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Abstract—Demand Response (DR) is a mechanism in which
electricity consumers alter their demand in response to power
grid’s supply and economic conditions. DR programs have
the potential to improve resource efficiency, sustainability, grid
reliability and economic viability by providing tighter align-
ment between demand and supply. However, implementing DR
program is a non-trivial task as it requires good knowledge
of electricity consumption preferences, economic models and
contextual factors. Developing such knowledge through real world
studies can be expensive and be time consuming. As a result,
utility companies have been finding it complicated to analyze
potential viability and return on investments of DR programs for
various ‘what-if’ scenarios.

To address this problem, we present DRSim – a cyber-
physical simulator that allows utility companies to study demand
side participation aspects of communities with various practical
scenarios. DRSim is based on the principles of agent-oriented
modeling of users’ behavior and context. It is able to model the
emergent behavior of a community based on real data traces that
contain partial information about the environment. DRSim is a
highly extensible framework to accommodate new data sources,
new analytical functionalities and evolve its modeling power.
Feasibility experiments show the modeling and analysis potential
of DRSim in practical settings.

I. INTRODUCTION

Towards a more sustainable environment, several govern-
ments have defined specific goals for reducing total energy
consumption (e.g., EU aims to reduce energy consumption
by 20% by 2020). With the emergence of technology to
support Demand Response (DR), DR programs are known to
be effective for reducing energy consumption and peak demand
[1], [2]. These DR systems send an “alter demand” signal
to electricity customers to alter their consumption at critical
times, e.g. during supply-demand imbalance or in response to
grid market price fluctuations.

While residential power consumption forms a substantial
portion of total energy consumption [3], [4], little is known
today on - how much energy is consumed by a particular
activity, what human tasks lead to peak usage times, how
consumption varies across different customer segments, and
which DR programs (e.g. price based [5] or incentive based)
are effective for the specific communities. Moreover, the
residential DR programs have a major challenge of receiving a
good DR participation from a large number of small electricity
consumers, where there is much less control and more auton-
omy [6], [7].The success of a residential DR program largely
depends on proper understanding regarding the driving factors
of the energy demand for the community and deriving useful
conclusions on the demand dynamics. There are various factors

that influence residential energy demand, including electricity
consumption preferences of different consumer profiles, asso-
ciated with their life-style preferences and activity-structures,
external factors (e.g. weather, seasons, holidays, sporting and
cultural events, etc), internal factors (e.g. gender, price sen-
sitivity, income level, age, geographic location presence of
guests, etc.) and the DR communication mechanism including
the communication channel and timeliness of DR messages.
To analyze the potential viability and return on investments of
a DR program, it is important to study various ‘what-if’ sce-
narios involving economic and social interventions discussed
earlier and consumers’ response to such interventions.

Hence, research projects by several governments (e.g. [8],
[9]) have started collecting fine-grained power consumption
data to enable deeper understanding of user consumption
behavior, using Advanced Metering Infrastructures (AMIs),
additional context sensors and/or user demographics. However,
these studies are limited in scale, variability in consumer
profiles, availability of all required data sources and cover-
age over various possible scenarios. Hence, the information
available for required community scale analysis is very sparse.

To address the above, recent efforts have focused on cre-
ating simulated models of DR for commercial buildings [10],
distributed generation [11], [12] and residential sector [13]–
[15]. However, these simulators are not designed to capture
the collective knowledge available in datasets from real studies
that report various sensory observations.

In this paper, we propose DRSim, an organically exten-
sible cyber-physical simulation framework for studying DR
programs on a residential community. Our objective is to
enable the DR designer to conduct community-scale evalu-
ations of DR programs with best-effort real-world behavior
and consumption models of the community. A key novelty
in DRSim is that it effectively assimilates physical models
of the community coming from sensory observations in real
studies, into the simulation process. DRSim models residential
customers at a fine-grained level, fuses complex behavior
models (e.g. price sensitivity, attitude against sustainability,
etc.) with activity models, along with contextual factors like
weather, geography etc. It enables DR Designers to find
answers to key questions like - determining baselines, root
causes of consumption spikes, optimal demand schedules, right
choice of incentives, effectiveness of DR programs etc.

Our key contributions are:
• Novel agent-oriented modeling of a simulator so that

it can assimilate physical world data from different
information sources and infer a community’s con-
sumption behavior and sensitivities.
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• Design and implementation of the framework that
offers rich analysis of all DR program phases to
stakeholders: (1) community-scale data generation and
analysis, (2) community-specific DR program design
(3) study effectiveness of DR program by observing
response from community.

The remainder of this paper is organized as follows: In
Section II, we provide an overview of the related work. In
Section III, we describe the design challenges for DRSim
and present its overall architecture and simulation models. In
Section IV, we showcase the effectiveness of our simulator
for a specific user community, and finally, in Section V, we
conclude our work.

II. RELATED LITERATURE

Prior Simulators: Conducting large-scale trials of DR
programs with appropriate implementation is costly. Hence,
one direction of work focuses on developing simulations
[16], [17] that provide valuable tools to DR designers to
conduct cost-effective evaluations of DR programs. For ex-
ample, Energyplus [17] is a simulation tool for building
energy consumption, considering layouts, sunlight exposure,
occupancy etc. Zhou et al. [10] model energy consumption in
commercial buildings and simulate the effectiveness of price-
based DR mechanisms. Demsi [11] and Smart Grid Emulator
[16] propose DR simulators for distributed generation and
smart grids.

Towards simulators for the residential sector, [14] builds
a DR simulator that generates energy consumption data by
considering demographic types (single senior, regular, couple
etc), house type (small, medium, large, etc.) and active hours
at home. Effect of DR signals are simulated by grouping
appliances into categories and observing the effect of turning
off a select set. Another detailed simulation model of the
households is proposed in [15]. Appliance energy consumption
behavior and interactions are modeled to simulate the energy
consumption behavior of a city. DRSim shares the same
goal as the above works. However, unlike prior works, we
focus on designing DRSim in order to organically incorporate
real-world data (smart meter readings, external context data,
activity data) that are being generated in different real-world
studies. In this context, the key research challenge DRSim
addresses is: How do we combine sparse data from different
observations to create models that can be used for simulating
community’s energy consumption behavior and sensitivities to
DR programs?

Agent Architectures and DR: Few works, like us, have
adopted agent-oriented design for DR simulation [12], [13],
[18]. For example, Burke et al. [13] proposes two agent
types: systemic and individual. Systemic agents are used to
simulate direct-load-control programs while individual agents
autonomously act as the consumer to take appliance usage
decisions under constraints. The choice of agent based archi-
tecture helps achieving our overall objectives. Firstly, it helps
in designing a simulation framework that provides an inter-
play between various factors like human activities, external
conditions, appliance behaviors etc. Secondly, it provides a
framework for aggregating and extrapolating data from the
sparse real-world information, systematically at different levels
– houses, appliances and users. This makes DRSim powerful,
extensible and flexible when partial data is available. Finally,
we model different user behaviors in a richer way, consider-
ing various sensitivities (price, environmental, behavioral). As
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Fig. 1. Functional Architecture of DRSim: The design is inspired by
the motivation to feed best-effort models available from physical world
observations.

more data gets collected, these sources will get assimilated in
DRSim, leading to better behavior modeling of consumers and
hence more realistic results from the tool.

III. DRSIM FUNCTIONAL ARCHITECTURE AND MODELS

DRSim is designed as an organically extensible cyber-
physical simulator that can capture physical models of ob-
servations from the sparse data of variably instrumented com-
munities in real studies. For the realistic DR simulation, we
need two types of data - (1) observatory data from various sen-
sors that provides information regarding energy consumption
and the other related driving factors, (2) different behavioral
properties of customers in order to simulate responses to DR
signals being sent through different communication channels.
Given these requirements, DRSim design has the following
goals: (i) modularity, so as to facilitate extensibility, (ii) ease-
of-use and (iii) support fusion of real and synthetic datasets.

DRSim is designed as a layered architecture (Figure 1).
Data Acquisition Layer: This lowest layer contains vari-

ous adapters to fuse knowledge from different physical world
and synthetic data sources. These data sources are primarily of
the following categories: (1) energy data: datasets containing
appliance consumption time series data obtained from plug-
level meters or house-level meters; (2) activity data: time series
of human activity and indoor presence data obtained from
variably instrumented homes; (3) surveys containing how cus-
tomers use appliances; (4) sensitivities: data sources containing
information on how users react to demand response signals
(e.g., price sensitivity). Synthetic data sources can complement
any of the missing models necessary to run DRSim.

Behavior Simulation Layer: This layer models various
entities using autonomous and reactive agents. We model
three agent types (Figure 2): (i) house agent, (ii) human
agent and (iii) appliance agent. Human and appliance agents
inherit static properties from their house agent and have their
own individual models. This design allows us to easily inject
behavior models from observation data and makes the resultant
observed behavior per agent and across the community real-
istic. While human agents are autonomous, appliance agents
could be autonomous as well as reactive (i.e. triggered by
human agents). Modeling appliances as agents allows us to
easily model “smart appliances”, which may have their own



Fig. 2. DRSim - Agent Modeling

internal behavior model (e.g. for energy savings).
Simulation Data Store: The data generated from the

simulation runs is fed to applications like baseline prediction,
root-cause analysis etc. via the Simulation Data Store. The data
consists of a rich, multi-dimensional time-series containing ap-
pliance consumption logs, activity logs, aggregate consumption
logs of a house-hold, along with static data like demographics.
In addition, it contains information about time slots when DR
signals were sent.

There are three main technical challenges that we need
to address: (a) How do we model the energy consumption
behavior of human agents? (b) How do we infer model
properties from observation data with varying qualities and
sparseness? (c) How do we model a human agent’s response
to demand response signals? These challenges are addressed
in the following three subsections.

A. Electricity Demand Model
The first challenge in simulating the community based

demand response is to accurately model the electricity demand
profiles for different consumers. In real-world scenario, the
electricity demand for different consumers can be measured
either at household level (using AMI) or at appliance level
(using appliance level monitors). We can then build demand
models by using the observed data from real-world data
sources (by instrumenting certain houses). However, demand
models based on such observations alone may suffer from the
problem of over-fitting as it completely ignores the underlying
human activity which primarily drives electricity consumption
in a household. Therefore, it would be prudent to first model
human activity which will in turn help us to model the electric-
ity demand by leveraging the activity-appliance relationship.
Modeling human activity is a challenging task due to the
following reasons:
• The set of possible human activities is very large and

varies with time. Additionally, it also differs from
one human to another based on human attributes like
age, gender, income group etc. Moreover, collection
of data related to human activity is costly and tends
to be insufficient to represent variations necessary for
inductive learning approach to derive any meaningful
pattern.

• Inferring appliance usage during an activity is non
trivial as the number and type of appliances used
during an activity varies with time and human attribute
profiles.

To address these challenges, we include rooms as a new
variable in our model. We observe that rooms of a house
exhibit the following properties:
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Fig. 3. Demand Modeling: Entity Relationship

• The set of rooms are fairly constant for a given house-
type and does not change with time. This can be used
as domain knowledge.

• Most electrical appliances are stationary and located
in a particular room. The appliance-room relationship
does not change with time for most appliances and
remains fairly similar across households.

• The set of activities performed by individuals have
a strong correlation with the room (e.g cooking in
the kitchen). Also, rooms influence appliance usage
during an activity from energy consumption point of
view (e.g. “reading a book in a porch” and “reading
a book in a bed room” are different). This knowledge
can be leveraged for better activity prediction. Further,
rooms are relatively easier to monitor using sensors
compared to activity monitoring.

Figure 3 shows the relationship among different entities in
a household. Each household has a fixed set of rooms and
different electrical appliances are situated in those rooms.
The human-beings in the house perform various activities at
different times. At a given time, each activity is performed in
a specific room and using a set of appliances situated in that
room.

In summary, projection of appliance and activities and their
relationship into spatial dimension such as rooms helps to
make space of activity and appliances tractable and also im-
proves the predictability of activity-appliance relationship. In
addition, spatial states can also help us model user’s behavior
w.r.t. DR signals better which we discuss in section III-C. Next
we discuss how we use spatial relationship to aggregate and
extrapolate the observed data and use it to model demand.

B. Inference of Model Properties from Sparse Data
We instantiate different agents (the human agents and

appliance agents in a given house agent) in the simulation
model and model their behavior by estimating probability
distributions from real data. We employ a novel supervised
machine learning approach for this purpose. Specifically our
goal is to infer the following probability distributions:
• P (R|H = h): used to model the set of rooms R for

a given house type h.
• P (D|U = u,H = h,R = r): used to model the set of

appliances D present in a given room r for a human
agent profile (age, gender, occupation, income etc.) u
living in a house h.

• P (A|U = u,H = h,R = r, T = t): used to model
the set of activities a human agent performs given his
profile u, in a particular room r at a specified time t



and house type h.
• P (D̂|U = u,R = r,H = h, T = t, A = a): used to

model the set of appliances D̂ ∈ D(r) used during
an activity a in room r at a given time t by a human
agent u living in house h where D(r) denotes the
set of appliances already allocated in room r by the
simulator using P (D|U = u,H = h,R = r) .

As we know, accuracy of any supervised learner depends
on the volume of the training instances. Higher the volume,
better is the accuracy. However, often it may be difficult to
obtain adequate training data when cost of data collection is
steep. Hence, we developed a novel incremental imputation
technique which is particularly well suited in such cases where
the training data is sparse due to high cost of collection.
Our technique exploits easily available, time-invariant domain
knowledge to impute the sparse data collected from monitoring
real users and extrapolates new training instances. We next
describe our algorithm formally.

Let us assume there are n attributes which are inter-related
and we are given r data sets each representing a relationship
among 1 < k ≤ n of those attributes. We incrementally
combine these datasets to infer relations among all the vari-
ables that are covered by these r relations and extrapolate
new data points using Algorithm 1. It incrementally joins the
data sets on matching attributes starting with the those which
have the lowest number of matches to achieve generality.
The incremental join operations helps to extrapolate new data
points by combining observations with domain knowledge
while uses the relationships among the attributes to restrict
the imputation space and preserve consistency.

Algorithm 1: Incremental Imputation Technique.
Input: Set of relational datasets R = {R1, R2, · · · , Rr}, total number of

attributes n
Output: Aggregated and Extrapolated dataset I

1 m← 2
2 finish ← false
3 while finish = false do
4 S ← ∅
5 W ← ∅
6 for i = 1 to |R| − 1 do
7 for j = i + 1 to |R| do
8 if 0 < |attrib(Ri) ∩ attrib(Rj)| ≤ m then
9 S ← S ∪ {Ri ./ Rj} (on all matching attributes)

W ← W ∪ {Ri} ∪ {Rj}

10 R← R−W
11 R← R ∪ S
12 m← m + 1
13 if ∀Ri ∈ R, |Ri| = n then finish ← true

14 I ←
⋃

Ri∈R

Ri

As an example use of our algorithm, let us consider the
following datasets collected by monitoring and surveying real
users:

• The users’ time-based activity information along with
user profile (U, T,A)

• Usage of different appliances during specific user
activities for their respective user profiles (U,A,D)

• House types of different users (U,H)

However, as collecting these data is costly, one can use
Algorithm 1 to impute these datasets using the following
auxiliary relationships which captures how activity and ap-
pliances are related with different rooms in a household. This
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Fig. 4. Demand Response Message Structure and Model for calculating
responsivity and performing actions

information is comparatively easier to obtain as it is common
knowledge and time-invariant.

• User activities “commonly performed at” different
room (A,R)

• Appliances “commonly located at” different rooms
(D,R)

• Rooms ”found in” different house types (H,R).

The algorithm incrementally joins these datasets to produce
the final extrapolated training set consisting of all the attributes
(U,H,R, T,A,D) which can then be used to train any super-
vised classifier and estimate the aforementioned probability
distributions required for simulation modeling. Note that, the
room attribute (R) is not present in the original observations
and is obtained only as part of surveys or domain knowledge.
As discussed before, apart from extrapolation, room informa-
tion also helps to prune the learning space.

C. Modeling DR Signal Response and Actions
In order to model DR behavior of users, DRSim models:

1) DR responsivity: modeling how a human agent reacts
on receiving the signal and 2) DR Action: modeling agent
actions performed while under influence of the signal. Figure 4
provides a representative structure of a DR signal, for example:
[Instruction: reduce consumption][When: on weekdays][DR
window: between 5-7pm][Incentive: get x$/kwh saved]. The
message is disseminated in the community using different
communication channels at time dissemination time. The DR
window is the time window when an agent is requested to take
action.

Modeling DR Responsivity: We introduce an agent’s DR
responsivity (R[0..1]) as a parameter that determines whether a
human agent intends to participate in DR Action upon receiving
a DR Signal. There are several prior arts on modeling agent
behavior in response to a stimuli [19]. Given our focus on
integration with real-world models and implementation, we
define an (extensible) list of principal sensitivity parameters
that empirically play a role in decision-making and can be es-
timated from real-world data or be modeled using distributions.
The parameters manifests on both modeling DR responsivity
and DR action:

• energy price sensitivity R[0..1]: This defines how
sensitive is the agent against temporal alterations in
electricity price. There are many variations of this



basic parameter (e.g. critical peak pricing, time-of-
use pricing) and typical price-sensitivity curves of
communities have been reported in prior literature [5].

• energy perception sensitivity R[0..1]: This attribute
models how conscious an agent is regarding the ad-
verse effects of energy consumption. It is possible to
recover this parameter through surveys and understand
metrics that determine green behavior.

• DR communication sensitivity: A DR Signal is
transmitted in several ways – via monthly newslet-
ters, emails; and can consist of real-time messages
via smses, in-home displays; or simply community
whiteboards. A value of 1 indicates the communica-
tion channel is very effective and 0 otherwise. This
parameter is dependent on demographic and other
attributes of the agent and can be recovered through
surveys.

DRSim implementation allows definition of new sensitivity
parameters and functions, to combine the parameters to de-
termine the final responsivity(t) as a function of time. We
calculate the probability of an agent to take DR action during
DR Action window by applying a time-based decay func-
tion on responsivity(t) between dissemination time and DR
window. Note that the DR Action window is different from
the dissemination time (see Figure 4). This accommodates
users who forget to take action, after demonstrating intention
to participate, i.e., if Responsivityagent(DRWindow) ≥ τ ,
where τ is a configuration parameter.

Modeling Actions: Users can perform several actions to
reduce consumption; for e.g., turn off un-used appliances,
reduce usage time of certain appliances, shift an activity to
another time interval. We model two primitive actions in
DRSim to implement these actions: (1) reduce(L) (2) shift(L).
where L=load.

The reduce(..) actions are modeled as constraints on two
of the three relationships introduced in Section III-A: uses(..)
and performed in . The constraint on uses(..) reduces the
number of appliances required to perform an activity. This
is implemented by dropping appliances that shows low prob-
ability of being used in an activity from the observation data.
Similarly, the constraint on performed in reduces the number
of rooms used for an activity. These two constraints enables us
to represent several reduce actions. For example, if a regular
behavior is to keep lights of few rooms ON while cooking
(apart from kitchen), the performed in constraint reduce the
number of rooms being used and hence reduce the number of
lights being used.

The shift actions are used to move an activity from the DR
window to another time window. From agent’s activity data, we
learn the following constraints on the activity state-transition
diagram of a human agent: (1) quantitative: number of times
activity occurs in a time window t; (2) dependency: if ai is
performed in t, then aj is performed as well; (3) exclusivity:
if ai is performed in t, then aj is not performed. These
constraints are used to generate a revised schedule. The specific
algorithm used to create a revised schedule is left unspecified
in DRSim as many candidates can be used [20]. Finally, we
provide an extensible utility loss function to compute user’s
inconvenience due to the shift operations. This can be used
to re-learn user’s responsivity. A simple function to compute
user’s inconvenience would be the temporal distance between
normal (preferred) and shifted activity schedule along with the

relative importance of the appliances that were dropped.

IV. IMPLEMENTATION AND EXPERIMENTS

Implementation Details: DRSim is implemented using
discrete time simulation in Java. All physical real-world data
sets (discussed further) are loaded into an SQL database. The
algorithms in the Data Acquisition Layer run in an off-line
mode to generate the human activity and appliance behavior
models. A simulator kernel maintains rich time context (time,
day, month, year) and runs the agents in the user-defined
simulation window. We provide an ability to configure various
parameters specifying demographic properties of the commu-
nity being simulated and to analyze the rich logs being stored
in the simulation data store. DR events are specified using
a comma-separated-values (CSV) format with short-codes to
represent different instructions as discussed in Section III.

Experimental Setup: For our experiments, we focus on
simulating a graduate students community, using two real
datasets. The first dataset, collected in [21], consists of real
activity logs of 5 graduate students, for the duration of approx-
imately one month each. Along with this, we augment a survey
dataset by interviewing the same users to obtain their static
profiles: gender, age, occupation, and income group, number of
rooms and type (kitchen, bed, dining etc), electrical appliances
in each room, and their appliance usage pattern, i.e., the set of
appliances they use while performing a particular activity. A
second data set provides us with appliance consumption logs of
from [20], to obtain different operational states of appliances
and their corresponding electricity consumptions.

With these datasets, we simulate a community of 100
graduate students households using DRSim. The demographic
parameters are configured as follows: (1)House Type - 20%
studio apartments; 80% single bedroom apartments; (2)Gender
- 60% males and 40% females; (3)Family Type - 10% single,
20% couple and 70% couple with kids.

A. Modeling Emergent Behavior
We first demonstrate that DRSim is able to successfully

reproduce well-known community consumption behavior. It
has been observed before that typical aggregate city-scale res-
idential consumption shows bi-modal distributions.1. Figure 5
shows the aggregate consumption from our simulated commu-
nity for two days. We only consider the power consumption
due to human activities and omit constantly running appliances
such as heater and refrigerator. The first day represents the
unperturbed energy consumption behavior of the community
and the second day represents the energy consumption be-
havior as an effect of a DR message. From the Figure 5, it is
observed that the aggregate consumption peaks in the morning
and evening. This community primarily consists of day-job
workers, which also corroborates our result. The fluctuations
are due to intermittent use of heavy appliances like stove, oven,
vacuum cleaner etc.

Further, we simulate the effect of a DR Signal – Reduce
consumption in the morning (during 9am to 12pm) and receive
1$/kWh saved. We adopt the incentive sensitivity curve (a log-
normal) similar to the one reported in [22] (consumption prob-
ability vs. price, Eq. 5) for this purpose, and use our reduce
models (discussed in Section III-C) to alter the consumption
behavior in response to DR. From Figure 5, we observe that
there is a drop in the morning peak demand in response to the

1http://www.cres.gr/pepesec/apotelesmata uk.html



Fig. 5. Emergent community consumption on a
two day window: day 1 represents normal behav-
ior, day 2 shows effect of DR signal (morning)

Fig. 6. Activity Probability Distribution with
Time

Fig. 7. Appliance Usage Distribution with Time

DR message. Note that these numbers may vary depending on
the incentive and community model.

B. Activity and Appliance Energy Consumption
Now we demonstrate DRSim’s ability to simulate realistic

activity behavior for human agents and the corresponding
energy consumption of various appliances over a day’s time.
This simulated data can then offer fine-grained insights to
DR designers on root causes of consumption with respect to
activities or appliances. Figure 6, shows the probability distri-
bution of different human activities across hours of the day that
DRSim learns from the imputed data. Figure 7, on the other
hand, shows the relative contributions of different appliances
towards the aggregate power consumption at different times of
the day.

V. FUTURE WORK AND CONCLUSIONS

In this paper, we described the design and implementation
of a DR simulator that can successfully model emergent
energy behavior and allow DR designers to simulate demand
response signals. Our design is adequately rich to scale to
large communities and to accommodate different behavioral
models. DRSim model actors as agents, hence it is also
possible to model more complex dynamics, such as family
with children where appliances are switched on/off erratically.
DRSim also allows evaluation of the emergent community-
scale effectiveness of DR programs and generates rich data for
root-cause analysis of energy consumption. The design goal
of fusing real-world knowledge and models leaves a lot of
scope for future work. For example, we do not model inter-
human interaction and social influence models that can play
a role in impacting energy behavior. Also, the impact of a
DR stimuli to long term energy behavior of the community
needs further investigation. Furthermore, multi-variate root-
cause analysis can be complex. As more data gets collected in
various projects, we plan to address these issues. Finally, we
are going to make DRSim open to the research community for
use and further development.
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