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Abstract— A new method for H-infinity gain-scheduled con-
troller design by convex optimization is proposed that uses only
frequency-domain data. The method is based on loop shaping in
the Nyquist diagram with constraints on the weighted infinity-
norm of closed-loop transfer functions. This method is applied
to an active suspension system for adaptive rejection of multiple
narrow-band disturbances. First, it is shown that a robust
controller can be designed for the rejection of a sinusoidal
disturbance with known frequency. The disturbance model is
fixed in the controller, based on the internal model principle,
and the other controller parameters are computed by convex
optimization to meet the constraints on the infinity-norm of
sensitivity functions. It is shown next that a gain scheduled-
controller can be computed for a finite set of disturbance
frequencies by convex optimization. An adaptation algorithm
is used to estimate the disturbance frequency which adjusts
the parameters of the internal model in the controller. The
simulation and experimental results show the good performance
of the proposed control system.

I. INTRODUCTION

In control engineering problems, disturbance rejection

is an extremely important task. Some disturbances have

periodic character and can even be expressed as combination

of few sinusoidal signals. Typical examples of systems with

periodic disturbances are hard disks [1], optical disk drives

[2], helicopter rotor blades [3] and active noise control

systems [4].

In the case that the disturbance frequency is known, certain

approaches, such as internal model control and repetitive

control techniques can be applied. If unknown frequency

can be measured directly or indirectly, which happens e.g. in

some active noise control applications, adaptive feedforward

control can be used for the rejection of disturbance. In [5],

it was shown that the standard adaptive feedforward control

algorithm is equivalent to the internal model control law.

Survey on methods in both cases of known and unknown

disturbance frequency can be found in [6].

A linear parameter-varying (LPV) controller design

method is described in [7] for rejection of sinusoidal distur-

bances. In this approach, the controlled system is augmented

with LPV model of measurable disturbance in state-space.

Then an LPV controller is designed with H∞ performance

based on approach proposed in [8] and [9] using a single

quadratic Lyapunov function for all values of measured

frequency. A new method for fixed-order LPV controller
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design with application to disturbance rejection of an ac-

tive suspension system is proposed in [10]. Although LPV

controllers can guarantee the closed-loop stability for fast

variation of the scheduling parameters they suffer from poor

performance because of their conservatism.

In this paper a fixed-order H∞ gain-scheduled controller

design method based only on the frequency-domain data

is proposed. In this method, computation of the controller

parameters and their interpolation are performed by one

convex optimization as it is proposed in [11]. Then a solution

to a challenging benchmark problem [12] for rejection of

time-varying narrow-band disturbances is provided using a

new toolbox for robust controller design in the frequency

domain which is available for free [13].

The paper is organized as follows: Section II describes the

gain-scheduled H∞ controller design method that uses only

the frequency response of the model. The method is applied

to the benchmark problem for adaptive disturbance rejection

of an active suspension system in Section III. Section IV

presents the simulation and the experimental results. Finally,

Section V gives some concluding remarks.

II. GAIN-SCHEDULED H∞ CONTROLLER DESIGN

A fixed-order H∞ controller design method for spectral

models is proposed in [14]. In this section we extend this

method to design of gain-scheduled H∞ controllers.

A classical way to design gain-scheduled controllers in-

cludes two steps: 1) A set of controllers are designed for

each operating point (for continuous scheduling parameters,

a fine grid is used to obtain a finite set). 2) The controller

parameters are interpolated by a polynomial function of the

scheduling parameter.

In order to reduce the complexity of the gain-scheduled

controller, a linear or low-order interpolation is normally

used. In this case, the stability and performance are not

necessarily preserved even for the gridded scheduling pa-

rameter. The method that we propose puts these two steps

together and computes a gain-scheduled controller that sat-

isfies the stability and H∞ performance conditions for all

gridded values of the scheduling parameter using the convex

optimization methods. For the ease of presentation, a scalar

scheduling parameter and one H∞ constraint on the weighted

sensitivity function are considered. The extension to vector

of scheduling parameters and H∞ constraints on several

sensitivity functions is straightforward. In the sequel, the

class of models, controllers and design specifications are

defined and a convex optimization problem is proposed that

results in a gain-scheduled controller.
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A. Class of models

The class of causal discrete-time LTI-SISO models with

bounded infinity-norm is considered. It is assumed that the

spectral model of the system as a function of the scheduling

parameter θ, G(e−jω, θ) is available. The bounded infinity

norm condition will be relaxed later on to consider systems

with poles on the unit circle. Since only the frequency-

domain data are used in the design method the extension

to continuous-time systems is straightforward (see [14]).

B. Class of controllers

Linearly parameterized discrete-time gain-scheduled con-

trollers are considered:

K(z−1, ρ(θ)) = ρT (θ)φ(z−1), (1)

where φT (z−1) = [φ1(z
−1), φ2(z

−1), . . . , φn(z
−1)] rep-

resents the vector of n stable transfer functions, namely

basis functions vector that may be chosen from a set of

generalized orthonormal basis functions, e.g. Laguerre basis

[15], and ρT (θ) = [ρ1(θ), ρ2(θ), . . . , ρn(θ)] represents the

vector of controller parameters. The dependence of the

controller parameters ρi to θ can be affine or polynomial,

e.g. ρi(θ) = ρi0 + ρi1θ + · · ·+ ρinθ
θnθ .

The main reason to use a linearly parameterized controller

is that every point on the Nyquist diagram of the open-loop

transfer function becomes a linear function of the vector of

controller parameters ρ(θ):

L(e−jω, ρ(θ)) = K(e−jω, ρ(θ))G(e−jω, θ) (2)

= ρT (θ)φ(e−jω)G(e−jω, θ), (3)

that helps obtaining a convex parameterization of fixed-order

H∞ controllers.

C. Design specifications

The nominal performance can be defined by (see [16])

‖W1S(ρ(θ))‖∞ < 1 ∀θ, (4)

where S(z−1, ρ(θ)) = [1+L(z−1, ρ(θ))]−1 is the sensitivity

function and W1 represents the performance weighting filter.

The approach proposed in [14] is based on the linearization

of this constraint around a known desired open-loop transfer

function Ld (that may be a function of θ as well). The

main interest of this linearization is that it gives not only

sufficient conditions for the nominal performance but also

some conditions on Ld that guarantee the stability of the

closed-loop system. The linear constraints are given by [14]:

|W1(e
−jω)[1 + Ld(e

−jω, θ)]|−

Re{[1 + Ld(e
jω, θ)][1 + L(e−jω, ρ(θ))]} < 0, ∀ω, ∀θ (5)

It is easy to show that the inequality in (4) is met if the

above inequality is satisfied. Knowing that the real value of

a complex number is always less than or equal to its absolute

value, we have:

|W1(e
−jω)[1 + Ld(e

−jω, θ)]|−

|1 + Ld(e
jω, θ)||1 + L(e−jω, ρ(θ))| < 0, ∀ω, ∀θ (6)

-

+

+

K(θ) G2

G1

H

e(t)

v1(t)

yp(t)

v2(t)y(t)

θ
p(t)

u(t)

Estimator

Fig. 1. Block diagram of the active suspension system

which leads to

|W1(e
−jω)| < |1 + L(e−jω, ρ(θ))|, ∀ω, ∀θ (7)

that is equivalent to (4). Moreover, it can be shown that the

number of encirclements of the critical point by L and Ld

is equal. As a result, the closed-loop stability is ensured if

Ld(θ) satisfies the Nyquist criterion for all θ (e.g. it does

not turn around -1 for stable plant models). On the other

hand, if the plant model and/or the controller have unbounded

infinity-norm, i.e. the poles on the unit circle, these poles

should be included in Ld (see [14]).

D. Optimization problem

The constraints in (5) should be satisfied for all ω ∈
[0, ωn], where ωn is the Nyquist frequency, and for all θ ∈
[θmin, θmax]. This leads to an infinite number of constraints

that is numerically intractable. A practical approach is to

choose finite grids for ω and the scheduling parameter θ
and find a feasible solution for the grid points. This leads

to a large number of linear constraints that can be handled

efficiently by linear programming solvers. By increasing the

number of scheduling parameters, the number of constraints

will increase drastically that increases the optimization time.

In this case a scenario approach can be used that guarantees

the satisfaction of all constraints with a probability level

when they are only satisfied for a finite number of randomly

chosen scheduling parameters [17]. Some of the effects of

gridding in frequency and additional constraints that can be

imposed for ensuring good behavior between the grid points

are described in [18].

III. ACTIVE SUSPENSION BENCHMARK

The objective of the benchmark is to design a controller

for the rejection of unknown/time-varying multiple narrow

band disturbances located in a given frequency region. The

proposed controllers will be applied to the active suspension

system of the Control Systems Department in Grenoble

(GIPSA - lab) [12]. The block diagram of the active sus-

pension system together with the proposed gain scheduled

controller is shown in Fig. 1.



The system is excited by a sinusoidal disturbance v1(t)
generated using a computer-controlled shaker, which can be

represented as a white noise signal, e(t), filtered through

the disturbance model H . The transfer function G1 between

the disturbance input and the residual force in open-loop,

yp(t), is called the primary path. The signal y(t) is a

measured voltage, representing the residual force, affected

by the measurement noise. The secondary path is the transfer

function G2 between the output of the controller u(t) and

the residual force in open-loop. The control input drives an

inertial actuator through a power amplifier.

The disturbance consists of one, two or three sinusoids,

leading to three levels of benchmark depending on the

number of sinusoids. Disturbance frequencies are unknown

but lie in an interval from 50 to 95Hz. The controller should

reject the disturbance as fast as possible. In this contribution

we consider only the first two levels of the benchmark.

We explain in detail the control structure and the design

method for Level 1. The extension to the second level is

straightforward.

A. Controller design for Level 1

An H∞ gain-scheduled controller, based on the internal

model principle to reject the disturbances, is considered as

follows:

K(z−1, θ) = [K0(z
−1) + θK1(z

−1)]M(z−1, θ) (8)

where K0 and K1 are FIR filters of order n and M(z−1, θ) =
1/(1 + θz−1 + z−2) the disturbance model for a sinusoidal

disturbance with frequency f1 = cos−1(−θ/2)/2π. In or-

der to improve the transient response, the infinity norm

of the transfer function between the disturbance and the

output, MG1S, should be minimized. However, since the

primary path model G1 cannot be used in the benchmark,

it is replaced by a constant gain. On the other hand, in

order to increase the robustness and prevent the activity

of the command input at frequencies where the gain of

the secondary path is low, the infinity norm of the input

sensitivity function ‖KS‖∞ should be decreased as well.

Another constraint on the maximum of the modulus of the

sensitivity function ‖S‖∞ < 2 (6dB) is also considered

according to the benchmark requirements (not to amplify

the noise at other frequencies).

The following optimization problem is solved:

min γ

γ−1
[

|M(e−jωk , θi)|+ |K(e−jωk , ρ(θi))|
]

× [1 + Ld(e
−jωk , θi)]|−

Re{[1 + Ld(e
jωk , θi)][1 + L(e−jωk , ρ(θi))]} < 0,

0.5|[1 + Ld(e
−jωk , θi)]|−

Re{[1 + Ld(e
jωk , θi)][1 + L(e−jωk , ρ(θi))]} < 0,

for k = 1, . . . , 5027, i = 1, . . . , 46

(9)

where the first constraint is the convexification of ‖|MS|+
|KS|‖∞ < γ and the second constraint that of ‖S‖∞ < 2.
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Fig. 2. Magnitude plot of the output sensitivity functions for disturbance
frequencies from 50Hz to 95Hz

This is a convex optimization problem for fixed γ and can

be solved by an iterative bisection algorithm. Because of

very high resonance modes in the secondary path model,

a very fine frequency grid with a resolution of 0.5 rad/s

(5027 frequency points) is considered. The interval of the

disturbance frequencies is divided to 46 points (a resolution

of 1Hz), which corresponds to 46 points in the interval

[−1.8478 , −1.4686] for the scheduling parameter θ.

Remarks:

• The controller order (the order of the FIR models for

K0 and K1 in (8)) is chosen equal to 10 which is much

less than 26, the order of the plant model.

• The desired open-loop transfer functions are chosen as

Ld(θi) = Kini(θi)G2, where Kini(θi) are stabilizing

controllers computed by pole placement technique.

• The Frequency-Domain Robust Control Toolbox [13]

is used for solving this problem. For the convenience,

the internal model is considered as a part of the plant

model, i.e. G(θ) = M(θ)G2 ,and after the controller

design it is returned to the controller.

• After 7 iterations for the bisection algorithm γmin =
1.68 is obtained. The total computation time is about

11 minutes on a personal computer.

This gain-scheduled controller gives very good transient

performance and satisfies the constraint on the maximum

modulus of the sensitivity function for all values of the

scheduling parameter. Figure 2 shows the magnitude of

the output sensitivity functions S for 46 gridded values

of the disturbance frequencies. One can observe very good

attenuation at the disturbance frequencies and the satisfaction

of the modulus margin of at least 6dB for all disturbances.

B. Controller design for Level 2

In this level of the benchmark, two sinusoidal disturbances

should be rejected. The structure of the gain scheduled

controller is given by (z−1 is omitted):

K(θ1, θ2) = (K0 + θ1K1 + θ2K2)M(θ1, θ2) (10)



where K0,K1 and K2 are 8th order FIR filters and

M(θ1, θ2) =
1

1 + θ1z−1 + θ2z−2 + θ1z−3 + z−4
(11)

By considering a hard constraint on the magnitude of the

sensitivity function ‖(1 + KG2)
−1‖∞ < 2.24 (7dB) the

optimization becomes infeasible. Therefore, the following

constraint is considered for optimization:

|M(1+KG2)
−1|+|(1+KG2)

−1| < γ ∀ω, ∀θ1, ∀θ2 (12)

where γ is minimized. Since we have two scheduling param-

eters a resolution of 1Hz for each sinusoidal disturbances

leads to 462/2 = 1058 grid points. This increases by a

factor of 23 the number of constraints with respect to that

of Level 1. Moreover the resolution of the frequency grid

is improved from 0.5 rad/s to 0.2 rad/s which increases

the number of constraints. The number of variables is also

increased from 22 (the coefficients of two FIR of order 10)

to 27 (the coefficients of three FIR of order 8). In order to

obtain a faster optimization problem, the scenario approach

is used. From the set of 1058 frequency pairs, 50 samples

are chosen randomly and the constraints are considered

just for these frequencies. The stability of the closed-loop

system however, is verified a posteriori for all 1058 frequency

pairs. The computed controller, however, destabilized the teal

system for disturbance frequency pair (50-70)Hz. The main

reason is the modeling error for the secondary path model

around 50Hz. Therefore, a new model for the secondary

path provided by the benchmark organizers with smaller

modeling error around 50Hz is used for the controller design.

A new controller is designed using the scenario approach

and achieves γmin = 10.62 after 11 iterations with a total

computation time of about 15 minutes.

The attenuation of at least 40 dB is obtained for all fre-

quencies but the maximum of the output sensitivity function

is greater than 7 dB in some frequencies.

C. Estimator design

The scheduling parameter θ used in the internal model

of disturbance is estimated using a parameter adaptation

algorithm. To estimate the parameters of the disturbance

model, we need to measure the disturbance signal p(t) (see

Fig. 1). If we model p(t) as the output of an ARMA model

with white noise as input, we have:

Dp(q
−1)p(t) = Np(q

−1)e(t), (13)

where e(t) is a zero mean white noise with unknown

variance. Estimation of the parameters of Np and Dp could

be performed by the standard Recursive Extended Least

Squares method [19], if p(t) was measured. Since p(t) is

not available, it is estimated using the measured signal y(t)
and the known model of the secondary path. From Fig. 1,

we have:

p(t) = y(t)−
q−dB(q−1)

A(q−1)
u(t)− v2(t), (14)

where
q−dB(q−1)

A(q−1)
is the parametric model of the secondary

path G2. Since v2(t) is a zero mean noise signal, unbiased

estimate of p(t) is given as

p̄(t) = y(t)+[A(q−1)−1][y(t)−p̄(t)]−B(q−1)u(t−d)

For the asymptotical rejection of sinusoidal disturbance, there

is no need to identify the whole model of the disturbance

path, i.e. HG1 as shown in Figure 1. The information

needed is just the frequency of the disturbance. So, by

setting Dp(q
−1, θ) = 1 − θq−1 + q−2 (for Level 1) and

Np(q
−1) = 1+c1q

−1+c2q
−2, a simple parameter estimation

algorithm can be developed. Let us define :

z(t+ 1) = p̄(t+ 1) + p̄(t− 1) (15)

ψT (t) = [−p̄(t), ε(t), ε(t− 1)]T (16)

ΘT (t) = [θ, c1, c2]
T (17)

where ε(t) = z(t)− ẑ(t) is the a posteriori prediction error.

Now, the following recursive adaptation algorithm can be

used to estimate the the scheduling parameter θ:

ε◦(t+ 1) = z(t+ 1)− Θ̂(t)ψ(t)

ε(t+ 1) =
ε◦(t+ 1)

1 + ψT
f (t)F (t)ψf (t)

Θ̂(t+ 1) = Θ̂(t) + F (t)ψf (t)ε(t+ 1) (18)

F (t+ 1) =
1

λ1(t)









F (t)−
F (t)ψT

f (t)ψf (t)F (t)

λ1(t)

λ2(t)
+ ψT

f (t)F (t)ψf (t)









where ψf (t) =
1

Np(q−1)ψ(t), ε
◦(t) is the a priori prediction

error and λ1(t) and λ2(t) define the variation profile of the

adaptation gain F (t). A constant trace algorithm [19] is used

for the adaptation gain.

The same recursive adaptation algorithm is used for Level

2 of the benchmark with the difference that θ is replaced by

a vector [θ1 , θ2].

IV. EXPERIMENTAL RESULTS

The Experimental results are presented for two different

tests of each benchmark level: simple step test and chirp test.

a) Simple step test: The experimental results for Level

1 are given in Table I. The first column gives the global

attenuation in dB. It is the ratio of the energy of the

disturbance in open-loop to that in closed-loop computed

in steady state (last three seconds of the experiment). The

second column shows the attenuation at the disturbance

frequency. The maximum amplification of the disturbance at

other frequencies is computed and shown in the third column

together with the frequency at which it occurs. The two-norm

of the transient response of the residual force is given in

the forth column and the two norm at the steady state (last

three seconds) in the fifth column. The peak value of the

transient response and its duration are given in the 6th and

7th columns.



TABLE III

CHIRP CHANGES

Error
Maximum Value Mean Square

(×10
−3) Value (×10

−6)

Level 1 - Simulation 6.40 3.5910

Level 1 - Experimental 7.54 4.5412

Level 2 - Simulation 10.12 10.5170

Level 2 - Experimental 11.56 11.8759

Figure 3 shows the residual force in closed-loop using

the gain-scheduled controller and the scheduling parameter

estimator. The transients are greater than that of linear

controllers because of the adaptation time of the estimator.

Apart from the disturbance at 50Hz, disturbances at other

frequencies are rejected and the transient times and their peak

values are slightly smaller than those in simulation.

The simulation results for step change of Level 2 are given

in Table II. Although, the global attenuation of more than 30

dB was met in simulation for all frequencies, however, in real

experiments the performance for the disturbance frequency

pair (50-70)Hz is not good. The main reason is that the

estimated parameters in the adaptation algorithm do not

converge to the true values (a linear controller with known

disturbance frequencies performs very well in simulation as

well as in real experiments).

b) Chirp test: For Level 1 of the benchmark a chirp

signal that starts from 50Hz and goes to 95Hz and returns

to 50Hz with a variation rate of 10 Hz/sec is applied as the

disturbance signal. For Level 2 the disturbance frequencies

change from (50-70)Hz to (75-95)Hz with a variation rate

of 5 Hz/sec and return to (50-70)Hz. The maximum value

and the two-norm of the disturbance response in simulation

and in the real-time experiment are given in Table III. The

experimental results of the chirp disturbance responses for

Level 1 and Level 2 are given in Fig. 4.

V. CONCLUSIONS

A new method for fixed-order gain-scheduled H∞ con-

troller design is proposed and applied to the active sus-

pension benchmark. It is shown that multiple unknown

sinusoidal disturbances can be rejected using the gain-

scheduled controller and an adaptation algorithm that esti-

mates the internal model of the disturbance. The proposed

gain-scheduled controller design method is able to satisfy

all frequency-domain constraints. However, the results are

slightly deteriorated in simulation and real experiments. The

main reasons are the followings:

• During the convergence of the scheduling parameter,

the whole system becomes nonlinear and the desired

performance is not achieved.

• Even at the steady state, there is always an estimation

error in the scheduling parameter.

• The modeling error in the secondary-path model is not

considered in the design.

It should be mentioned that the proposed method could con-

sider the modeling error in the design and compute a robust

controller. However, the unmodelled dynamics makes the

optimization method more complicated and lead generally

to conservative solutions to the detriment of performance.
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Fig. 3. Transient responses for Level 1 of benchmark in real-time experiment (disturbance frequencies from 50Hz to 95Hz)

TABLE I

SIMPLE STEP TEST (EXPERIMENTAL RESULTS) - LEVEL 1

Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. Trans.

(Hz) (dB) (dB) (dB@Hz) (×10
−3) (×10

−3) (×10
−3) (msec)

50 32.1963 26.0390 13.19@117.19 28.7275 9.8031 22.2959 163.75

55 32.9624 41.5091 11.66@125.00 13.7586 5.6248 18.5939 77.50

60 33.7955 41.3196 11.59@70.31 9.9979 5.1623 17.3711 72.50

65 32.5293 45.4435 9.54@134.37 9.8304 5.0178 19.3765 53.75

70 30.0156 42.6926 11.41@134.37 9.3400 5.5506 20.6127 48.75

75 30.9359 43.1902 9.74@137.50 7.7819 4.4682 15.7354 82.50

80 29.6325 44.9083 9.43@137.50 8.5284 5.0297 21.8171 46.25

85 28.3826 38.3824 7.63@118.75 8.0995 5.7268 20.5997 21.25

90 28.2388 37.0264 10.02@135.94 8.8059 5.0778 23.0987 43.75

95 28.8061 37.0992 7.36@114.06 8.5047 4.6892 22.2701 82.50

TABLE II

SIMPLE STEP TEST (EXPERIMENTAL RESULTS) - LEVEL 2

Frequency Global Dist. Atte. Max. Amp. Norm2 Trans. Norm2 Res. Max. Val. Trans.

(Hz) (dB) (dB)-(dB) (dB@Hz) (×10
−3) (×10

−3) (×10
−3) (msec)

50-70 24.6660 20.58 - 17.49 18.06@131.25 144.4955 34.0463 50.7286 265.00

55-75 36.9297 34.20 - 30.54 18.88@129.69 174.1515 6.4665 86.2932 560.00

60-80 39.9376 44.32 - 37.43 18.00@134.37 64.0941 4.0669 55.8595 393.75

65-85 32.5931 37.85 - 32.34 14.65@ 135.94 47.4775 8.2762 54.6568 200.00

70-90 36.3403 55.54 - 47.05 14.41@ 137.50 52.3746 4.7614 63.1648 250.00

75-95 33.7952 43.26 - 36.27 13.07@ 137.50 116.2289 5.7348 86.3334 410.00
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Fig. 4. The experimental results for chirp disturbance responses in Level 1 and Level 2 (open-loop: blue; closed-loop: green)


