can be found in the
ch.epfl.lia.frodo.algorithms.afb.test package. We used randomly generated
CSPs and several categories of tests: with or without using the XCSP for-
mat, with or without restricting the sign of the utilities, with integer or
real values for the variables and utilities, with or without counting NCCCs
and with different kinds of pipes for communication (TCP or QueueIO). We
used at most 1000 tests per category, totaling 12000 tests with 100% success
rate.1

2.3.2 AFB Pseudocode

A major difficulty in the implementation was coming up with a complete,
working version of the pseudocode, which the AFB paper [3] was lacking.
Several details were missing and we will point them out in what follows.

This section presents the full AFB pseudocode. For simplicity, we will
follow the general assumptions in the literature: the constraint graph is con-
sidered to be connected (only has one component), each agent is responsible
for only one variable and all constraints are binary. We have already ex-
plained in the previous paragraph all the details of how we extended these
assumptions in our FRODO implementation.

Recall that Di denotes the domain for variable i. The following are
member attributes of each agent:

• CPA — the current partial assignment;

• n — the number of agents;

1All JUnit tests pass successfully on Windows and Mac OS X, but for some reason
some of them timeout on Linux; this has to be further investigated.

8

• timestamp — timestamp array on each agent (holds last known as-
signment counters for all variables);

• assignmentCounter — the current assignment counter for the agent’s
variable;

• B — the best cost known for a solution so far;

• bestCPA — the assignments associated with the best known solution
so far;

• estimates — all received estimates from lower priority agents;

• h — h computed for all values in the variable’s domain;

• domainIndex — the last used index in the domain of the variable;

The algorithm is run on each of the agents. Firstly, the init procedure is
called, after which messages are responded to until a TERMINATE message
is received.

Procedure init

// executing on agent i

1 B ←∞;
2 for j ← 0 to n− 1 do
3 assignmentCounter[j]← 0;

4 for j ← 0 to n− i− 2 do
5 estimates[j]← NULL;

6 for v ∈ Di do
7 compute h(i,v);

8 if i = 0 then
9 CPA← generate empty CPA;

10 assign CPA() ;

11 End Procedure.

Procedure compute-h(i,v)

// executing on agent i

1 for v ∈ Di do

2 h[v]←
∑n−1

j=i+1 cost of constraints(v, u);

3 End Procedure.

9

Procedure assign-CPA

// executing on agent i

1 for j ← 0 to n− i− 2 do
2 estimates[j]← NULL;

3 if CPA.assignments[i] = NULL then
// assignment for variable i has not yet started

4 assignmentCounter[i]← 0 ;

5 else
// if CPA has an assignment for variable i, remove it

6 CPA.assignemnts[i]← NULL;
7 update CPA.cost // removing cost added by constraints

triggered by the removed assignment

8 found← false ;
9 while !found AND domainIndex <Di.length− 1 do

10 domainIndex← domainIndex + 1;
11 v ← Di[domainIndex];
12 CPA.assignemnts[i]← v;
13 if CPA.cost + f(CPA, i, v)<B then
14 found← true ;

15 if !found then
16 backtrack() ;

17 else
18 assignmentCounter[i]← assignmentCounter[i] + 1 ;
19 timestamp[i]← assignmentCounter[i] ;
20 if i = n− 1 then // the last variable in the ordering

21

22 B ← CPA.cost ;
23 bestCPA← CPA.assignments;
24 broadcast(UB MESSAGE, bestCPA,B) ;
25 if B = 0 then // already reached optimal cost

26

27 terminate() ;

28 assign CPA() ;

29 else
30 send(CPA MSG, copy of CPA, i) to variable i + 1 ;
31 for j ← i + 1 to n− 1 do
32 send(FB CPA, copy of CPA, i) to variable j ;

33 End Procedure.

10

Function f(PA,i,v)

// executing on agent i

1 return h[v]+ Local Cost of adding assignment i← v to PA;
2 End Function.

In the init procedure, each agent initializes B to Infinity (no known upper
bound yet), initializes its local members and computes the h values for its
variable. Only the first agent generates an empty CPA and then begins
the search process by calling assign CPA (lines 8 to 10). This is a method
that is called whenever an assignment needs to be found for a variable. An
assignment is chosen as the first unused value in the variable’s domain such
that the current CPA cost summed with the added cost of this assignment
is less than B (lines 8 to 14). If no such value is found, a backtrack call is
initiated (line 16). Otherwise, the assignmentCounter of the variable and
the agent timestamp are updated (lines 18 to 19). Also, if this is not the last
variable in the ordering, a CPA MSG is sent to the next agent and FB CPA
messages are sent to all lower priority agents (lines 30 to 32). For the last
variable in the ordering, B and bestCPA are updated, a new UB MESSAGE
is broadcasted to all agents and procedure assign CPA is called recursively
to try to possibly find a lower cost assignment for this last variable (lines 22
to 28).

The backtrack procedure removes the assignment and estimates and re-
sets the timestamp for the current variable in the PA. It then passes this
information on, in a CPA MSG, to the previous agent, for a variable re-
assignment (line 7). If there is no previous agent, i.e. the current agent
is the first agent in the ordering, it means that the search space has been
exhausted and thus the terminate procedure is called (line 9). This simply
checks if a solution message has already been sent and broadcasts one if not.

Upon receiving a SOLUTION MESSAGE, an agent checks to see if such
a message has already been recorded (which can happen more than once in
the asynchronous scenario) (line 1), records one if needed and terminates all
agents (line 3). On the other hand, receiving a UB MESSAGE only triggers
an update to the local fields B and bestCPA, assuming, of course, that the
message if not out of date.

An important event in the algorithm is receiving a CPA MSG. When
this happens, an agent first checks if it is relevant, i.e. not out of date,
using the timestamp mechanism. If it is out of date, then the message is
discarded (lines 1 to 2). Otherwise, the agent saves the received PA in its
local CPA variable, as this represents the most up-to-date CPA. It also resets
its domainIndex, if the message comes from a higher priority agent (lines 4
to 6). Then, it checks whether the received PA (without an assignment to
its own variable) does not exceed the allowed cost B. If it does not exceed

11

Procedure backtrack(PA,i)

// executing on agent i

1 for j ← 0 to n− i− 2 do
2 estimates[j]← NULL;

3 PA.assignments[i]← NULL;
4 update PA.cost;
5 timestamp[i]← 0 ;
6 if i > 0 then
7 send(CPA MSG,PA, i) to variable i− 1 ;

8 else
// the highest priority agent

9 terminate() ;

10 End Procedure.

Procedure terminate

// executing on agent i

1 if solution message was not already sent then
2 broadcast(SOLUTION MESSAGE, bestCPA,B);

3 End Procedure.

Procedure receive-SOLUTION-MESSAGE(msg, assignments, cost)

// executing on agent i

1 if A solution has not already been recorded then
2 Record assignments and optimal cost cost;
3 broadcast(TERMINATE) ;

4 End Procedure.

Procedure receive-UB-MESSAGE(msg, newCPA, newB)

// executing on agent i

1 if newB<B then // eliminate out-of-date UB messages

2

3 bestCPA← newCPA;
4 B ← newB;

5 End Procedure.

12

this bound, it tries to assign a value to its variable (or replace its existing
assignment in case it has one already) by calling assign CPA. However, if
the bound is exceeded, a backtrack is initiated since the cost is already too
high (lines 7 to 11).

Procedure receive-CPA-MSG(msg, PA, j)

// executing on agent i

1 if compare(msg.timestamp, timestamp, i)) = ‘bigger’ then
2 timestamp← msg.timestamp ;
3 CPA← PA;
4 if j <i then // sender was a higher priority variable

5

// reset domain index

6 domainIndex[i]← −1 ;

7 if cost up to variable i-1 ≥ B then // no improvement can be

found

8

9 backtrack(CPA, i);

10 else
11 assign CPA() ;

12 End Procedure.

Function compare(timestamp1, timestamp2, upToIndex)

// executing on agent i

1 for i← 0 to upToIndex do
2 if timestamp1[i] <timestamp2[i] then
3 return ’smaller’;

4 if timestamp1[i] >timestamp2[i] then
5 return ’bigger’;

6 return ’equal’;
7 End Function.

An agent receiving a forward bounding request (FB CPA message) from
an agent j also uses the timestamp mechanism to discard irrelevant mes-
sages. If the message is relevant, the agent computes its estimate (lower
bound) of the cost incurred by the lowest cost assignment to its variable
(line 3). This computation was described in detail in the previous section
and is the sum of the Local Cost and Future Cost for that variable. This

13

estimation is sent back to the originating agent j in an FB ESTIMATE
message.

Procedure receive-FB-CPA(msg, PA, j)

// executing on agent i

1 if compare(msg.timestamp, timestamp, i - 1) = ‘bigger’ then
2 timestamp← msg.timestamp;
3 estimate← minv∈Dif(PA, i, v) ;
4 send(FB ESTIMATE,PA, i, estimate) to variable j;

5 End Procedure.

When receiving an FB ESTIMATE from a lower priority agent, an agent
ignores it if it is an estimate to an already abandoned partial assignment
(also identified by using the timestamp mechanism). Otherwise, it saves this
estimate (line 2) and checks if it causes the current partial assignment to
exceed the bound B. If this is the case, the agent calls assign CPA in order
to try to re-assign its variable (lines 3 to 8).

Procedure receive-FB-ESTIMATE(msg, PA, j, estimate)

// executing on agent i

1 if compare(msg.timestamp, timestamp, i) = ‘bigger’ then
2 estimates[j − i− 1]← estimate ;
3 cost← PA.cost ;
4 for k ← 0 to n− i− 2 do
5 cost← cost + estimates[k];
6 if cost ≥ B then
7 assign CPA();
8 return ;

9 End Procedure.

Notice that, whenever passing a PA from one agent to another, a clone
(copy) of the object is made to avoid overrides.

An important detail to notice was that the domainIndex for each vari-
able i, holding the index of the last assigned value from Di, needs to be
updated also. More specifically, in the receive CPA MSG procedure, we
need to look at the sender variable for the message. If the sender was a
variable with higher priority, then it is trying to assign a new variable in
the CPA, so the domainIndex should be reset (lines 4 to 6). Otherwise, the
sender is either a lower priority agent, in which case this is a backtrack step,
so the domainIndex should remain the same so that the search for a new
value for the current variable can continue; or the sender is the agent itself,

14

which can happen for instance in the FB ESTIMATE message processing,
if the current estimated cost exceeds the known upper bound.

Another difficult observation to make, and not obvious from the AFB pa-
per [3], was how the timestamp mechanism should really work. Section 3.3.
in the paper states that the two timestamp arrays should be compared lex-
icographically, up to the i-1 position. In fact, most of the times, they need
to be compared up to and including the i -th position. Let us look at the
case when a CPA MSG is received, for instance. The point of comparing the
timestamps of the sent message with that last known by the current agent
is to see if the received message is out of date. If the i -th position of the
timestamps shows different values, this indicates that a new assignment was
made to variable i and the operation is no longer valid. The only exception
is when receiving FB CPA messages. In this case we only look up to position
i-1 and do not take into account the counter for position i, since variable i
is only estimating a Future Cost and in doing so, it uses assignments of
higher priority variables, not its own assignment.

2.3.3 Optimizations

We propose an optimization for storing the estimates. Receiving estimates
is the result of an upper bound request, which is only sent to lower priority
agents. So, in general, agent i only needs to store n-i-1 estimates, where n
is the total number of variables.

One can also notice that the h bound can be computed once per variable,
since it is independent of the assignments of higher priority variables and,
in fact, depends only on the assignment of that variable. Also, to avoid re-
computation, we store the values for all possible assignments of each variable
in a global attribute and only compute this once, before the algorithm starts.
Notice that privacy is still respected, since each variable will only know the
computed value of h for its own values. This approach ensures that when we
need to compute an estimate, via the function f, we only need to compute
the Local Cost and add it to the precomputed value h.

Regarding the timestamp mechanism, [3] suggests that the assignment-
Counter of each variable can be reset to zero, to reduce the message size.
We have done this in the backtrack method: before proceeding to call as-
sign CPA on the previous (higher priority) agent, the current agent resets it
counter to zero (line 5). This makes sense because only the positions up the
current variable (at most) are relevant in timestamp comparison. Moreover,
in the assign CPA method, we have identified another possibly to reset the
assignmentCounter of a variable, for the case when its assignment has been
reset (line 4).

Another small optimization lies in the way out-of-date messages are
tested for the UB MESSAGE s. The paper does not cover this aspect, which
the implementation of the algorithm showed to be necessary. However, in-

15

stead of doing the regular lexicographic comparison of the timestamp arrays,
we found that it is better to just test if the upper bound the message carries
is better (smaller) than the known upper bound, B, that the agent holds
(line 1). If this is not the case we ignore the message. This is only a sim-
ple value comparison and is, in fact, representative for the meaning of an
out-of-date UB MESSAGE message: if the message is out of date, it means
that another UB MESSAGE updated B with a better value.

The assign CPA method also does two small tricks in the case when the
current variable is the last one in the ordering. Firstly, it updates the agent
best know upper bound (B) and corresponding assignments (bestCPA) and
then broadcasts this information to all agents (lines 22 to 24). This ensures
that B is updated immediately, thus faster than it would be if it were to wait
for the broadcast message to arrive. This allows for faster pruning of the
search space. Secondly, it checks to see if the current B has reached optimal
cost, zero, in which case it prematurely terminates all agents (lines 25 to 27).

The final code was further optimized using the TPTP (Eclipse Test &
Performance Tool) Plugin for Eclipse (http://www.eclipse.org/tptp/),
as well as the default profiler that comes with Netbeans IDE (http://
netbeans.org/).

3 AFB Experiments

3.1 Real life problem experiments

We considered small, random instances of the distributed kidney exchange
problem to test the performance of the AFB algorithm because they have
the same characteristics as a real-life problem. The reason we used small
instances is, partly, that we wanted to run the experiments in a reasonable
amount of time and, partly, hardware limitations (the amount of memory
that can be made available to the JVM for DPOP-based algorithms).

3.1.1 Kidney Exchange Problem Overview

Kidney transplants are one of the most frequent organ transplants. In the
USA, for instance, tens of thousands of patients are waiting for a kidney
transplant, and thousands die every year before they get one. It is a known
fact that a person can live a normal life with only one kidney, so close
friends or relatives might be willing to donate a kidney. Unfortunately,
often enough, these people are biologically incompatible with the patient.
To solve the problem, hospitals have started looking into the possibility of
swapping donors: if patient A’s friend can give a kidney to patient B instead,
and B’s friend can give a kidney to A in return, then every patient gets a
kidney. It is even possible to consider three-way exchanges: A’s friend gives
to B, whose friend gives to C, whose friend gives back to A. Because the

16

http://www.eclipse.org/tptp/
http://netbeans.org/
http://netbeans.org/

Figure 2: A compatibility graph and the corresponding DFS for a kidney
exchange scenario of 6 pairs. The arrows indicate the direction in which the
organs can be exchanged.

transplants have to take place simultaneously, only two-way or three-way
exchanges are feasible in practice.

Figure 2, from [5], shows an example compatibility graph with 4 patient-
donor pairs. In this scenario, pair3 can receive from both 2 and 1, but
can give to no other pair. There are three possible two-way exchanges
(1,2),(1,4),(2,4) and one possible three-way exchange in two possible di-
rections (1,2,4) or (2,1,4).

It is possible to formulate this problem as a DCOP and solve it with
algorithms such as AFB. We have used the Kidney Exchange Problem Gen-
erator in FRODO. We use the following formulation, which is different from
the one initially proposed in [5]. In the DCOP, each agent corresponds to
a patient-donor pair, and owns two variables: one modeling the decision of
whom to give a kidney to, and the other of whom to receive a kidney from.
The constraints are the following.

• Each agent has an internal constraint over its two variables, which
declares a utility equal to:

10 if the agent receives a kidney from the same agent it gives its kidney
to (2-way cycle);

−∞ if it gives without receiving or receives without giving;

0 otherwise.

• Binary inter-agent constraints enforce that agents agree on who gives
to whom;

• Ternary constraints involving pairs of neighboring agents declare a
utility of 29 if they are involved in a 3-way cycle, and 0 otherwise.

17

The utility values have been chosen in such a way that each transplantation
gives a utility of 10, but 3-way exchanges are more complicated to set up
than 2-way exchanges and are therefore penalized with a cost of 1.

3.1.2 Experimental Setup

Because of the high connectivity of the problem and limited memory (2GB)
available on the testing machine, we were only able to test these cases up to
a size of at most 10 pairs.

We compared the following algorithms in FRODO:

• our implementation of AFB

• SynchBB (ch.epfl.lia.frodo.algorithms.synchbb.SynchBBsolver)

• ADOPT (ch.epfl.lia.frodo.algorithms.adopt.ADOPTsolver)

• DPOP (ch.epfl.lia.frodo.algorithms.dpop.DPOPsolver)

• ASODPOP (ch.epfl.lia.frodo.algorithms.asodpop.ASODPOPsolver)

• ODPOP (ch.epfl.lia.frodo.algorithms.odpop.ODPOPsolver)

For this comparison, we measured the total number of messages
exchanged, the total message size, the total algorithm runtime and
the Non-Concurrent Constraint Checks (NCCCs). Typically, the
performance of distributed algorithms is measured with two independent
metrics [2]:

• communication load - in our case the number of messages and total
message size.

• run time - in our case total algorithm runtime and NCCC.

NCCCs are an indication of logical runtime in terms of number of atomic
steps of computation needed. The atomic step here is a constraint check.

Code for these experiments can be found in the benchmark package
ch.epfl.lia.frodo.benchmarks.kidneys. We have added a class KidneyExper-
iment.java, that creates a new instance the Java Virtual Machine to solve
a given problem with a given algorithm (this ensures that each algorithm
gets an equal treatment). The timeout for solving a problem was set to 2
minutes. The problem sizes (numbers of patient-donor pairs) ranged from 5
pairs to 9 pairs. For each problem size, we generated 101 problems (choosing
an odd number makes the median better defined) and computed the median
for each of the metrics we measured. The results for all algorithms were
finally printed in text files.

We have written a script doExperiments.ps1 to generate and process all
the data. It is written in Windows Powershell and can be run on other

18

Figure 3: Represented median(red) and confidence interval (blue)

platforms using the Mono package (www.go-mono.com/mono-downloads/
download.html) and Pash (http://sourceforge.net/projects/pash/).
We intend to rewrite this script in Python in the near future. Finally,
this script dynamically generates Matlab scripts to plot the results for each
metric. A logarithmic scale is used for the total algorithm runtime.

The graphics represent the median with 95% confidence interval over the
101 samples. To compute the confidence intervals for the median we sort
all the results for each metric. We then choose the median value and the
confidence intervals indexes, as shown in Figure 3 from [5]. The number
of considered problems n must be at least 71 for this formula to hold. In
experimental results, if a confidence interval is not present, this means that
the interval is of length 0.

All experiments have been run on a Toshiba Protege R705-P41, 2.53 GHz
Intel Core i5-460M dual-core processor, on Windows 7 with 2GB of JVM
memory.

3.1.3 Results

Figure 4 shows the simulated time for all algorithms. Notice that for prob-
lem size=10, Adopt grows at a high exponential rate and times out after 2
minutes. The ASO-DPOP and O-DPOP graphics overlap for all of the four
metrics. The number of messages and total information exchanged are fairly
high for AFB (Figures 5 and 6), they are only surpassed by Adopt for small
problem sizes. The NCCC counts are also very high for AFB (one order of
magnitude higher than SyncBB on average for all sizes; Figure 7), but this
was due to a bug that was since fixed, and we did not have the time to re-run
the experiments. However, the total runtime of AFB is not that much higher
than that of the other algorithms (Figure 4) and its rate of increase in run-
time with respect to the increase in problem size is comparable to the best
one, of SyncBB. However, we have recently found room for improvement
to reduce the message sizes (for example, currently our backtrack messages
also include the CPA. This could be removed, since the agent receiving the

19

www.go-mono.com/mono-downloads/download.html
www.go-mono.com/mono-downloads/download.html
http://sourceforge.net/projects/pash/

Figure 4: Median with 95% confidence intervals for algorithm runtime in
milliseconds (sample size = 101)

backtrack checks if the backtrack message is up-to-date, and if this is the
case, it means that the PA the agent holds is the most up-to-date one, thus
making the CPA included in the backtrack messages unnecessary). Our re-
sults suggest that SyncBB offers the best tradeoff between communication
load and runtime on this problem class.

In order to get a better idea of how much worse the other algorithms
perform, we also looked at the same data, using SyncBB as a baseline. More
specifically, for each problem instance and for each metric, we recorded the
relative result of each algorithm as the actual result from which we sub-
tracted the SyncBB result. We then computed the medians and confidence
intervals. We thought this process would also help reduce the variability of
the results.

Figures 8 to 9 show the relative results on a logarithmic scale. An effect
of using the logarithmic scale is that it can only show positive values, while
the negative values are excluded. This means that only the sections of
relative increase with respect to SyncBB are showing in each graph.

20

Figure 5: Median with 95% confidence intervals for total number of messages
(sample size = 101)

Figure 8: Median with 95% confidence intervals for total runtime, using
SyncBB as a baseline (sample size = 101)

21

Figure 6: Median with 95% confidence intervals for total information ex-
changed (sample size = 101)

Figure 9: Median with 95% confidence intervals for NCCC, using SyncBB
as a baseline (sample size = 101)

Notice that DPOP actually takes less time to run than SyncBB for prob-
lem sizes up to 8 (Figure 8 indicates a negative logarithm, so there is a
relative decrease in runtime for DPOP, with respect to SyncBB). For sizes
greater or equal to 8, DPOP shows a relative degradation of performance

22

Figure 7: Median with 95% confidence intervals for NCCC (sample size =
101)

(equivalent to an increase in runtime) of about one order of magnitude.
AFB’s relative degradation of performance with respect to SyncBB runtime
is almost constant along all problem sizes, while ODPOP and ASODPOP
start off with a smaller degradation (up to size 8) but seem to decrease
much faster beyond that point. Adopt is faster than SyncBB only for very
small problems (size 4), but for sizes bigger than 4 it increases in run time
much faster than any of the other algorithms. DPOP constantly decreases
in number of messages and information exchange with respect to SyncBB
(Figure 10, ODPOP and ASODPOP show a slight increase in number of
messages, but fairly constant in information exchanged. Adopt shows an
initial rapid increase for sizes up to 7, and then decreases. AFB’s shows
an increase in both number of messages (relatively small and linear), and
information exchanged (higher).

23

Figure 10: Median with 95% confidence intervals for total number of mes-
sages, using SyncBB as a baseline (sample size = 101)

Figure 11: Median with 95% confidence intervals for information exchanged,
using SyncBB as a baseline (sample size = 101)

These results seem to indicate that AFB is not the best suited algorithm
for the kidney exchange problem. This could be due to the problem’s variety
and complexity. We should also keep in mind that our results only apply to
small instances of the problem, and it could be the case for larger instances

24

or for different problem classes, that AFB might perform better.

3.2 Max-DisCSP experiments

To get a better ideea of AFB’s performance, we decided to try to reproduce
the results in [4]. These use a different problem class, called Max-DisCSPs.

3.2.1 Max-DisCSP overview

Max-DisCSP is a subclass of DCOP problems, where all constraints are
binary and costs are equal to 0 or 1. They are minimization problems, so
reducing the costs amounts to minimizing the number of constraints that are
violated. Variables are assigned values from a uniform domain with values
1 . . . k. The constraint graph is generated randomly, based on:

• density, p1: for each possible pair of variables, the probability that a
constraint exists between them.

• tightness, p2: for a certain constraint and each possible value assign-
ment to its variables, the probability that the constraint is violated
(i.e. has cost=1).

Therefore, a Max-DisCSP is characterized by the number of variables (n),
the uniform domain size (k), the constraint graph density (p1) and tightness
of constraints (p2).

3.2.2 Experiment setup

We mostly used the same approach to setup this experiment as we did for
the kidney problem. We have implement a new random problem generator
with adjustable density and tightness for Max-DisCSP problems. Given n,
k, p1 and p2, the generator outputs a new problem in an .xml file. The code
can be found in the ch.epfl.lia.frodo.benchmarks.maxdiscsp package.

We used the same settings as the paper: problem size 10, domain size
10 and we measured the performance, in terms of NCCC, for the following
algorithms:

• AFB

• SyncBB

• Adopt

• DPOP

One thing to mention is that the non-concurrent constraint checks count is
automated in FRODO, and is done in the same way for each algorithm. We
were not convinced by the argument in the paper [4] that different atomic

25

operations can be counted for each of the DisCOP algorithms and compared
uniformly.

We varied constraint tightness from 0.1 to 0.99, and used values p1=0.4
and p1=0.7 for density, in two different setups. The timeout for each prob-
lem run was 2 minutes.

3.2.3 Results

Figure 12 and Figure 13 show the results for low density problems (p1=0.4),
as presented in [4] and as resulting from our experiments, respectively. The
two AFB plots look similar enough and are within the same order of magni-
tude. This result indicates that our implementation of AFB is correct with
respect to constraint checks. There is one exception, for tightness p2=0.99,
when we did not find an increase in NCCC. This can be explained by a
phase-transition in AFB’s performance, as the tightness of the problems
increases beyond some point [3]. Other DisCOP algorithms were not yet
found to display such a behavior.

A very important observation is that our results for SyncBB are found
to be approximately two orders of magnitude lower than the ones in [4]
(starting just below 103 as opposed to well over 104). This was a surprising
result, as we found SyncBB outperforms AFB on tightness values up to
and including p2=0.9. However, SyncBB timed out for the most difficult
problems (tightness p2=0.99) so we cannot say for sure if AFB’s phase
transition makes it more effective for these kinds of problem instances. We
could infer that NCCC and actual algorithm runtime, both measures of
performance, are somewhat correlated and a timeout in SyncBB, and not
AFB, would also indicate a possible higher NCCC than AFB for very high
values of tightness.

Our plot for the Adopt algorithm is smoother (possibly because we may
have used more samples) and it does not show any timeout. In fact, we
found Adopt also outperforms AFB for most values of tightness (except for
the very high tightness values, p2 >0.90), whereas [4] suggests this only
happens for p2 <0.7.

DPOP results are consistent with the paper, showing very little change
regardless of the problem’s tightness. This is to be expected, given the
fact that DPOP does not perform any search or punning. This stability
comes with a performance loss: DPOP performs worse than all the other
algorithms for most problems (tightness up to 0.8).

Looking at the results for high density (p1=0.7) problems (Figure 14
and Figure 15), we notice a general increase in NCCC for all algorithms and
a more rapid increase for AFB, SyncBB and Adopt compared to the lower
density problems. This increase yields more timeouts, specifically:

• Adopt is the first one to timeout, starting with tightness value p2=0.7.

26

• AFB times out for tightness value p2=0.9.

• SyncBB is the last one to timeout, beyond tightness values p2 > 0.9.

Notice that SyncBB still outperforms AFB on almost all tightness values,
except on the limit value p2=0.99. We can now conclude that AFB’s phase-
transition property makes it more effective for very tight Max-DisCSP prob-
lems. We could probably reach the same conclusion for lower density prob-
lems, if we had a higher timeout limit.

In matching with the results from the paper, Adopt is now shown to be
outperformed by AFB, but we have found the degradation of performance
to be more rapid for Adopt than for AFB. In other words, as the problems
become more difficult, Adopt shows an exponential loss in performance.

DPOP’s results are consistent with [4]: NCCC is higher than that of
all the other algorithms, but it always terminates. It is again shown to be
resistant to tightness changes, as opposed to the rapid increase of the other
algorithms.

In conclusion, our experiment showed values and behavior similar to [4]
for all algorithms, except SyncBB. We could not validate the claim that AFB
is the clear “winner” for the whole range of problem difficulty [4]. In fact,
we found that most of the times, SyncBB is the winner. AFB outperforms
SyncBB only on random problems that are highly dense and very difficult
(tightness 0.99).

Our intuition was that this discrepancy in the results must be due to a
difference in implementation. After contacting the authors of [3], we found
that they used a fixed variable ordering heuristic (probably the lexicographic
order). FRODO, on the other hand, uses more effective heuristics: the min-
width heuristic for SynchBB and AFB, and the most-connected heuristic for
DPOP and ADOPT.

This makes for a very interesting observation: with a poor variable or-
dering heuristic, AFB outperforms SynchBB. The forward bounding mecha-
nism makes it possible for high-priority agents to discover early in time that
lower-priority agents are stuck exploring a fruitless part of the search space.
They can then abandon this part and restart in another, possibly better sub-
space, yielding a performance gain for AFB. On the other hand, with a smart
variable ordering heuristic, SynchBB does not get stuck deep in the search
tree and AFB’s pruning power no longer compensates for the computational
overhead of performing forward bounding. As such, AFB is outperformed
by SynchBB most of the time (and sometimes even by ADOPT).

27

Figure 12: Empirical evaluation on random Max-DisCSP of low constraints
density, as published in [4]

4 Conclusion

The main goal for this project was to understand and implement the AFB
algorithm, as introduced in [3] and to compare it with different algorithms
implemented in FRODO. Our initial experiments were done on small size,
randomly generated distributed kidney exchange problems. We have seen
that AFB does not offer the best tradeoff between communication load and
runtime for this class of problems. In this case, SyncBB performs faster
and uses less network resources, so it may be the case that AFB is not
very well suited for the distributed kidney exchange problem class. Finally,
we wanted to possibly find a class of problems for which AFB performs
better. The paper [3] was interesting because it presented excellent results
for AFB applied to Max-DisCSP problems, therefore we decided to try and
reproduce these results. However, our experiments did not lead to the same
conclusions. Most of the hypotheses were validated by our results, but,
interestingly enough, we found that SyncBB again performs better than
AFB fort most types of Max-DisCSP problems. In these last experiments,
we have seen AFB’s phase transition effect, which does make it be the best
choice for problems with very high constraint tightness. We found that
using a smart order heuristic for the variables can dramatically influence
algorithms’ performance. During our experiments, we have identified several

28

Figure 13: Random Max-DisCSP-NCCC comparison for low constraints
density problems (90 samples for each tightness value).

future work items that could possibly clarify and improve these results.

5 Future work

We have identified room for improvement in the message sizes of AFB.
Implementing this changes would help to see how much the sizes of messages
can be reduced, compared to the other algorithms.

We could also implement a different baseline comparison method for the
kidney experiment, using division instead of subtraction. This would allow
us to make claims such as “Algorithm X is y times faster than SynchBB”.

The Max-DisCSP problem experiments could be extended to:

• increase the timeout limit to complete the plots (for AFB in particular,
it would be interesting to see how big is the increase in performance
or very tight problems).

• run more problem instances to validate our claims.

• include ODPOP and ASODPOP algorithms.

• plot other metrics, such as total message size, information exchange
and actual run time.

Several versions and adjustments to AFB are described in the literature.
These would also be interesting to implement and compare.

29

Figure 14: Empirical evaluation on random Max-DisCSP of high constraints
density ([4])

One of them is the AFB with back-jumping [3]. This is a mechanism
that allows an agent to ”back-jump” to some higher priority agent, not
necessarily the previous one. For example, if agent Ai computes an upper
bound for assignments up to agent Ai−2 and this is higher than the current
known upper bound, that it can ignore all possible assignments for Ai−1.
Intuitively, this should decrease the algorithm runtime.

The heuristic to compute h and a lower bound estimate, based on the
current assignment Ai = v, can be replaced with other heuristics to compute
a lower bound, according to [2].

Another extension could be inducing a value ordering heuristic, such as
the minimum-cost heuristic in the AFB-minC [3]. In this case, values with
lower costs due to assignments of higher priority agents are selected first.
Experiments suggest that this can substantially improve performance.

Finding a problem class on which AFB constantly outperforms the other
algorithms could also be interesting. In our experiments, we have seen how
the choice of the problem can yield different performance results.

30

Figure 15: Random Max-DisCSP-NCCC comparison for high constraints
density problems (63 samples for each tightness value).

References

[1] Boi Faltings. Distributed Constraint Programming, chapter 20, pages
699–729. Foundations of Artificial Intelligence. Elsevier, August 2006.

[2] Amir Gershman, Amnon Meisels, and Roie Zivan. Asynchronous
forward-bounding for distributed constraints optimization. In Gerhard
Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso, editors,
Proceedings of the Seventeenth European Conference on Artificial Intel-
ligence (ECAI’06), pages 103–107, Riva del Garda, Italy, August 29–
September 1 2006. IOS Press.

[3] Amir Gershman, Amnon Meisels, and Roie Zivan. Asynchronous for-
ward bounding for distributed COPs. Journal of Artificial Intelligence
Research, 34:61–88, February 2009.

[4] Amir Gershman, Roie Zivan, Tal Grinshpoun, Alon Grubshtein, and
Amnon Meisels. Measuring distributed constraint optimization algo-
rithms. In Proceedings of the AAMAS’08 Distributed Constraint Reason-
ing Workshop (DCR’08), pages 17–24, Estoril, Portugal, May 13 2008.

[5] Jonas Helfer, Thomas Léauté, and Boi Faltings. Heuristics for dis-
tributed pseudo-tree regeneration. Semester project report, EPFL Arti-
ficial Intelligence Lab (LIA), January 9 2010.

31

[6] Katsutoshi Hirayama and Makoto Yokoo. Distributed partial constraint
satisfaction problem. In Gert Smolka, editor, Proceedings of the Third
International Conference on Principles and Practice of Constraint Pro-
gramming (CP’97), volume 1330, pages 222–236, Linz, Austria, Octo-
ber 29–November 1 1997. Springer.

[7] Thomas Léauté, Brammert Ottens, and Radoslaw Szymanek.
FRODO 2.0: An open-source framework for distributed constraint op-
timization. In Katsutoshi Hirayama, William Yeoh, and Roie Zivan,
editors, Proceedings of the IJCAI’09 Distributed Constraint Reasoning
Workshop (DCR’09), pages 160–164, Pasadena, California, USA, July 13
2009.

32

	Introduction
	DCOP
	Project Overview

	AFB Implementation
	DCOP Definition
	AFB Description
	AFB implementation
	Overview
	AFB Pseudocode
	Optimizations

	AFB Experiments
	Real life problem experiments
	Kidney Exchange Problem Overview
	Experimental Setup
	Results

	Max-DisCSP experiments
	Max-DisCSP overview
	Experiment setup
	Results

	Conclusion
	Future work

