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We analyze how the choice of the sampling weight affects efficiency of the Monte Carlo evaluation of
classical time autocorrelation functions. Assuming uncorrelated sampling or sampling with constant
correlation length, we propose a sampling weight for which the number of trajectories needed for
convergence is independent of the correlated quantity, dimensionality, dynamics, and phase-space
density. By contrast, it is shown that the computational cost of the “standard” algorithm sampling
from the phase-space density may scale exponentially with the number of degrees of freedom. Yet,
for the stationary Gaussian distribution of harmonic systems and for the autocorrelation function of a
linear function of phase-space coordinates, the computational cost of this standard algorithm is also
independent of dimensionality. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820420]

INTRODUCTION: TIME CORRELATION FUNCTIONS

Many dynamical properties of stationary systems as well
as the response of such systems to weak perturbations can
be inferred from time autocorrelation functions.1, 2 Examples
include the optical absorption line shapes computed from
the dipole time autocorrelation function, the diffusion coef-
ficient computed from the velocity time autocorrelation func-
tion, and various relaxation properties.3 More general time
correlation functions are in fact the principal ingredients of
semiclassical4, 5 and path-integral6–11 calculations of quan-
tum dynamical properties. Trajectory-based methods for com-
puting time correlation functions, however, may become too
expensive in many-dimensional systems. Yet, dimensionality-
independent algorithms have been found for special cor-
relation functions, such as classical12 and semiclassical13

fidelity.14 Motivated by the importance of correlation func-
tions in many areas of physics, here we explore how these
functions can be computed more efficiently in general. In par-
ticular, we propose a sampling weight for which the num-
ber of trajectories needed for convergence of any classical
normalized time autocorrelation function is independent of
dimensionality both of the phase space and of the studied
observable.

Quantum mechanically, the unnormalized time autocor-
relation function CQM

u (t) of a vector operator Â is defined as

CQM
u (t) = Tr(ρ̂0Â0 · Ât ), (1)

where ρ̂0 is the density operator, Â0 is the operator evaluated
at time t = 0, Ât = eiĤ t/¯Âe−iĤ t/¯ is Â evolved with Hamil-
tonian Ĥ for time t, and subscript “u” emphasizes that the
correlation function is not normalized. In the classical limit,
correlation function (1) becomes

Cu(t) = h−D

∫
dxρ0(x)A0(x) · At (x), (2)

a)Electronic mail: tomas.zimmermann@epfl.ch
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where x := (q, p) is the 2D-dimensional phase-space coor-
dinate, ρ0(x) is the initial phase-space density, A0(x) is the
classical observable A evaluated at time t = 0, and At (x)
= e−L̂tA0(x) is this function A evolved classically for time
t with the Liouville operator L̂ = {H, ·}. Note that besides a
three-dimensional vector (such as the molecular dipole μ), A
can also be a scalar (A) or a higher-dimensional phase-space
vector. Also, A may be a function of only D′ phase-space co-
ordinates, where D′ < 2D or even D′ � 2D . This occurs
if one examines a property of a single molecule surrounded
by an environment, an example being the velocity autocorre-
lation function of a molecule embedded in a solvent. Since
the shape of the autocorrelation function is typically more in-
teresting than its overall magnitude,15 one often computes a
normalized time autocorrelation function

C(t) = Cu(t)/Cu(0). (3)

ALGORITHMS

Most methods for evaluating Eqs. (2) and (3) in many
dimensions employ classical trajectories. Two general ap-
proaches are currently used:16 (i) the direct approach in which
initial conditions for many trajectories are sampled from the
stationary distribution ρ, and (ii) the single-trajectory ap-
proach in which the desired autocorrelation function is com-
puted as an average of many correlation functions computed
using a single trajectory either as an average of correlation
functions initiated at different times or using the Fourier trans-
form and Wiener-Khinchin theorem. The direct approach is
more general and does not require the ergodicity of the time
evolution, whereas the single trajectory approach is often sim-
pler, as it avoids explicit sampling of ρ.

Here we explore modifications of the direct approach us-
ing generalized sampling weights and start by expressing the
correlation function (2) in terms of trajectories,

Cu(t) = h−D

∫
dx0ρ(x0)A(x0) · A(x−t ), (4)
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where xt := �t(x0) is the phase-space coordinate at time t of
a trajectory of the Hamiltonian flow �t with initial condition
x0. We further rewrite Eq. (4) in a form suitable for Monte
Carlo (MC) evaluation, i.e., as an average

〈E(x0, t)〉W :=
∫

dx0E(x0, t)W (x0)∫
dx0W (x0)

, (5)

where the positive definite function W is the sampling weight
and E is the estimator. In the Monte Carlo method, average
(5) is evaluated numerically as an average

EW (N, t) = N−1
N∑

j=1

E
(
x0

j , t
)

(6)

over N trajectories whose initial conditions x0
j are sampled

from the weight W .
The convergence rate of the sum (6) usually depends on

W . Among many possible weights W , the form of Eq. (4)
immediately suggests the following three: W (x) = ρ(x),
ρ(x)|A(x)|, and ρ(x)A(x)2. These three weights lead to three
different algorithms, which may be written as

Cu,W (t) = IW 〈EW (x0, t)〉W, (7)

where IW := h−D
∫

W (x)dx denotes the norm of W and the
estimators are

Eρ(x0, t) = A(x0) · A(x−t ), (8)

Eρ|A|(x0, t) = A(x0) · A(x−t )

|A(x0)| , (9)

EρA2 (x0, t) = A(x0) · A(x−t )

|A(x0)|2 . (10)

Substitution of Eq. (7) into the definition (3) yields a Monte
Carlo prescription for the normalized correlation function:

CW (t) = 〈EW (x0, t)〉W
〈EW (x0, 0)〉W . (11)

Since EρA2 (x0, 0) = 1, no normalization is needed for the
ρA2 algorithm. The two averages in Eq. (11) may be eval-
uated with two independent Monte Carlo simulations, or—as
we do—in a single Monte Carlo simulation, which is faster
and normalizes both Cρ(0) and Cρ|A|(0) exactly.

STATISTICAL ERRORS

The three algorithms differ by the sampling weight W

used, and hence also by the estimator EW . The cost of all
three algorithms is O(c t

�t
N ), where N is the number of tra-

jectories, �t the time step used, and c the combined cost of a
single evaluation of the force (needed for the dynamics) and
of the estimator EW . Usually, the cost of evaluating the esti-
mator is or can be made negligible to that of evaluating the
force. Therefore, the costs of the algorithms differ mainly in
the number N of trajectories needed to achieve a desired pre-
cision (i.e., discretization error) σdiscr.

Alternatively, the algorithms can be compared by evalu-
ating the discretization errors σdiscr,W resulting from a given

number N of trajectories. For an unbiased estimator, the dis-
cretization error σdiscr is equal to the statistical error σW ,

where σW (N, t)2 = CW (N, t)2 − CW (N, t)
2

and the overline
denotes an average over an infinite number of simulations
with different sets of N trajectories. Assuming for now that
the N trajectories are uncorrelated, one can show that the er-
ror of the unnormalized Cu(t) satisfies

σu,W (N, t)2 = I 2
W

N

[〈EW (x0, t)2〉W − 〈EW (x0, t)〉2
W

]
. (12)

For W = ρA2, the error of normalized C(t) satisfies a relation
obtained by removing factors of IW from Eq. (12). Statistical
errors of algorithms with weights ρ and ρ|A|, which must be
normalized according to Eq. (11), are found from the formula
for the statistical error of a ratio of random variables:(

σS/T

S/T

)2

=
(

σS

S̄

)2

+
(σT

T̄

)2
− 2

ST − S̄T̄

S̄T̄
. (13)

In our case, S = Cu,W (N, t) and T = Cu,W (N, 0). Realizing
that Cu,W (N, t) = Cu(t), we obtain the following general ex-
pression for the statistical errors of the three algorithms:

σW (N, t)2 = 1

NdW

[aWC(t)2 − 2bWC(t) + cW ], (14)

where aW = 〈|A0|4ρ/W 〉ρ , bW = 〈|A0|2(A0 · At )ρ/W 〉ρ , cW

= 〈(A0 · At )2ρ/W 〉ρ , dW = 〈|A0|2ρ/W 〉2
ρ , and an abbrevi-

ated notation At := A(x−t ) was used. The special cases are
obtained by replacing W with ρ, ρ|A|, or ρA2.

For W = ρA2, the coefficients can be rearranged as
aρA2 = −dρA2 , bρA2 = 0, cρA2 = 〈(A0 · At )2/|A0|2〉ρ , and
dρA2 = 〈|A0|2〉ρ . Using the Cauchy-Schwarz inequality (A0 ·
At )2 ≤ |A0|2|At |2 in the expression for cρA2 and the fact that
for stationary distributions 〈|A0|2〉W = 〈|At |2〉W , we find that
cρA2 ≤ 〈A(x−t )2〉ρ = dρA2 . Hence, for the weight ρA2 the up-
per bound for the statistical error depends only on N and the
value C(t) of the autocorrelation function:

σ 2
ρA2 (N, t) ≤ N−1[1 − C(t)2]. (15)

In particular, the error does not explicitly depend on the di-
mensionality D of the system, dimensionality D′ and nature
of the observable A, chaoticity of the dynamics, or time t.
This remarkable fact is the main thesis of this paper.

SPECIAL CASES

One cannot make a similar general statement about either
of the algorithms using weight ρ or ρ|A|. We therefore turn
to three special cases permitting analytical evaluation of the
statistical errors.

Observable A with constant
dimensionality D ′ < 2D

When A depends only on a fixed subset D′ of all 2D
phase-space coordinates, we may trivially integrate out re-
maining 2D − D′ coordinates in all averages in Eq. (14) un-
der the assumption that these are dynamically uncoupled from
D′ coordinates on which A depends. In that case, σ is triv-
ially independent of D for all studied sampling weights. When
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the coupling is present, the partial integration is not possi-
ble because At becomes function of all 2D initial phase-space
coordinates for t > 0. As demonstrated below, in this case,
σ generally depends on D for algorithms using weights ρ and
ρ|A|. However, as the numerical results and experience with
molecular dynamics simulations show, in many cases the de-
pendence on D is not very strong. By contrast, for weight ρA2,
as our proof shows, the error is always independent of both D
and D′.

Remaining analytical examples concern observables A
depending explicitly on D′ = D phase-space coordinates.
They both involve a many-dimensional harmonic oscillator
(HO) H = (1/2)(p2/m + kq2) and its stationary Gaussian
distribution

ρ(x) = [2 tanh(u/2)]D exp[− tanh(u/2)(q2/a2 + p2a2/¯2)],

(16)

given by the Wigner transform of the Boltzmann density op-
erator. Above, u := β¯ω, ω2 = k/m, a2 = ¯/(mω). [Note that
the ground state density and the classical Boltzmann distribu-
tion can be obtained as the limits of Eq. (16) for β → ∞ and
β → 0, respectively.]

Exponential growth of σ with D

First consider A to be the product of coordinates:
A = q1q2···qD. The statistical error for W = ρA2 is described
by Eq. (15) in full generality and thus is independent of D.
On the other hand, straightforward but somewhat tedious cal-
culations using Eq. (14) show that statistical errors for both
weights ρ and ρ|A| grow exponentially with the number of
dimensions D:

σρ(N, t)2 = 1

N

{[
1 + 2 D

√
C(t)2

]D

− 3DC(t)2

}
, (17)

σρ|A|(N, t)2 = 1

N

(
2

π

)D{[
1 + D

√
C(t)2

]D

− 2DC(t)2

}
. (18)

The fact that for W = ρ and ρ|A| there exist observables for
which the error grows exponentially with D is our second
main result. Similar behavior of σ is expected for any mul-
tiplicatively separable function A of phase-space coordinates,
such as the Gaussian A = exp (− q2/a2).

Independence of D

Yet, the situation is not always so bleak. Consider the
correlated function A = μ′ · q to be a linear function of co-
ordinates q (μ′ is a D-dimensional vector). In this important
special case, all three sampling methods have statistical errors
independent of dimensionality:

σρ or ρA2 (N, t)2 = N−1[1 − C(t)2], (19)

σρ|A|(N, t)2 = (2/π )N−1[1 − C(t)2]. (20)

The proof of Eq. (20) for weight ρ|A| is somewhat involved
and was done only for the case μ1 = ··· = μD. On the other

hand, Eq. (19) remains valid even for HOs with different fre-
quencies in different dimensions. Note that the statistical error
is slightly lower for W = ρ|A| than for W = ρ or ρA2.

SAMPLING METHODS AND CORRELATION LENGTH

Before presenting numerical examples, let us briefly
discuss the sampling methods. In many dimensions, sam-
pling from a general weight W is often performed with the
Metropolis method.17–19 Two variants are used here: The orig-
inal Metropolis method proposes the new point xnew using
a random walk step from the last accepted point xold; xnew

is accepted with probability pacc = min[W (xnew)/W (xold), 1].
If xnew is rejected, the last accepted point xold is dupli-
cated. In the “product” Metropolis method, W is factorized as
W = YZ, where Y can be sampled directly to propose a new
point xnew, which is subsequently accepted with probability
pacc = min [Z(xnew)/Z(xold), 1].

Unfortunately, except for a few distributions W (such as
the uniform or normal distributions, which may be sampled
directly), points generated by Metropolis methods are corre-
lated, leading to a correlation length Ncorr > 1 between sam-
ples. This increases the statistical error for a given number
of samples N. As a consequence, in all of our analytical ex-
pressions, N should be replaced by N/Ncorr, which can af-
fect (slightly) the dependence of σ on D. An important factor
increasing Ncorr is the rejection of proposed moves, which re-
sults in exactly identical samples. In a properly designed code,
however, these repeated samples do not increase the compu-
tational cost; they are accounted for by increasing the statis-
tical weight of the original (not yet duplicated) sample. Thus,
the efficiency of a sampling algorithm depends on the num-
ber Nuniq of unique trajectories needed for convergence rather
than on the total number N of trajectories. In situations like
ours, where the cost of evaluating the “estimator” is much
larger than the cost of a MC move, the correlation length Ncorr

can be reduced by considering only every nth point gener-
ated. While we took Ncorr into account in the numerical cal-
culations, a detailed analysis of Ncorr, which can both increase
(slowly) or decrease (slowly) with D, is beyond the scope of
this paper.

NUMERICAL RESULTS

We first confirmed our analytical results for HOs numer-
ically using k = m = ¯ = β = 1. Numerical statistical er-
rors were estimated by averaging these errors over 100 inde-
pendent simulations, each with the same number of unique
trajectories Nuniq = 5 × 105. In order to compare with the an-
alytical results, the effect of correlation was removed by con-
verting the numerical statistical error σ to an error per trajec-
tory σ1 := (N/Ncorr)1/2σ . The correlation lengths Ncorr were
estimated using the method of block averages.20

Figure 1(a) shows that for A = q1q2···qD, the error σ 1

grows exponentially with D for both weights ρ and ρ|A|,
while it is independent of D for W = ρA2. Moreover, numer-
ical results agree with the analytical predictions (15) and (17),
and (18). The original Metropolis method was used, since
the acceptance rate of the product Metropolis method was
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FIG. 1. Expected statistical error per trajectory of the autocorrelation func-
tion C(t) of a function A in a D-dimensional harmonic oscillator. Time t
was chosen separately for each D so that C(t) ≈ 0.5. (a) A = q1q2···qD.
Statistical error is independent of dimensionality for the algorithm with
weight W = ρA2 and grows exponentially with D for the other two weights.
(b) A = μ′ · q. Statistical error is independent of dimensionality for all three
sampling weights studied.

prohibitively low for high D. The step size of the random walk
was the same for all three weights but varied weakly with D
for the sake of a reasonable acceptance rate.

Figure 1(b) compares the analytical predictions with nu-
merically computed errors for A = μ′ · q, where μ′ is a
D-dimensional vector with all entries equal to 1. Such A can
be interpreted as a linear approximation to the electric dipole
of a nonpolar molecule. Figure 1(b) confirms that the statisti-
cal error σ 1 is independent of D for all three algorithms. Initial
conditions were sampled using the product Metropolis algo-
rithm with W = YZ and Y = ρ in all cases. Function Z used
in the acceptance criterion was equal to 1, |A|, and A2, for
W = ρ, ρ|A|, and ρA2, respectively. Therefore, for W = ρ,
Ncorr = 1, and N = Nuniq, while for W = ρ|A| and ρA2, Ncorr

> 1 and N > Nuniq.
The independence of D, however, is not robust, and

breaks down for the standard algorithm (W = ρ) even
for small perturbations of the harmonic system and for
one-dimensional linear observables. In Fig. 2, we numer-
ically demonstrate that for W = ρ or ρ|A| in anharmonic
systems, σ 1 in general depends on D even for a linear
function A = μ′q1 depending on a single coordinate q1.
The anharmonic system was obtained by perturbing the HO
with a Gaussian bump to obtain a system described by the
potential

V (q) = k

2

N∑
i=1

q2
i + a exp

(
−∑N

i=1 q2
i

b2

)
, (21)

where parameters a = Da1 and b2 = Db2
1 grow linearly with

D in order to keep the initial decay of the autocorrelation func-
tion C(t) similar for all D. As can be seen in Fig. 2(b), the
envelope of C(t) decays more slowly for higher D, signifying
that in a certain sense the perturbation in Eq. (21) becomes
less important in higher dimensions.

To compare statistical errors for different D in a way
which takes into account all important parts of C(t), we com-
puted statistical errors per trajectory σ av

1 which are averaged

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  20  40  60  80  100  120

σ 1
av

D

(a) ρ
ρ|A|

ρA2

Theor. ρA2

-1

-0.5

 0

 0.5

 1

 1.5

 0  1000  2000  3000  4000  5000  6000

C

t(au)

(b) D=2 D=120 HO

FIG. 2. (a) Expected average statistical error per trajectory σ av
1 of the auto-

correlation function C(t) of a function A = μ′q1 in a D-dimensional harmonic
oscillator perturbed by the Gaussian bump. Note that, for all D, A depends ex-
plicitly only on a single coordinate q1. For W = ρA2, the error σ av

1 follows
theoretical expectations. For W = ρ, σ av

1 is higher than for W = ρA2 and
grows slowly with D. (b) Autocorrelation functions C(t). Initial decay of C(t)
in the perturbed system is comparable for all D and is slower than in the
unperturbed harmonic oscillator (HO). Parameters of V (q) in atomic units
were k = 0.883, m = 1822.9, a1 = 0.1, and b1 = 0.3. Temperature was set to
3.167 × 10−2 a.u. and μ′ = 1.

over C(t) from t = 0 to the last time where |C(t)| > 0.02 us-
ing the time step �t = 1 a.u. Only every 2000th trajectory
generated by the Metropolis algorithm was used in order to
reduce Ncorr. This allowed to reduce Nuniq to 5000 and to in-
crease the number of independent simulations to 1000. Cor-
relation lengths were computed automatically by block av-
eraging with the block size equal to N/50. As can be seen
in Fig. 2(a), for W = ρA2, numerical value of σ av

1,ρA2 fol-
lows the theoretical prediction which is essentially a con-
stant function of D. For W = ρ, σ av

1,ρ grows slowly and is
approximately 1.4 times higher than σ av

1,ρA2 for D > 50. For
W = ρ|A|, only a very slight growth of σ av

1,ρ|A| can be ob-
served. Despite the modest growth of σ av

1,ρ , this example shows
that even for a weakly anharmonic system and the simplest
correlated function A = μ′q1, the dimensionality independent
sampling weight W = ρA2 is advantageous to W = ρ. In-
terestingly, in both the harmonic system and, for D � 120,
even in the weakly anharmonic system, the sampling weight
W = ρ|A| gives the lowest σ 1, suggesting that in some sys-
tems this weight may be the best choice for linear observables
A = μ′ · q. Nonetheless, since σρ|A| is difficult to predict in
general, in other systems this error may be substantially larger
than the always well-behaved σρA2 .

Finally, to demonstrate that all three algorithms indeed
converge to the same result, we calculated the vibrational
spectrum of a 48-dimensional harmonic model of the ground
electronic state of azulene computed at the CASSCF(4,6)/6-
31G∗ level of theory. Observable A was a linear approxima-
tion of the dipole moment of azulene, A = μ = μ0 + μ′ · q,
where μ0 := μ(0) is the equilibrium dipole moment (a three-
dimensional vector) and μ′ the 3 × D matrix of deriva-
tives of the dipole moment at q = 0. Sampling was per-
formed as in the previous example. The dipole autocorrela-
tion function C(t) was computed up to time ttot = 1.45 ps, the
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FIG. 3. High frequency part of the vibrational spectrum of a harmonic model
of azulene computed via the Fourier transform of the dipole time autocorre-
lation function.

minimum time needed to resolve all vibrational peaks,
and with only Nuniq = 104 unique trajectories, for which
C(t) starts to converge. Prior to computing the spectrum
via a Fourier transform, C(t) was damped with a factor
cos(πt/2ttot)2. After the transform, F[C(t)](ω) was multi-
plied by 2ω tanh (β¯ω/2), which includes the standard “quan-
tum correction”2 for the lack of detailed balance in the clas-
sical C(t). While this correction is not exact even for HOs
if ρ is the classical Boltzmann density, it becomes exact for
harmonic systems if ρ is the Wigner Boltzmann density (16).
Figure 3, showing the high-frequency region of the spectrum
containing the C–H bond stretches, confirms that all three al-
gorithms converge to the same result, agreeing, within the
resolution, with the exact spectrum. Moreover, even in this
slightly more general harmonic case [than that considered in
Fig. 1(b)], the statistical errors associated with all three sam-
pling weights stayed approximately independent of D. (Sys-
tems with D < 48 were generated by progressively cutting off
the lowest frequency normal modes of azulene.)

CONCLUSIONS

We have demonstrated the existence of a sampling weight
for which the number of trajectories needed for convergence
of the normalized time autocorrelation function of any phase-
space function A is independent of the system’s dimension-
ality and underlying dynamics. This weight is W = ρA2,
which may not be surprising at time t = 0, when this W

represents the ideal importance sampling weight with all tra-
jectories contributing unity to the sum (6). Here we have

shown that this weight retains its favorable properties also for
t > 0 by proving that σρA2 depends explicitly only on C(t)
itself, and not on other parameters of the system.

While best suited for normalized autocorrelation func-
tions, weight ρA2 can also be used in calculations of un-
normalized autocorrelation functions Cu(t) via the relation
Cu(t) = Cu(0)C(t). There, the weight ρA2 is retained for
the dynamical calculation of C(t), typically the most time-
consuming task by far. Although the initial norm Cu(0) must
be computed separately using a normalized sampling weight
such as ρ, one can afford many more trajectories, since calcu-
lation of Cu(0) does not require any dynamics.

To conclude, we hope that the dimensionality-
independent sampling weight will find its use in other
classical, semiclassical,4, 5 and even quantum mechani-
cal trajectory-based applications, such as those using the
centroid6, 9–11 or ring-polymer7–11 molecular dynamics.
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