
Bridging Islands of Specialized Code
using Macros and Reified Types

Nicolas Stucki
EPFL, Switzerland

nicolas.stucki@epfl.ch

Vlad Ureche
EPFL, Switzerland

vlad.ureche@epfl.ch

ABSTRACT
Parametric polymorphism in Scala suffers from the usual
drawback of erasure on the Java Virtual Machine: primitive
values are boxed, leading to indirect access, wasteful use of
heap memory and lack of cache locality. For performance-
critical parts of the code, the Scala compiler introduces spe-
cialization, a transformation that duplicates and adapts the
bodies of classes and methods for primitive types. Specializ-
ing code can speed up execution by an order of magnitude,
but only if the code is called from monomorphic sites or
from other specialized code. Still, if these “islands” of spe-
cialized code are called from generic code, their performance
becomes similar to that of generic code, losing optimality.
To address this, our project builds high performance “brid-
ges” between “islands” of specialized code, removing the re-
quirement that full traces need to be specialized: We use
macros to delimit performance-critical “gaps” between spe-
cialized code, which we also specialize. We then use reified
types to dispatch the correct specialized variant, thus recov-
ering performance across the “islands”. Our transformation1

obtains speedups up to 30x and around 12x in average com-
pared to generic only code, by enabling specialization to
completely remove boxing and reach its full potential.

Categories and Subject Descriptors
D.2.3 [Language Constructs and Features]: Polymor-
phism; E.2 [Object representation]

General Terms
Data Representation, Specialization, Scala, Java virtual ma-
chine, Bytecode

Keywords
Specialization, Macros, Reified types

1https://github.com/nicolasstucki/
specialized

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Scala ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2064-1 ...$15.00.

1. INTRODUCTION
Whether ran in parallel or distributed across multiple no-

des, the speed of sequential code directly influences the over-
all performance of the system. In particular, code using
parametric polymorphism will be severely slowed down com-
pared to monomorphic code when handling primitive val-
ues. The underlying problem is that primitive values come
in different sizes and semantics, such as short or long inte-
gers, floating point numbers and characters. This conflicts
with the uniform nature of parametric polymorphism, which
assumes all objects have a common representation. The de-
fault translation in Scala aims at making primitive types
uniform at the bytecode level by wrapping them into heap
objects, in a process known as boxing. But boxing has sev-
eral disadvantages, namely indirect access to values, which
are located on the heap instead of the stack, wasteful use of
memory by allocating redundant object headers along with
values and lack of cache locality. This is a major concern for
performance-critical code, and was addressed in the Scala
compiler using the specialization transformation.

Specialization [3] is an annotation-driven transformation
in the Scala compiler that improves performance of generic
code. It is triggered by annotating a type parameter in a
method or class, leading to the duplication and adaptation
of the code body for each primitive type. Then, whenever
a class is instantiated for a primitive type, the instantia-
tion is rewritten to use the specialized variant instead of the
generic one, avoiding boxing. The same rewriting is applied
to method calls, where the invocation is redirected to the
specialized variant.

In practice, specialization speeds up code execution by an
order of magnitude [8]. But invoking the specialized code
to benefit from this speedup remains difficult. Whenever
a call site is either monomorphic (statically known to use
a primitive type) or specialized, it is redirected to use the
specialized variant of the method. Contrarily, a call site
that uses a non-specialized type parameter is left pointing
to the generic version of the method, since, thanks to erasure
[1], there is no type information to dispatch the right spe-
cialized variant either at compile time or runtime. This cre-
ates little “islands” of specialized code, which can be invoked
by monomorphic code to obtain performance, but revert to
the non-specialized performance whenever they’re called in
a generic context.

Seen from a different angle, the “islands” of specialized
code are traces in the program where the type information
is encoded in the bytecode during the specialization trans-
formation. But whenever the execution leaves the “island”

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147996982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/nicolasstucki/specialized
https://github.com/nicolasstucki/specialized

by calling generic code, the type information is lost, leading
to the rest of the trace being generic and thus losing opti-
mality. What’s worse, parts of the generic trace may have
specialized variants, but they’re not used, since types are not
available. Therefore, “islands” can call one another directly,
but not indirectly via generic code. This breaks optimality
in many important use cases.

The simplest solution for this problem is to specialize the
generic code in between the “islands”. Still, the amount of
bytecode duplication makes this solution intractable. Fur-
thermore, some of this code may reside in a library, thus
making it impossible retroactively specialize. On the other
hand, reified types [11] allow generic code to record types
as values, making it possible to later use them to invoke
specialized variants of the code.

This is where our project comes in: We bridge this gap
between the “islands” by allowing the use of reified types
to dispatch the correct specialized version. To this end, we
allow the programmers to select a limited scope of generic
code that will be specialized and which, in turn, will be able
to call other specialized code. We then use reified types to
dispatch on the correct specialized variant of the scope. This
has two effects: we inject specialized “islands” in the middle
of generic code, and these specialized “islands” can further
call other specialized code, regaining optimality in the trace.
Our project relies on macros and specialization to transform
the scope and call the specialized variant.

In this context, we make the following two contributions:
(i) we present a transformation that uses reified types to ex-
tend the scope of specialization; (ii) we validate our trans-
formation by benchmarking it and obtaining speedups of up
to 30x over Scala specialized code.

2. EXAMPLE
A situation where specialization is available but not used

appears in the following example:

def createArray[T: Manifest](f: Int=>T) = {
val a = new Array[T](size)
for (i <- 0 until size)
a(i) = f(i)

a
}

Since the createArray method is not specialized, call-
ing it either from generic or specialized code will yield the
same slow operation: although both the array setter and the
function call have specialized variants, the lack of specializa-
tion will mean the result of f(i) is boxed and the generic
array setter is invoked. To make matters worse, the generic
loop closures are not inlined by the Java Virtual Machine
[6, 9], thus preventing escape analysis from eliminating box-
ing. But this is a perfect example where the specialized
macro could kick in, since the reified type of T is available
as a Manifest:

def createArray[T: Manifest](f: Int=>T) = {
val a = new Array[T](size)
specialized[T] {
for (i <- 0 until size)
a(i) = f(i)

}
a

}

In order to specialize the trace, the specialized[T]
macro creates a new method which encodes the scope which
needs to be specialized, which we will refer to it as the spe-
cialized body method. The specialized body method will
be translated by the Scala compiler using the specialization
transformation, which is triggered by the @specialized
notation on type parameter U. This leads to the creation of
multiple variants of specBody, one for each primitive type.
Then, the last step is to invoke the correct variant.

def createArray[T: Manifest](f: Int=>T) = {
val a = new Array[T](size)
// specialized body method:
def specBody[@specialized U]

(a: Array[U], f: Int=>U) {
for (i <- 0 until size)
a(i) = f(i)

}
// dispatch code (without casts shown):
manifest[T] match {
case ManifestFactory.Int =>
specBody[Int](a, f)

...
}
a

}

This leads to the rewriting of both the array setter and
function f to use the specialized variants in each respective
specBody variant, thus producing a completely specialized
trace. The speedup obtained by the transformed code com-
pared to the original one is 15x. On other examples, we
obtain speedups of 5x to 30x.

We implemented the specialized macro [2] to wrap the
code which needs to be specialized. This macro receives the
polymorphic parameter, denoted by T in the example. It can
also take a list of primitive types that will be specialized. If
only Int and Long need fast execution, the programmer
can use the following syntax:

specialized[T](Int, Long) { ... }

The dispatch consists of match statements, which carry
some runtime overhead. Still, for the examples we have so
far, dispatching a specialized version pays for the cost of dis-
patching. The next section will present the implementation.

3. IMPLEMENTATION
The specialized macro can be seen as a method that

receives a closure and transforms the code inside it. It does
so in the four steps shown in Figure 1. Each will be further
explored in a separate subsection.

3.1 Checking Macro Call Parameters
The specialized macro takes four parameters: (i) the

polymorphic type parameter T to be specialized; (ii) any
number of Specializable objects, where Specializa-
ble is the trait that identifies the primitive types known
to the compiler. In Scala these types are: Int, Long,
Boolean, Float, Double, Short, Char, Byte and Unit;
(iii) the main parameter is the block of code inside the curly
braces. It consists of a closure of type =>Any; (iv) the last
parameter is an implicit Manifest or ClassTag, which
carries the reified type corresponding to T and is automati-
cally filled in by the type checker.

Check
macro

parameters

Extract
generic

variables
used

Create
specialized

body

Create
dispatch code

errors and
warnings

def specBody
method

arguments

New code

def specBody
{…}

manifest[T]
match {...}

Figure 1: The code transformations taking place (in

gray) and their results (in white).

Additionally there is a variant to handle the case where
no Specializable parameters are set, which defaults to
all primitive values. This implementation redirect to the
first and main implementation. In an unambiguous context,
where we have a single polymorphic type with manifest in
scope, the macro can also be called without the first two
parameters:

specialized { /* code goes here */ }

The code body to be specialized is given as a closure,
which has a return type of Any. For a method this would
be a problem, since it would mean we need to manually
cast the result to its original type. But since our expansion
takes place during the type checking phase, the replaced
AST is type-checked again and a more precise return type is
inferred. This allows us to sidestep the need to add a type
parameter for the closure return, making both the macro
implementation and its use simpler.

As soon as the macro is invoked, it checks if the input
is correct. The type parameter T must be a bare poly-
morphic parameter: calls such as specialized[Int] or
specialized[List[T]] will result in compile-time er-
rors. It also checks that T has an accompanying manifest
and that the block of code passed compiles and typechecks
in its generic version. If any problem occurs it stops the
transformation and shows the programmer an error corre-
sponding to the problem. Other checks are also performed
and can lead to warnings that guide the programmer to the
correct use of the macro.

3.2 Extract Generic Variables Used
The second phase consists in extracting any references to

generic variables used inside the block of code being special-
ized. In the createArray example on the previous page,
the extracted variables are the array a and the function
f. The array size, size, is not captured since its type is
monomorphic (Int). The extracted variables will appear in
the specialized body’s signature.

3.3 Specialized Body Creation
The closure body appears in the specBody method. Here,

the generic type T is replaced by a fresh polymorphic type
parameter U which is marked as specialized. For the follow-
ing example:

val (func: (T => T), seed: T) = ...
specialized[T](Int) {
def rec(n: Int, last: T): T =
if (n == 0) last
else rec(n - 1, func(last))

rec(1000000, seed)
}

The specialized macro transforms references from T
to U deeply in the tree, including inside the rec method:

val (func: (T => T), seed: T) = ...
def specBody[@specialized(Int) U]

(seed: U, func: U=>U) {
def rec(n: Int, last: U): U = { ... }
rec(1000000, seed)

}
(manifest[T] match {
case ManifestFactory.Int =>
specBody[Int](seed.asInstanceOf[Int],

func.asInstanceOf[Int=>Int])
case _ => specBody[T](seed, func)

}).asInstanceOf[T]

The U type parameter receives the @specialized anno-
tation so the Scala compiler is informed to duplicate and
adapt it for the specific primitive values. The primitive
Specializable values passed to the macro will further be
passed on to the @specialized(...) annotation as argu-
ments. In our example, Int is passed as the only Specia-
lizable argument. Along with duplicating the method,
the specialization phase will also perform method call and
class instantiation rewriting, making use of the specialized
variantes where available. This creats new specialized traces.

As discussed previously, the specialized body will receive
a list of generic parameters; these are determined in the
previous step of the transformation and have their types
rewired to reference the new polymorphic type U. The name
of the specialized body method needs to be fresh to avoid
any conflicts, but in the examples we use specBody for
simplicity and conciseness.

The specialized macro works with typed Scala ab-
stract syntax trees. After the namer and typer phases of
the Scala compiler, when the macro receives the body to
be specialized, trees have both types and symbols attached
to each node. This means the body references the symbol
of T and types containing T. To perform deep rewiring,
once the specBody signature was created, the body under-
goes a forced name resolution and typing to revisit all the
tree nodes. This is done by first replacing references to the
name T by the name U and then clearing the tree symbols
and types. Since the resulting tree does not reference sym-
bols and does not contain types, it undergoes another typing
phase, which binds references to U.

3.4 Dispatching Code
The final step in rewriting the code is using the reified

type to dispatch the correct specialized variant of the code
body. To do so, we compare the type reification to each of
the primitive types. If the comparison succeeds, we invoke
the specialized body method with the correct type. The
specialized method’s parameters need explicit casting, since
in the scope they are generic but in the invocation they
have primitive types. Finally, we wrap the entire call to
the specialized body method into a cast back to the original
type, to make the types compatible with the generic code.

After the macro has transformed the code, another type
checker run will fill in all the types and then the compiler will
continue with the rest of its phases. Later, when the com-
piler reaches the specialization phase, the specialized body
method will be duplicated and adapted. Once this is done,
the compiler will rewrite the invocation in the code to one
of the specialized variants.

4. EVALUATION
Using macros allowed us to add the transformation as a

library method instead of a compiler plugin, which signifi-
cantly lowers the adoption barrier. Thus our project makes
no modification to the compiler and only requires an import
statement to become available to programmers.

To evaluate the performance of this transformation we
used ScalaMeter [10] to benchmark the execution time of
the original and transformed code. The framework ran each
time in a newly spawned HotSpot Java Virtual Machine and
was warmed up before the actual benchmarking. We forced
the JVM to use one of the following execution modes: in-
terpreted only, compiled with client compiler (c1) only or
compiled with server compiler (c2) only. This ensured our
transformation speeds up execution in all execution states,
making our transformed code consistently faster.

T Generic Specialized speedup
compiled (c1) Int 24.72 1.83 13.51x
compiled (c2) Int 24.57 1.97 12.47x
interpreted Int 2458.29 255.86 9.61x
compiled (c1) Double 19.12 2.06 9.28x
compiled (c2) Double 19.22 1.96 9.81x
interpreted Double 2668.26 269.71 8.89x
compiled (c1) Boolean 22.49 3.40 6.61x
compiled (c2) Boolean 22.67 3.13 7.24x
interpreted Boolean 2040.98 266.75 7.65x
compiled (c1) Generic 96.59 93.00 1.04x
compiled (c2) Generic 93.89 92.87 1.01x
interpreted Generic 2412.46 2336.18 1.03x

Table 1: Time in milliseconds necessary for executing

the createArray example with an array of size 2 million.

We implemented algorithms that use generic instances of
Array, Function1, Function2 and Tuple2 with some
combinations between them or alone. We used code where
there was at least one bridge between the specialized compo-
nents. On operations over arrays the results yield speedups
up to 14x specializing over Int, 20x specializing over Double
and 30x specializing over Boolean. Table 1 and table 2
shows the speedups for the createArray example and a
method that reverses an array.

T Generic Specialized speedup
compiled (c1) Int 74.74 7.49 9.97x
compiled (c2) Int 74.83 7.81 9.58x
interpreted Int 5,241.05 387.47 13.53x
compiled (c1) Double 68.71 8.91 7.71x
compiled (c2) Double 69.18 8.84 7.82x
interpreted Double 7,875.92 398.80 19.75x
compiled (c1) Boolean 263.00 8.60 30.57x
compiled (c2) Boolean 262.11 8.67 30.24x
interpreted Boolean 6,084.31 406.01 14.99x
compiled (c1) Generic 10.18 10.37 0.98x
compiled (c2) Generic 10.26 10.46 0.98x
interpreted Generic 2,886.12 3,109.43 0.93x

Table 2: Time in milliseconds necessary to reverse an

array of size 10 million.

5. RELATED WORK
We build upon specialization [3], by adding the ability to

use reified types. We also extend the range of code that can
benefit from the specialization transformation: we add the
ability to specialize scopes of code to the already existing
abilities to specialize methods and classes.

Although the lack of global reified types significantly com-
plicates the work of the specialization phase, their perfor-

mance impact and memory footprint makes them undesir-
able in practice [11].

The .NET framework [5] is one example where special-
ization is greatly simplified by the existence of reified types.
This happens for two reasons: reified types are implemented
and optimized in the virtual machine, allowing for better
handling. Also, the virtual machine provides hooks for run-
time specialization, which allow just-in-time creation of spe-
cialized variants. This is hard to achieve in Java using the
class loader mechanism [7], since it requires having full con-
trol over the running Java Virtual Machine.

Some JavaScript interpreters proposed trace specializa-
tion [4]. These require profiling and opportunistic trace
transformations, that may need to be undone later if they
prove too optimistic. In our case the static type system
protects us from such cases, although we pay the cost of
generating all the code up-front.

6. CONCLUSION
Our transformation is able to build high performance brid-

ges between specialized code inside a generic context, al-
lowing traces to be only partially specialized without losing
performance. We use reified types dispatch the correct spe-
cialized implementaion.

The transformed code obtains speedups up to 30x and
around 12x in average compared to generic only code, offer-
ing the full performance of specialization.

7. REFERENCES
[1] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler.

Making the future safe for the past: Adding Genericity to
the Java Programming Language. SIGPLAN Not., 33(10),
Oct. 1998.

[2] E. Burmako. Scala Macros: Let Our Powers Combine! In
Proceedings of the 4th Annual Scala Workshop, 2013.

[3] I. Dragos and M. Odersky. Compiling Generics Through
User-Directed Type Specialization. In Proceedings of the
4th workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and
Programming Systems, ICOOOLPS ’09, New York, NY,
USA, 2009. ACM.

[4] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,
M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky,
J. Orendorff, et al. Trace-based Just-in-Time Type
Specialization for Dynamic Languages. In ACM Sigplan
Notices, volume 44. ACM, 2009.

[5] A. Kennedy and D. Syme. Design and Implementation of
Generics for the .NET Common Language Runtime. In
Proceedings of the ACM SIGPLAN 2001 conference on
Programming language design and implementation, PLDI
’01, New York, NY, USA, 2001. ACM.

[6] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez,
K. Russell, and D. Cox. Design of the Java HtoSpot Client
Compiler for Java 6. ACM Transactions on Architecture
and Code Optimization (TACO), 5(1), 2008.

[7] S. Liang and G. Bracha. Dynamic Class Loading in the Java
Virtual Machine. SIGPLAN Not., 33(10):36–44, Oct. 1998.

[8] E. Osheim. Generic Numeric Programming Through
Specialized Type Classes. ScalaDays, 2012.

[9] M. Paleczny, C. Vick, and C. Click. The Java HotSpot TM
Server Compiler. In Proceedings of the 2001 Symposium on
Java TM Virtual Machine Research and Technology
Symposium-Volume 1. USENIX Association, 2001.

[10] A. Prokopec. ScalaMeter.
[11] M. Schinz. Compiling Scala for the Java Virtual Machine.

PhD thesis, École Polytechnique Fédérale de Lausanne,
2005.

	Introduction
	Example
	Implementation
	Checking Macro Call Parameters
	Extract Generic Variables Used
	Specialized Body Creation
	Dispatching Code

	Evaluation
	Related work
	Conclusion
	References

