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Abstract— This paper presents a method for plug-and-play
distributed MPC of a network of interacting linear systems. The
previously introduced idea of plug and play control addresses
the challenge of performing network changes in the form of
subsystems that are joining or leaving the network during
closed-loop operation, while maintaining stability and con-
straint satisfaction. This work extends these ideas to an iterative
distributed MPC scheme for systems with strong coupling by
employing a recently proposed method for distributed MPC
that takes the coupling dynamics into account in the form
of time-varying terminal sets and distributed optimization. A
distributed synthesis procedure for the update of the local
control laws is proposed together with a transition scheme
preparing the system for the upcoming modifications. This
enables automatic plug-and-play operation, including rejection
if the new network topology is infeasible. Both the synthesis
and online control are entirely distributed and are only based
on local information on the subsystems and their coupled
neighbors. Finally, the proposed scheme is applied to the
problem of frequency control in a power network.

I. INTRODUCTION

Distributed control is a promising tool to overcome the
limiting computational complexity and communication re-
quirements associated with centralized control of large-scale
networked systems. This paper presents an approach for
distributed linear Model Predictive Control (MPC) with
plug and play capabilities, enabling network changes by
subsystems joining or leaving the network, while ensuring
stability and constraint satisfaction of the global system.
The proposed scheme makes plug and play MPC available
for networks with strongly coupled subsystems by means
of distributed invariance and optimization and allows for an
entirely distributed controller synthesis.

The control of large complex networks represents one
of the key challenges in order to cope with many rel-
evant control problems, examples include electric power,
water resources, gas and fuel distribution, transportation or
telecommunication networks. In this context, Model Predic-
tive Control offers an attractive tool, being a high perfor-
mance control scheme for constrained systems that allows
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for the formulation of a variety of control specifications and
objectives. Distributed MPC has recently received significant
attention and a range of methods for different network
and communication systems have been proposed [1]–[4].
Adopting the scheme in [5], the techniques can be classified
according to the information exchange into non-iterative and
iterative algorithms and the type of objective into cooperative
and non-cooperative algorithms. In this paper we consider
an iterative, cooperative MPC method based on distributed
optimization.

This work is motivated by the recently introduced concept
of plug and play decentralized or distributed MPC [6], [7].
While the main focus of distributed MPC so far has been on
the control of networks with constant topology, the concept
of plug and play MPC, see also [8], considers network
changes by subsystems that want to join or leave the network,
while ensuring feasibility and stability of the global system.
By providing an automatic and distributed redesign of the
control laws in response to changing network conditions,
plug and play MPC is an attractive scheme for modern
control systems of increasing complexity. The methods in
[6], [7] are based on the idea of treating the coupling terms
as disturbances using robust MPC schemes and are therefore
suited for weak coupling between subsystems.

This paper extends the ideas of distributed plug and
play MPC to systems with strong coupling by employing a
recently proposed scheme for distributed invariance and sta-
bility [9], see also [10], [11] for related concepts, where the
coupling dynamics are taken into account by means of time-
varying distributed terminal sets and distributed optimization
[12]. The envisioned plug and play capabilities impose
two key challenges: 1. The local control laws have to be
redesigned for the modified dynamics, involving information
that is available locally. 2. Feasibility of the network change
has to be assessed and, if permitted, performed during online
operation. While common distributed MPC techniques such
as [9] could be used for controller redesign, they would
require a new controller synthesis for the entire network after
each modification and, most importantly, they do not cover
the problem of transitioning the system to the new configu-
ration. The proposed method addresses these challenges by
means of a preparation phase ensuring recursive feasibility
and stability during plug-and-play operation. In addition, a
distributed synthesis method is presented, where the redesign
of the local control laws is restricted to subsystems that are
directly influenced by the modification, i.e. neighbors to the
joining/leaving subsystems, in order to reduce the preparation
time and allow for quick plug and play operation.
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After introducing the problem setup and the distributed
MPC approach [9] in Section II, serving as a starting point
for the proposed method, the conditions for the redesign of
the local control laws and the transition phase are derived
in Section III and a method for their distributed synthesis
is proposed in Section IV. Section V demonstrates the
performance of the method using a simulation example.

II. PRELIMINARIES

Notation: We denote by diag(S1, S2, . . . , Sn), a block-
diagonal matrix with matrices S1 to Sn on the main diagonal
and zeros everywhere else. A function f : R+ → R+

belongs to class K if it is continuous, strictly increasing and
if f(0) = 0. A function f : R+ → R+ belongs to class K∞
if f ∈ K and if lims→∞ f(s) =∞.

Consider a linear time-invariant system

x+ = Ax +Bu (1)

with state vector x ∈ Rn and input vector u ∈ Rm that
consists of M dynamically coupled subsystems with the
following dynamics

x[i]+ =

M∑
j=1

Aijx
[j] +Biu

[i] , (2)

where x[i] ∈ Rni denotes the state and u[i] ∈ Rmi denotes
the input of the i’th subsystem, i ∈ M := {1, . . . ,M}, i.e.
x = [x[1], . . . , x[M ]],

∑M
i=1 ni = n, u = [u[1], . . . , u[M ]],∑M

i=1mi = m, Aij ∈ Rni×nj , Bi ∈ Rni×mi , i, j ∈ M. Ni

denotes the set of neighbors of subsystem i, including i itself,
defined as Ni := {j ∈M |Aij 6= 0}. We denote by xNi the
concatenated vector of states of all subsystems j ∈ Ni. For a
square matrix A ∈ Rn×n, the notation Ai ∈ Rni×n is used to
denote the matrix composed of the rows of A corresponding
to subsystem i, Aij ∈ Rni×nj to denote the matrix composed
of the rows of A corresponding to subsystem i and the
columns corresponding to subsystem j.

Assumption II.1. Each subsystem (2) is subject to local
state and input constraints

x[i] ∈ X[i], u[i] ∈ U[i] ∀i = 1, . . . ,M , (3)

where X[i], U[i] are convex sets containing the origin in the
interior. This results in the constraints x ∈ X := X[1]×· · ·×
X[M ], u ∈ U := U[1] × · · · ×U[M ] on the global system (1).

Assumption II.2 (Communication). Two subsystems i and
j can exchange their state information if either j ∈ Ni or
i ∈ Nj .

A. Distributed Synthesis and Control

The proposed method employs the approach introduced
in [9] for the synthesis of a distributed MPC controller for
system (1). The key benefit of the method is that it provides
a distributed MPC control law with feasibility and stability
guarantees while reducing conservatism and allowing for
distributed optimization. This is enabled by means of decen-
tralized terminal costs and time-varying terminal sets that

can also be synthesized in an entirely distributed way, an
aspect that is particularly important for the considered case
of plug and play MPC, where the control laws have to be
redesigned locally after a network modification.

The proposed MPC problem PM(x(t),α(t)) to be solved
at time t, where α(t) =

[
α[1](t), . . . , α[M ](t)

]
, is given by

min

M∑
i=1

N−1∑
k=0

l[i](x
[i]
k , u

[i]
k ) + V

[i]
f (x

[i]
N ) (4a)

s.t. x
[i]
0 = x[i](t) , (4b)

x
[i]
k+1 =

∑
j∈Ni

Aijx
[j]
k +Biu

[i]
k , (4c)

x
[i]
k ∈ X[i], u

[i]
k ∈ U[i] , (4d)

x
[i]
N ∈ X

[i]
f (α[i](t)) , (4e)

∀k = 1, . . . , N − 1,∀i ∈M , (4f)

where V
[i]
f (·) are local terminal cost functions,

X [i]
f (α[i](t)) := {x[i] ∈ Rni |V [i]

f (x[i]) ≤ α[i](t)} are
local terminal constraints taken as a time-varying level
set of the local terminal cost functions and l[i](x[i], u[i])
are local stage costs satisfying the following standard
assumption.

Assumption II.3. For all i ∈ M, there exist functions
β
[i]
1,2,3 ∈ K∞ such that

β
[i]
1 (||x[i]||) ≤ V [i]

f (x[i]) ≤ β[i]
2 (||x[i]||) ,

β
[i]
3 (||x[i]||) ≤ l[i](x[i], u[i]) ∀x[i] ∈ X[i], u[i] ∈ U[i] .

The cost and inequality constraints for each subsystem
in PM(x(t),α(t)) are decoupled from the other subsystems
and coupling is only introduced through the dynamics. Since
the dynamics are structured according to the coupling and
communication graph of the network, the MPC problem can
be solved by means of distributed optimization techniques,
returning the optimal input sequences

[
u∗0, . . . ,u

∗
N−1

]
. The

local control law applied to subsystem i is defined in a
receding horizon fashion as κ[i](x,α) = u

[i]∗
0 .

The feasible set of the MPC problem PM(x(t),α(t)) is
denoted by XM(α(t)). Note that the local terminal costs and
constraints result in the following terminal cost and terminal
constraint on the global system state

Vf (x) :=

M∑
i=1

V
[i]
f (x[i]) , (5)

Xf (α) := X [1]
f (α[1])× · · · × X [M ]

f (α[M ]) . (6)

Since Xf (α(t)) is time-varying, we make use of the time-
invariant outer approximation

X o
f (α) := {x | Vf (x) ≤ α} ⊇ Xf (α(t)) (7)

for
∑

i∈M α[i](t) ≤ α ∀t.
The local terminal cost functions V [i]

f (x[i]) and terminal
sets X [i]

f (α[i]) are chosen to ensure that the terminal cost
provides a Lyapunov function and the terminal set is invariant



for the global system under a terminal control law and in
consequence provide recursive feasibility and closed-loop
asymptotic stability of the overall system.

Theorem II.4 ( [9], [11]). If there exists a function
γ[i](xNi), a terminal control law κ

[i]
f (xNi) and a constant

α[i](0) for all subsystems i ∈ M, as well as a global
constant α such that the following conditions are satisfied:

1: Vf (x) is a Lyapunov function for system (1) under
κf (x) :=

[
κ
[1]
f (xN1), . . . , κ

[M ]
f (xNM )

]
, i.e.,

V
[i]
f (x[i]+)− V [i]

f (x[i]) (8a)

≤ −l[i](x[i], κ[i]f (xNi)) + γ[i](xNi)

∀x[i] ∈ X [i]
f ,∀i ∈M ,

M∑
i=1

γ[i](xNi) = 0 , (8b)

2: the state and input constraints are satisfied in X o
f , i.e.,

X o
f (α) ⊆ X ∩ {x | κ[i]f (xNi) ∈ U[i] ∀i ∈M} , (8c)

3: initially Xf (α(0)) ⊆ X o
f (α), i.e.,∑

i∈M
α[i](0) ≤ α , (8d)

4: the MPC problem is feasible for the initial state, i.e.,

x(0) ∈ XM(α(0)) , (8e)

then, using the dynamics

α[i]+ = α[i] + γ[i](xNi) (9)

for the size of the local terminal sets, the closed-loop
system (1) under κ(x,α) starting at the initial state x(0)
is asymptotically stable.

Remark II.5. The initial condition in (8d) together with
the dynamics in (9) ensure that 0 ≤ α[i](t) and 0 ≤∑

i∈M α[i](t) ≤ α for all t, i ∈M, i.e. Xf (α(t)) ⊆ X o
f (α),

and therefore provide feasibility with respect to the state and
input constraints in Xf (α(t)).

It was shown in [9] that terminal control laws, local
terminal costs and constraints satisfying the conditions (8a)-
(8e) can be synthesized in a distributed fashion by means of
distributed optimization.

III. PLUG AND PLAY MPC

In this section we extend the previously introduced scheme
for distributed synthesis and control to offer plug and play
capabilities, i.e. the ability to perform network changes
during closed-loop operation by one or multiple subsystems
that are added or removed from system (1). It is assumed that
the topology changes are not immediate, but that a desired
modification is indicated to the neighbors of the subsystems
plugging in or out of the network, in the following called
a plug and play (P&P) request, allowing the system to
prepare for the desired system change. The goal is to perform

the network modification, while maintaining stability and
recursive feasibility of the global system at all times, called
a P&P operation. Achieving this goal requires not only to
adapt the local control laws to the modified system, but also
to ensure that the system state is feasible for the modified
MPC problem when applying the new control law. This is
achieved by means of two preparation steps:

1) distributed redesign of the local controllers for the
(virtually) modified system

2) transition phase, where the system is controlled to
a steady-state, at which the P&P operation can be
performed, i.e. the subsystems plug in or out and the
new control law is applied to the modified system.

In order to allow for quick plug-and-play operation and keep
delays for network preparation small, we only allow the
neighboring subsystems to redesign their local controllers, all
other subsystems continue with the local terminal cost and
constraints computed for the current network configuration.

At the time when a P&P request is sent, the current system
has M subsystems with dynamics (2), applying the local
control law κ[i](x,α) resulting from Problem PM(x,α),
where the current state x(0), the current local terminal cost
functions V

[i]
f (·), control laws κ

[i]
f (·) and sets X [i](α[i])

satisfy conditions (8a)-(8e).
The set of subsystems that want to plug in or out are

denoted with P , the set of neighboring subsystems not
including P with NP :=

⋃
j∈P Nj \ P . Let the set of

subsystems for which local controllers have to be redesigned
or newly synthesized be denoted by C and the set of
subsystems that remain unchanged with R := M \ C. We
distinguish two cases:
• Plug-in request: C := NP ∪ P ,
• Plug-out request: C := NP .

This results in the dynamics

x[i]+ =
∑

j∈Nmod
i

Aijx
[j] +B[i]u[i] (10)

of the modified system with subsystems Mmod :=
{1, . . . ,Mmod}, where Nmod

i denotes the modified set of
neighbors of subsystem i with Nmod

i = Ni ∀i ∈ R. All
quantities associated with the modified system after the
addition/removal of the new subsystems are in the following
indicated with ·̃, e.g. the redesigned terminal cost is Ṽ [i]

f (·).

Remark III.1. Although not explicitly considered in (10),
the preparation scheme proposed in the following allows for
the dynamics of the neighboring systems themselves, i.e.
Aii, i ∈ C, to change with the network modification.

In the remainder of this section it is shown how the
current system and control law can be modified, such that all
conditions in Theorem II.4 are satisfied, in which case the
plug and play operation can be permitted and feasibility and
asymptotic stability of the modified system (10) under the
modified local control laws is guaranteed. If the conditions
cannot be satisfied the P&P request is rejected.

The proposed procedure is summarized in Algorithm 1.



Algorithm 1 Preparation for P&P operation
Input: Subsystems i ∈ P send P&P request.
Output: P&P permitted or rejected
Redesign Phase:

1: Compute new local terminal costs Ṽ [i]
f (x[i]) and con-

straint sets X̃ [i]
f (α̃[i]) for i ∈ C satisfying (12), (13)

while applying κ[i](x,α) to subsystems i ∈M
Transition Phase: (starting at time tt)

1: Compute steady-state x∗s(tt),u
∗
s(tt) for P&P operation

by solving (14)
2: if steady-state found then
3: Control system to x∗s(tt):
4: repeat
5: Apply κ

[i]
trans(x) resulting from problem

PMtrans(x,x
∗
s(tt),u

∗
s(tt)) in (15) to i ∈M∪P

6: until x[i] = x
[i]
s ∀i ∈M∪P

7: P&P permitted
8: else
9: P&P rejected

10: end if

A. Redesign of local controllers

First, we derive conditions for redesigning or synthesizing
local controllers for the subsystems in C, such that conditions
(8a)-(8d) are satisfied. New local terminal cost functions
Ṽ

[i]
f (·) and terminal control laws κ̃[i]f (·) are computed for all
i ∈ C such that the new global terminal cost again provides a
Lyapunov function for the modified system (10) (conditions
(8a)-(8b)). In order to avoid recomputation of α, which is
dependent on all subsystems, it is simultaneously imposed
that the set size α for X̃ o

f (α) is feasible with respect to the
state and input constraints (condition (8c)), where

X̃ o
f (α) := {x |

∑
i∈Mmod

Ṽ
[i]
f (x[i]) ≤ α}. (11)

All subsystems in R keep their previous setup, i.e. Ṽ [i]
f (·) =

V
[i]
f (·), κ̃[i]f (·) = κ

[i]
f (·) and γ̃[i](·) = γ[i] ∀i ∈ R. Recall that

the current local terminal costs satisfy
∑

i∈M γ[i](xNi) = 0.

Lemma III.2. Consider the dynamics (10). If there ex-
ist terminal control laws κ̃

[i]
f (xN

mod
i ) and functions

γ̃[i](xN
mod
i ), Ṽ

[i]
f (x[i]) ∀i ∈ C, such that

Ṽ
[i]
f (x[i]+)− Ṽ [i]

f (x[i]) (12a)

≤ −l[i](x[i], κ̃[i]f (xN
mod
i )) + γ̃[i](xN

mod
i )

∀x ∈ X̃ o
f (α),∀i ∈ C ,∑

i∈C
γ̃[i](xN

mod
i ) = −

∑
i∈R

γ[i](xNi)∀x ∈ X̃ o
f (α) , (12b)

X̃ o
f (α) ⊆ X ∩ {x | κ̃[i]f (xN

mod
i ) ∈ U[i] ∀i ∈Mmod} , (12c)

then Ṽf (x) =
∑

i∈Mmod Ṽ
[i]
f (x[i]) is a Lyapunov function in

X̃ o
f (α) for the modified global system (10) with subsystems
Mmod under the local terminal control laws κ̃[i]f (xN

mod
i ).

Proof: Follows directly from the definition of Ṽf (x),
the fact that Ṽ [i]

f (·) = V
[i]
f (·)∀i ∈ R satisfying (8a) and

conditions (12a), (12b) using Assumption II.3 (Theorem III.4
in [11]).

As a next step we consider the redesign of the local
terminal constraints such that condition (8d) is satisfied. The
local terminal sets are again taken as level sets of the local
terminal costs and redesign consists in choosing new set
sizes α̃[i], resulting in the local terminal sets X̃ [i]

f (α̃[i]) :=

{x[i]|Ṽ [i]
f (x[i]) ≤ α̃[i]}. The current state of the closed loop

system under the local control laws κ[i](x,α) is likely to
be infeasible for the MPC problem with modified terminal
constraints, independent of the set size. In order to resolve
this issue, a transition steady-state will be proposed in the
following, which offers the opportunity to reallocate α to
the local sets subject to the condition

∑
i∈Mmod α̃[i] ≤ α.

For simplicity, we take

α̃[i] =
1

Mmodα ∀i ∈M
mod . (13)

B. Transition Phase
After redesigning the local control laws, the crucial condi-

tion that remains to be satisfied is (8e). This is addressed by
introducing a transition phase, where first a feasible steady-
state that allows for P&P operation is computed and then the
system is controlled to this steady-state.

1) Computation of the steady-state: The steady-state
(xs,us) is chosen such that it can be reached from the
current system state x under the previous dynamics (2) and
starting from the steady-state, there exists an input sequence
and corresponding state trajectory for the modified system
(10) that is feasible for the constraints and the redesigned
local terminal sets. These requirements are captured in the
following optimization problem

min
∑

i∈M∪P
f [i](x[i]s , u

[i]
s , x

[i]) (14a)

s.t. x[i]s =
∑
j∈Ni

Aijx
[j]
s +B[i]u[i]s , (14b)

x
[i]
k+1 =

∑
j∈Ni

Aijx
[j]
k +B[i]u

[i]
k , (14c)

x
[i]
0 = x[i], x

[i]
N = x[i]s , x

[i]
k ∈ X[i], u

[i]
k ∈ U[i] , (14d)

x
[l]
N+k+1 =

∑
j∈Nmod

i

Aljx
[j]
N+k +B[l]u

[l]
N+k , (14e)

x
[l]
N+k ∈ X[l], u

[l]
N+k ∈ U[l], x

[l]
N+N ∈ X̃

[l]
f (α̃[l]) , (14f)

k = 1, . . . , N − 1,∀i ∈M∪P,∀l ∈Mmod . (14g)

The cost functions f [i](·) can be chosen to realize different
desired objectives, e.g.
• f [i](x

[i]
s , u

[i]
s , x[i]) := ‖x[i]s ‖22 will keep the steady-state

as close as possible to the original target, which is
here given by the origin, with the goal of reducing
modifications to the desired system behavior.

• f [i](x
[i]
s , u

[i]
s , x[i]) := ‖x[i]s −x[i]‖22 will keep the steady-

state as close as possible to the current state, with the
goal of allowing for quick plug-and-play operation.



If a steady-state permitting P&P operation exists, problem
(14) is feasible and we denote the optimal solution with
x
[i]∗
s (tt), u

[i]∗
s (tt)∀i ∈ Mmod, where tt is the start time of

the transition phase. Since the cost and inequality constraints
in (14) are decoupled and the subsystems are only coupled
by the dynamics, the problem can be solved by means of
distributed optimization.

2) Regulation to the transition steady-state: The system
is controlled to x∗s(tt),u

∗
s(tt) by applying the local control

law κ
[i]
trans(x) resulting from the standard MPC problem for

regulation around a non-zero steady-state PMtrans(x(t),x∗s,u
∗
s):

min
∑
i∈M

N−1∑
k=0

l[i](x
[i]
k − x

[i]∗
s , u

[i]
k − u

[i]∗
s ) (15a)

s.t. (4b), (4c), (4d) , (15b)

x
[i]
N = x[i]∗s . (15c)

We use the more restrictive terminal condition (15c) in
order to avoid additional computation for adapting the ter-
minal set to the new steady-state. Since the structure remains
unchanged, the modified MPC problem can again be solved
by distributed optimization. Is it important to note that if a
solution to problem (14) exists, the MPC problem PMtrans in
(15) for regulation to the steady-state is always feasible.

We conclude this section by summarizing the procedure
in the following main result.

Theorem III.3. Consider the closed loop system (2), (9)
under κ[i](x,α), i ∈M and the application of Algorithm 1
after a P&P request is made by a set of subsystems P .
Let κ̃[i](x,α) be the new local receding horizon control
law defined by the MPC problem with redesigned terminal
costs Ṽ

[i]
f (·), terminal constraints X̃ [i]

f (α[i]) and modified
dynamics (10). If the plug and play request is permitted
at time tp, the modified closed-loop system (10) under
κ̃[i](x,α) and the set dynamics

α[i]+ = α[i] + γ̃[i](xN
mod
i )∀i ∈Mmod , (16)

starting at x(tp) = x∗s(tt),α(tp) = α̃ obtained from (13),
(14) is asymptotically stable.

Proof: Feasibility of x(tp),α(tp) for the modified MPC
problem follows directly from the choice of x∗s(tt),u

∗
s(tt)

according to (14) and stability of the transition MPC con-
trol law κ

[i]
trans(x) follows from standard MPC results [13].

Finally, convergence of the modified system starting at
x(tp),α(tp) follows from Lemma III.2 and Theorem II.4.

Remark III.4. Instead of choosing α̃[i] according to (13), it
would be possible to optimize over α̃[i] in the optimization
problem (14), which would couple the subproblems in a one-
dimensional constraint.

Remark III.5. The transition phase can be improved by
allowing for P&P operation when the system state is in a
neighborhood B of the steady-state, i.e. x − xs ∈ B. In
order to ensure feasibility, the optimization (14) has to be

made robust against this deviation using any of the common
techniques for robust MPC, such as tube-based MPC [14]
or constraint tightening [15], which can be synthesized and
solved by distributed optimization [16].

IV. DISTRIBUTED SYNTHESIS FOR PLUG AND PLAY MPC
In this section we present a method for the distributed

synthesis of the redesigned control laws for the case of
quadratic cost functions, linear terminal controllers and
quadratic terminal cost functions. Let l[i](x[i], u[i]) =

x[i]
T

Q[i]x[i] + u[i]
T

R[i]u[i], κ[i]f (xNi) = Kix, V
[i]
f (x[i]) =

x[i]P [i]x[i], γ[i](xNi) = xT Γ[i]x, where Q[i], R[i] and P [i]

are symmetric positive definite matrices, Γ[i] are symmetric
matrices (potentially indefinite) and Ki,Γ

[i], are structured
according to the coupling structure in the network, i.e. for
a given i, Kij ,Γ

[i]
ij 6= 0 if j ∈ Ni, otherwise 0. Note that

Assumption II.3 is automatically satisfied by this choice. We
further assume that the local constraints are polytopic sets
of the form X[i] := {x[i] | G[i]

x,jx
[i] ≤ f

[i]
x,j , j = 1, . . . , p

[i]
x }

and U[i] := {x[i] | G[i]
u,ju

[i] ≤ f [i]u,j , j = 1, . . . , p
[i]
u }.

For the initial setup with a set of subsystems M, it
was shown in [9] that local controllers and terminal costs
satisfying conditions (8a)-(8e) can be computed on the local
subsystems using distributed optimization. We will now show
that this can be extended to plug and play operation and
all computations for the redesign of the local controllers
satisfying the conditions (12) can be distributed.

Let P̃ = diag(P̃ [1], . . . , P̃ [Mmod]). For a local matrix
Q[i] ∈ Rni×ni of subsystem i we denote by [Q[i]]lift the
lifting to the global system space, with [Q[i]]lifti,i = Q[i] and all
other elements zero. We denote with Ãi = [Ai1, . . . , AiMmod ]
the concatenated dynamics for subsystem i. For subsystems
i ∈ R, P̃ [i] = P [i], K̃i = Ki and let Γ̂[i] denote the matrix
Γ[i] computed for the system with M subsystems in the
space of Mmod subsystems. Redesign of the local controllers
consists in computing P̃ [i], Γ̃[i] and K̃i for i ∈ C satisfying
the constraints resulting from (12):

(Ãi + B̃iK̃i)
T P̃ [i](Ãi + B̃iK̃i)− [P̃ [i]]lift

≤ −[Q[i]]lift − K̃T
i R

[i]K̃i + Γ̃[i] ∀i ∈ C , (17a)∑
i∈C

Γ̃[i] = −
∑
i∈R

Γ̂[i] , (17b)

G
[i]
x,jP̃

[i]−1

G
[i]
x,j

T
≤ 1

α
f
[i]
x,j

2
∀i ∈ C, j = 1, . . . , p[i]x , (17c)

G[i]
u K̃iP̃

−1K̃T
i G

[i]
u

T
≤ 1

α
f
[i]
u,j

2
∀i ∈ C, j = 1, . . . , p[i]u .

(17d)

In the following let Yi = K̃iP̃
−1, S̃[i] = P̃ [i]−1

, S̃ = P̃−1,
G̃[i] = P̃−1Γ̃[i]P̃−1.

Lemma IV.1. Conditions (17a), (17c) and (17d) can be
written in form of the following set of LMIs:

S̃[i] ÃiS̃+B̃iYi

I [Q[i]
1
2 S̃[i]]lift

I [R[i]
1
2 S̃[i]]lift

(ÃiS̃+B̃iYi)
T [Q[i]

1
2 S̃[i]]lift [R[i]

1
2 S̃[i]]lift [S[i]]lift+G̃[i]

 � 0 ,

(18a)



[
1
α f

[i]
x,j

2
G

[i]
x,j S̃

[i]

S̃[i]G
[i]
x,j

T
S̃[i]

]
� 0, j = 1, . . . , p[i]x , (18b)[

1
α f

[i]
u,j

2
G

[i]
u,jYi

Y Ti G
[i]
u,j

T
S̃

]
� 0, j = 1, . . . , p[i]u . (18c)

Proof: For (18a) see the similar result in [9] (proof of
Lemma IV.2), for (18b),(18c) see e.g. [17].

Lemma IV.2. Let CC := {i ∈ C | Ni ∩ Nj = ∅ ∀j ∈ R}
denote the subsystems in C that are not connected to any
subsystem in R, directly or through one of the neighbors,
and CR := C \ CC the subsystems in C that have a direct
or two step connection to some subsystem in R. Similarly
RC := {i ∈ R | ∃j ∈ C such that Ni ∩ Nj 6= ∅}. Let
Γ̂[i] ≤ D[i]TD[i] ∀i ∈ M, with D[i] structured, i.e. D[i]

ij 6= 0
if j ∈ Ni otherwise 0. Condition (17b) can be enforced by
means of the following sufficient LMIs∑
i∈CC

G̃[i] = 0 , (19a)
−

∑
i∈CR

G̃[i]−2S̃RC1S̃C−S̃RC1S̃R S̃CD
[l1]T ··· S̃CD

[l|RC|
]T

D[l1]S̃C I

...
. . .

D
[l|RC|

]
S̃C I


� 0 ∀i ∈ CR . (19b)

where RC = [l1, . . . , l|RC|], S̃C =
∑

i∈C [S̃
[i]]lift and S̃R =∑

i∈R[S̃[i]]lift , C1 =
∑

i∈RC Γ̂[i] are constant matrices.

Proof: Using the structure of Γ̂[i], (17b) can be split
into condition (19a) and∑
i∈CR

Γ̃[i] = −
∑
i∈RC

Γ̂[i] ⇔
∑
i∈CR

G̃[i] = −P̃−1
∑
i∈RC

Γ̂[i]P̃−1.

Defining P̃−1 = S̃C + S̃R we obtain the sufficient condition

−
∑
i∈CR

G̃[i] −
∑
i∈RC

S̃CD
[i]TD[i]S̃C

− S̃RC1S̃R − S̃CC1S̃R − S̃RC1S̃C � 0,

which results in (19b) by using the Schur complement.
Due to the structure of the matrices, LMI (18a) can be
reduced to a small dimensional LMI of size ni + 3|Ni| and
LMI (18c) to size 1 + |Ni| per subsystem i ∈ C. Due to the
structure of G̃[i], two matrices G̃[i] and G̃[j] only have over-
lapping entries if Ni ∩Nj 6= ∅ and therefore LMI (19a) and
(19b) are structured and can be decomposed. The problem of
computing the redesigned parameters P̃ [i], Γ̃[i], K̃ [i] ∀i ∈ C
for the control laws of the modified system can therefore be
posed as a distributed LMI.

V. NUMERICAL EXAMPLE

In this section we illustrate the proposed method by
applying it to the simulation example of a power network
presented in [6], [18]. We consider a network composed of
four power generation areas that are interconnected through
tie-lines, to which a fifth area will be connected as schemati-
cally illustrated in Figure 1. The goal is to keep the frequency
at a nominal level by automatically controlling the generation

1"

2" 3"

4"

5"

Fig. 1. Network composed of four interconnected generation areas, area
five is added to the network during closed-loop operation.

when the load changes and the new generation area is
connected.

The continuous-time dynamics of each generation area
with primary control linearized around the equilibrium is
given by [19]

ż[i] =
∑
j∈Ni

Aijz
[j] +Biv

[i] + Li∆PLi , (20)

where z[i] = [∆φi,∆wi,∆Pmi
,∆Pvi ] is the state, v[i] =

∆Prefi is the control input of each generation area and
∆PLi is the local load change. The set of neighbors Ni

of each area is given by the areas connected through tie-
lines. The dynamic matrices and more details on the example
problem can be found in [18], [19]. The local dynamics
depend on the neighbors and therefore change if neighbors
are added/removed, which can, however, be addressed by the
proposed method (Remark III.1).

Defining the state and input as the offset from the state
target z[i]r = [0, 0,∆PLi ,∆PLi ]

T and input v[i]r = ∆PLi , i.e.
x[i] = z[i]−z[i]r and u[i] = v[i]−v[i]r , results in the dynamics

ẋ[i] =
∑
j∈Ni

Aijx
[j] +Biu

[i] , (21)

which are then discretized with a sampling time of 1sec using
exact discretization and treating u[i], x[j], j ∈ Ni as inputs.
The local systems are subject to the constraints ‖x[i]1 ‖∞ ≤
0.1∀i ∈ M, ‖u[1] + ∆PL1

‖∞ ≤ 0.5, ‖u[2] + ∆PL2
‖∞ ≤

0.65, ‖u[3] + ∆PL3‖∞ ≤ 0.65, ‖u[4] + ∆PL4‖∞ ≤ 0.55,
‖u[5] + ∆PL5‖∞ ≤ 0.5. The weighting matrices in (4) are
chosen as Q[i] = 4I,R[i] = I , where I is the identity matrix
of appropriate size, and the prediction horizon is N = 20.
First, matrices P [i],Γ[i],Ki and constants α, α[i], i ∈ M
defining the local control laws are computed following the
method in [9] described in Section II. In the following, we
apply the proposed approach for P&P operation, in order to
add the fifth area to the network.

The local control laws for areas 2 and 4, which will
be connected to area 5, are redesigned by computing new
matrices P̃ [i], Γ̃[i], K̃i, i = 2, 4, for the modified system
dynamics and the terminal set sizes are set to α̃[i] = α/5.
We consider a step change in the load for systems 1, 3 and
5 at time t = 0 of ∆PL1 = −0.15,∆PL3 = 0.05 and
∆PL5

= −0.01, in order to demonstrate that frequency
control is achieved while changing the network topology.
Following the procedure proposed in Algorithm 1, first a
transition steady-state x∗s(0),u∗s(0) is computed using the
cost f [i](x[i]s , u

[i]
s , x[i]) = ‖x[i]s − x[i]‖22 in (14). A feasible

steady-state is found, P&P operation is permitted and the
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Fig. 2. Frequency deviation in all areas controlled by the proposed
distributed P&P procedure. Dashed lines indicate the transition steady-state.
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Fig. 3. Trajectory of x[1]4 of area 1 controlled by the proposed distributed
P&P procedure, illustrating first the convergence to the transition steady-
state, indicated by the dashed lines, and then to the origin.

transition phase starts at t = 0. The system is regulated to
the steady-state by applying the local control laws κ[i]trans(x)
resulting from (15). The transition phase ends at time step
t = 27, when area 5 is connected and the modified control
laws κ̃[i](x,α) using the redesigned local terminal costs and
constraints are applied. The simulation results are shown in
Figures 2-4. Figure 2 demonstrates that the main goal is
achieved and the frequency deviation is successfully regu-
lated to zero for all areas, also during the transition phase.
The trajectory of the fourth state x[1]4 = Pv1 of area 1 shown
in Figure 3 illustrates the convergence first to the steady-
state, indicated by the dashed lines, and afterwards to the
origin. The local terminal set sizes are analyzed in Figure 4,
showing that starting from α̃[i], the set sizes are dynamically
changing during convergence and in particular the terminal
set sizes for areas 4 and 5 are increased while those for areas
1 and 2 are decreased. The simulation example demonstrates
that the distributed P&P method proposed in this paper
allows to perform changes in the network topology during
closed-loop operation, while ensuring stability at all times.
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Fig. 4. Terminal set sizes α[i](t) for all areas, starting at α̃[i] at t = 27
after the transition phase, i.e. after convergence to the steady-state.
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