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Abstract Most researchers want evidence for the direction of an effect, not evidence
against a point null hypothesis. Such evidence is ideally on a scale that is easily in-
terpretable, with an accompanying standard error. Further, the evidence from iden-
tical experiments should be repeatable, and evidence from independent experiments
should be easily combined, such as required in meta-analysis. Such a measure of
evidence exists and has been shown to be closely related to the Kullback-Leibler
symmetrized distance between null and alternative hypotheses for exponential fam-
ilies. Here we provide more examples of the latter phenomenon, for distributions ly-
ing outside the class of exponential families, including the non-central chi-squared
family with unknown non-centrality parameter.

1 Introduction

Statisticians are trained to avoid ‘lying with statistics,’ that is, to avoid deceiving
others and themselves about what the data say about questions or hypotheses. At
the most fundamental level, they are battling against the power of one number to
influence thinking, rather than two numbers. Telling someone that ‘smoking dou-
bles the risk of lung cancer’ is a powerful message, likely to be accepted as a fact.
But reporting the ‘two’, with a standard error, or reporting a confidence interval for
the relative risk is likely to have far less impact. It is as if there were less reliability
in the message with the greater information, no doubt because the second number
reminds us of the imprecision in the first. Statisticians are not immune from this
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human fallibility. We often quote a p-value against a null hypothesis, or a posterior
probability for a hypothesis or a likelihood ratio for comparing two hypotheses, as
if they were important numerical facts, to be taken at face-value, without further
question. Evans [4] in his comments on [10], makes the same point: ‘Some quan-
tification concerning the uncertainty inherent in what the likelihood ratio is saying
seems to be a part of any acceptable theory of statistical inference. In other words,
such a quantification is part of the summary of statistical evidence.’ We agree with
Evans and thus require that any measure of statistical evidence be a statistic reported
with a standard deviation or other measure of uncertainty.

Another example of an incomplete message occurs frequently in the meta-
analytic literature. Results are derived for the case of known weights, and then es-
timates of the weights are substituted in the ensuing formulae, as if no theory were
needed to account for the second estimation. This works for very large sample sizes,
but not for those usually encountered in practice and results in optimistically small
confidence intervals, inflated coverages and many published false claims, [8], e.g.
Thus we require that any measure of evidence found for individual studies of the
same effect should be easy to combine to obtain an overall evidence for this effect,
and the combination of evidence must be based on a sound theory (see [13] for a
discussion of meta analysis). In the remainder of this section we motivate and define
statistical evidence on our preferred calibration scale in which one function, called
the Key Inferential Function, contains all the information required for inference.

For the sake of simplicity of presentation we restrict attention to one-sided alter-
natives θ > θ0 to the null hypothesis θ = θ0 (or θ ≤ θ0); evidence for two-sided
alternatives is presented in detail in Section 17.4, p. 134 of [6]. Our third require-
ment is that the expected evidence in favor of θ > θ0 should be increasing with θ
and have value 0 at θ = θ0.

Fourth, if the parameter of interest θ is estimable by a θ̂n based on n observa-
tions, with standard error SE[θ̂n] of order 1/

√
n, then the evidence for an alternative

hypothesis θ > θ0 should grow at the rate
√

n . This means it will require 9 times as
much work to obtain 3 times as much evidence for an alternative hypothesis.

Fifth, evidence should be replicable in the sense that if an experimenter obtains
a certain amount of evidence for a hypothesis, then an independent repetition of
the experiment should lead to a similar result, up to sampling error. While this is
true for the p-value under the null hypothesis, when the null hypothesis does not
hold the variation under repetition may come as a surprise due to the highly skewed
distribution of the p-value. These five motivating factors lead us to illustrate what is
achievable for the simplest possible model in the next section, a model that forms
the basis for all that follows.

Prototypical Example

We will now consider an example that is often discussed in elementary statistics
courses. In this example each experiment produces an independent realization of a
random variable X ∼ N(µ ,σ2

0 ), where σ2
0 is known. This is the prototypical normal
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translation model, which we would like to use as a ‘universal model’ for other test-
ing problems. We want to quantify the evidence based on n experiments against the
null hypothesis µ = µ0 and in favor of the alternative µ > µ0. Letting X̄n denote the
sample mean, the usual test statistic is Sn = X̄n −µ0. The corresponding evidence is
the standardized version of Sn, that is, Tn =

√
n(X̄n − µ0)/σ0, which is distributed

as N(
√

n(µ − µ0)/σ0,1). The way an evidence is constructed means that the ex-
pected evidence is the function of the parameters that carries all the information. In
the normal shift model, this is

√
n(µ − µ0)/σ0. Because Tn has variance one, evi-

dence can be reported as Tn±1, indicating that it has error, with the subtext that this
standard error means the same thing to everyone, because all students of statistics
recognize a standard normal distribution. This standard error of 1 also becomes the
unit for a calibration scale for evidence: if one observes Tn = 3, one knows that one
has observed a result 3 times its own standard error. If one obtains Tn = −2, one
has evidence +2 for the opposite alternative hypothesis µ < µ0, again with standard
normal unit error.

The statistical evidence Tn =
√

n(X̄n −µ0)/σ0 is monotone increasing in
√

n for
each fixed µ; and, for each fixed sample size n, the expected evidence grows from 0
as µ > µ0 increases. This evidence is also replicable in the sense that given Tn = t
and an independent T ∗

n ∼ N(
√

n(µ −µ0)/σ0,1) the optimal predictor E[T ∗
n |Tn = t]

is simply t, and this estimator of the expected evidence has standard error 1.
When combining evidence from independent studies, given Tn1 ∼ N(τ1,1) and

Tn2 ∼ N(τ2,1), it is easy to think of combinations of Tn1 ,Tn2 which remain on the
same calibration scale. An effective combination is given in Section 1.2.

1.1 Desirable properties of statistical evidence

Most statisticians, including us, would prefer an axiomatic approach to statistical
evidence, but we provide an operational one. That is, guided by the above example,
we state what properties we would like a measure of evidence to have, and then in
specific problems show there are indeed statistics which come close to satisfying
them. The fact that it is an approximate theory in no way reduces its usefulness.
Normal approximations via the Central Limit Theorem are ubiquitous in statistics,
because they are useful in computing approximate p-values and confidence inter-
vals. Similarly they are useful in providing evidence for alternative hypotheses.

Let θ represent an unknown real parameter for which it is desired to test θ = θ0
against θ > θ0, and let Sn be a test statistic based on n observations which rejects
H0 for large values of Sn. We want a measure of one-sided evidence Tn = Tn(Sn) to
satisfy:

E1. The evidence Tn for a one-sided alternative is monotone increasing in Sn;
E2. the distribution of Tn is normal for all values of the unknown parameters;
E3. the variance Var[Tn] = 1 for all values of the unknown parameters; and
E4. the expected evidence τ(θ) = Eθ [Tn] is increasing in θ from τ(θ0) = 0.
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In E2 we require that the evidence always be unit normal, not only under the null
hypothesis. As a consequence, the evidence proposed here carries much more infor-
mation than results that are only true under the null hypothesis. For the prototypical
model and Tn(X̄n) =

√
n(X̄n−θ0)/σ0 all of the above properties hold exactly. Prop-

erty E1 is essential if the evidence is to remain a test statistic. In general, properties
E2 −E4 will hold only approximately, but to a surprising degree, even for small
sample sizes, provided one can find a variance stabilizing transformation (VST), of
the test statistic Sn, Tn = hn(Sn)− hn(Eθ0 [Sn]) such that Varθ [Tn]

.
= 1 for θ of in-

terest. From now on, the symbol .
= signifies an approximate equality up to an error

of smaller order in n. Since the variance of Sn is usually of order n−1, the VST can
usually be chosen as hn(·) =

√
nh(·).

Kulinskaya, Morgenthaler and Staudte ([6], denoted KMS in the following) pro-
pose a measure of evidence in favor of alternative hypotheses that is based on a trans-
formation of the usual test statistic to a normal translation family with unit variance,
and provide numerous applications of it to standard problems of meta-analysis. Our
purpose here is to explain in more detail why we advocate this particular definition.
Connections with other measures of evidence, such as the p-value and Bayes factor,
are given in [9].

It turns out that the expected KMS evidence, when dealing with a sample of size
n instead of a single observation, is equal to a product of two terms, the square
root of n and a quantity K whose value indicates the difficulty in distinguishing
the null density fθ0 from an alternative density fθ1 . This second term is the key to
understanding and implementing inferential procedures (see 1.2 for details).

We restrict attention to a real-valued parametric family fθ (x), where the testing
problem of interest is θ = θ0 against θ > θ0. The elements of a traditional test are the
test statistic Sn and its distribution under the null. To obtain a measure of evidence
one needs a monotone transformation Tn = hn(Sn), which stabilizes the variance and
is such that the distribution of Tn is approximately normal for all parameter values
θ , not only for the null value θ0.

When the observation x is a realization of X ∼ fθ0 , the likelihood ratio statis-
tic on average favors fθ0 , which means that Eθ0 [log( fθ0(X)/ fθ (X))] > 0. This is
a good measure of the difficulty in distinguishing fθ0 from fθ based on data from
fθ0 . It turns out that the symmetrized version of this quantity, the Kullback-Leibler
Divergence, is closely linked to the function hn(·).

Beginning with Fisher in [5], many statisticians have investigated ‘normalizing’
a family of distributions through a transformation which often simultaneously stabi-
lizes the variance, see the Wald Memorial Lecture by Efron [3]. As he points out, the
purpose of transforming a test statistic so that its distribution is a normal translation
family is both aesthetic (to gain insight) and practical (to easily obtain a confidence
interval for an unknown parameter). To these desirable properties we would add that
this calibration scale is ideally suited for meta-analysis, because it allows for cance-
lation of evidence from conflicting studies, and facilitates combination of evidence
obtained from several studies. Concerning this last point, the established theory of
meta-analysis (see [1] or [12]), is a large-sample theory that is not very reliable for
small sample sizes. Its implementation depends on estimators of weights and these
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estimators can be highly variable even for moderate sample sizes. By using variance
stabilization first, researchers can apply the meta-analytic theory with much more
confidence because, after transformation, no weights need to be estimated.

There is a constructive method for finding potential VSTs, see, for example, p. 32
[2] or Chapter 17 of [6]. These transformations are monotone increasing, so satisfy
property E1. They are defined only up to an additive constant, which may be chosen
so that T satisfies property E4. Variance stabilized statistics are often approximately
normally distributed, and when they are so, the potential evidence T also ‘satisfies’
E2. The degree of satisfaction can be measured by simulation studies that show the
VST leads to more accurate coverage of confidence intervals and more accurate
estimates of power functions than the usual Central-Limit based approximations of
the form (Sn −Eθ0 [Sn])/

√
Varθ0 [Sn]. [3] provides a constructive method for finding

normalizing transformations.

1.2 Key Inferential Function

Suppose that one has in hand a measure of evidence Tn satisfying E1 − E4, at
least asymptotically. In that case the expectation τ(θ) = Eθ [Tn] summarizes the
complete information. If we found Tn by application of a VST, that is, Tn =
hn(Sn)− hn(Eθ0 [Sn]), then we can deduce τ(θ) .

= hn(Eθ [Sn])− hn(Eθ0 [Sn]), which
can usually be written as τ(θ) .

=
√

n
(
h(Eθ [Sn])−h(Eθ0 [Sn])

)
.

Definition 1. Let Tn be a statistical evidence with τ(θ) = Eθ [Tn]
.
=

√
nKθ0(θ).

Then Kθ0 is called the Key Inferential Function or simply the Key for this statistical
model and boundary value θ0.

In the case of the normal shift model as given in the prototypical example, we
found Kµ0(µ) = (µ − µ0)/σ0, which is often called the standardized effect and
denoted by the symbol δ . In the case of a VST hn(·) =

√
nh(·), we have Kθ0(θ) =

h(Eθ [Sn])−h(Eθ0 [Sn]). This last expression is simply a centered version of the VST,
where the centering assures the equality Kθ0(θ0) = 0.

The Key contains all the essential information, and knowing it enables one to
solve many routine statistical problems, such as

K1. Choosing sample sizes: For testing θ = θ0 against θ > θ0 using a sample of
n observations the expected evidence is τ(θ) =

√
nKθ0(θ) for each θ . To attain

a desired expected evidence τ1 against alternative θ1 one can choose n1 to be the
smallest integer greater than or equal to [τ1/Kθ0(θ1)]

2.

For the prototypical model, this means n1 ≥{τ1/δ1}2, where δ1 = (µ1−µ0)/σ0.
Also, for this model the test statistic is Tn =

√
n(X̄n−µ0)/σ0)∼ N(τ1,1), where

τ1 =
√

nδ1. Hence the power 1 − β (µ1) of the level α test for µ1 is exactly
1−β (µ1) = Pµ1(Tn ≥ z1−α) = Φ(τ1 − z1−α); that is, τ1 = z1−α + z1−β (µ1). Now
substituting this expression for τ1 into the lower bound for n1 gives the well
known expression n1 ≥ {τ1/δ1}2 = σ2

0 {z1−α + z1−β (µ1)}
2/(µ1 −µ0)

2.
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K2. Power calculations: A Neyman-Pearson level α test based on Tn has power
1−β (θ) against alternative θ given by

1−β (θ) = .
= Φ(

√
nKθ0(θ)− z1−α) (1)

or
√

n Kθ0(θ) = z1−α + z1−β (θ) . (2)

Formula (1) often leads to more accurate power approximations than standard
asymptotics, see [6], Chapter 22. It follows that accurate choice of sample size
to obtain power at a given level is possible. Formula (2) shows that the VST
expected evidence is more basic than level and power: it can be partitioned into
the sum of the probits of the false positive and false negative error rates.

K3. Confidence intervals: A 100(1−α)% confidence interval for θ is given by[
K −1

θ0

(
Tn − z1−α/2√

n

)
, K −1

θ0

(
Tn + z1−α/2√

n

)]
, (3)

where K −1 is the inverse function to K .

For the prototypical model the Key is Kµ0(µ) = (µ−µ0)/σ0 = δ , so K −1
µ0

(κ) =
σ0κ + µ0. Substituting Tn =

√
n(X̄n − µ0)/σ0) into (3) produces the confidence

interval [X̄n − z1−α/2σ0/
√

n , X̄n + z1−α/2σ0/
√

n ].

K4. Meta-analysis for the fixed effects model: Given independent T1, . . . ,TK , where
Tk = Tnk ∼ N(τk,1) with τk =

√
nk Kθ0(θ), each evidences for θ > θ0, let

T1:K =

√
n1 T1 + · · ·+√

nK TK√
NK

, (4)

where NK = ∑k nk. Then T1:K ∼ N(τ1:K ,1), with τ1:K =
√

NK Kθ0(θ), is the com-
bined evidence for θ > θ0, and a 100(1−α)% confidence interval for θ based
on all the evidence is found by replacing the Tn of (3) by T1:K .

For the prototypical model, where Tk =
√

nk(X̄k − µ0)/σ0 ∼ N(τk,1) with τk =√
nk Kµ0(µ) and Kµ0(µ) = (µ − µ0)/σ0, one has T1:K =

√
NK ( ¯̄X − µ0)/σ0.

Here, ¯̄X is the mean of all NK = ∑k nk observations.

Note that if the initial statistical model is reparameterised in terms of η = η(θ),
where η(·) is a strictly increasing function, then the Key Kη0(η) becomes the com-
position of Kθ0(θ) with the inverse reparametrization θ = θ(η), that is, Kη0(η) =
Kθ(η0)(θ(η)). The transformation to the ‘right parameter’ η = Kθ0(θ), for exam-
ple, leads to Kη0(η) = η , where η0 = 0 = Kθ0(θ0).

For all the above reasons the Key appears to contain all the information required
for inference in one-parameter families, and this claim is supported by the material
in the next Section 2. In it we describe the very strong link between the Key and
the Kullback-Leibler Divergence for exponential families. In Section 3 we illustrate
many of the above results for the non-central chi-squared family, which is not an
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exponential family. In Section 4 we summarize the results and describe areas for
future research.

2 Connection to the Kullback-Leibler Divergence

[7] is a well-written and highly informative book whose principal topic is the fol-
lowing measure of information

I(θ0 : θ1) = E
[

log
(

fθ0(X)

fθ1(X)

)]
, where X ∼ fθ0 .

This quantity is the average value of the log likelihood ratio when choosing between
the model densities fθ0 and fθ1 with data X that is generated by fθ0 . The logarithm of
the likelihood ratio log( fθ0(x)/ fθ1(x)) is taken as the information in an observation
X = x for discrimination in favor of X ∼ fθ0 against X ∼ fθ1 (p.5,[7]). A variety of
strong arguments give backing to this choice.

Definition 2. The symmetrized information, defined as J(θ0,θ1) = I(θ0 : θ1) +
I(θ1 : θ0) is called the Kullback-Leibler Divergence (KLD) (see p. 6, [7]).

Kullback’s terminology has been modified over the years, and now I(θ0 : θ1) is
often called the divergence or directed divergence and J(θ0,θ1) the symmetrized
divergence. When the likelihood ratio test is performed with n independent obser-
vations, both I and J for discriminating will be multiplied by n. Thus in most of the
examples and theory to follow we can omit the sample size.

2.1 Example 1. Normal model

We begin with a return to the prototypical model in which there are no surprises,
but the generality soon becomes clear. If fµ0 and fµ1 are normal densities with equal
variances σ2

0 , but unequal means µ0 and µ1, the Kullback-Leibler Information is

I(µ0 : µ1) = E
[

1
2

(
(X −µ1)

2

σ2
0

− (X −µ0)
2

σ2
0

)]
, where X ∼ f0 .

Therefore I(µ0 : µ1) =
1
2 (1+(µ1 −µ0)

2/σ2
0 −1) and J(µ0,µ1) = (µ1 −µ0)

2/σ2
0 =

δ 2. The Kullback-Leibler Divergence is equal to the square of the standardized
effect δ . The information for discrimination is thus equal to the square of the
Key Inferential Function for the z test of the null hypothesis H0 : µ = µ0 against
H1 : µ = µ1, namely Kµ0(µ1) = δ , found in Section 1.

The above example can be extended to the case of evidence for alternative θ > θ0
to the null θ = θ0, for which the Key is Kθ0(θ) , where we now drop the subscript
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on the parameter in the alternative θ > θ0. We also write Jθ0(θ) for J(θ0,θ) to
emphasize that θ0 is fixed and θ is any value in the alternative θ > θ0. The Kullback-
Leibler Divergence (KLD) between the models N(0,1) and N(Kθ0(θ),1) is by the
previous example equal to K 2

θ0
(θ). This suggests that we can find the Key and the

VST h(·) by computing the KLD, because

Kθ0(θ)≈
√

Jθ0(θ)sgn(θ −θ0) . (5)

Common examples for which this approximation is excellent for θ in a large
neighborhood of the null value θ0 are the Poisson, exponential, binomial, and the
correlation coefficient of bivariate normal. It is also true for the non-central t, see
[9], and the non-central chi-square models, see Section 3.

2.2 Result for exponential families

Let X have density of the form f (x |η)= g(x)exp{ηx−k(η)} for x in an interval not
depending on η . These densities for X are called an exponential family with natural
parameter η ; see [11] for background material. We further assume that Varη [X ]> 0
for all η . We want to compare the Kullback-Leibler Symmetrized Divergence with
the square of the Key Inferential Function for this class of models. As a Corollary,
we will compare the Key itself with the signed square root of the divergence.

The derivatives of the function k give the cumulants of X ; so that

µ = Eη [X ] = κ1(η) = k′(η)

σ2 = Varη [X ] = κ2(η) = k′′(η) (6)

Eη [(X −µ)3] = κ3(η) = k′′′(η) .

Now µ = k′(η) has positive derivative, and therefore a monotone increasing inverse
η = (k′)−1(µ) so all the cumulants of X can be written as functions of µ . For ex-
ample, σ2(µ) = k′′ ◦ (k′)−1(µ).

The Kullback-Leibler Information about f (·|η) when f (·|η0) is the density of X
is

I(η0 : η) = Eη0 [ ln( f (X |η0)/ f (X |η)) ] = (η0 −η)k′(η0)− k(η0)+ k(η)

Therefore the Divergence is

Jη0(η) = (η −η0){k′(η)− k′(η0)}
= {(k′)−1(µ)− (k′)−1(µ0)}(µ −µ0) = Jµ0(µ) .

If a VST h(X) for X exists which has variance Var[h(X)]
.
= 1, it must satisfy

h′(µ) = 1/σ(µ), and the Key for testing µ = µ0 against µ > µ0 is defined by
Kµ0(µ) = h(µ)−h(µ0).



Evidence for Alternative Hypotheses 9

Proposition 1. Suppose the model is a one-parameter exponential family and let
Jµ0(µ) denote the Kullback-Leibler Divergence, whereas Kµ0(µ) is the Key Infer-
ential Function. It follows that

Jµ0(µ) = K 2
µ0
(µ)

{
1+C2 (µ −µ0)

2/2!+O(|µ −µ0|3)
}

and

sign(µ −µ0)
√

Jµ0(µ) = Kµ0(µ)
{

1+
1
2

C2 (µ −µ0)
2/2!+O(|µ −µ0|3)

}
,

where C2 = κ2
3 (µ0)/{24σ8(µ0)}.

A proof is given in [9].

For contiguous alternatives θn = θ0 +O(1/
√

n), the relative error in the approx-
imation is of order O(1/n). Thus, the approximation remains useful for alternatives
that are much further removed from the null value than the contiguous ones.

The procedure based on variance stabilization is applicable beyond the context
of exponential families. The basic idea of approximating a test problem by a nor-
mal translation family is not new and it is well-known that many hypothesis test-
ing procedures, which reject for large values of Sn, take this form for large sample
sizes n and contiguous alternatives. This is true in the sense that the power of the
level α test of θ = θ0 against the alternatives θ > θ0 is approximately equal to
Φ(zα +

√
ne(θ0)(θ − θ0)), where zα denotes the α quantile of the standard nor-

mal distribution and
√

ne(θ0) = µ ′(θ0)/σ(θ0)> 0 describes the efficacy of the test
statistic, where µ(θ) and σ2(θ) are the mean and variance of Sn. For the variance
stabilized test statistic Tn = hn(Sn), the simpler formula Φ(zα +

√
nKθ0(θ)) is ob-

tained and as we have seen, this gives a good approximation beyond contiguous
alternatives. In order that these two formulae agree in a neighborhood of θ0, it must
be true that d

dθ Kθ0(θ), evaluated at the null value θ0, is equal to µ ′(θ0)/σ(θ0).
Because the VST satisfies d

dµ h(θ0) = 1/σ(θ0), this is indeed the case.

2.3 Example 2. Poisson model

Let X ∼Poisson(λ ) and find the evidence for λ > λ0 when the null hypothesis is
λ ≤ λ0. An elementary calculation gives I(λ0 : λ ) = λ −λ0 +λ0 log(λ0/λ ), which
implies that Jλ0(λ ) = (λ −λ0) log(λ/λ0). The classical VST for the Poisson model

leads to Kλ0(λ ) =
√

4λ −
√

4λ0. The graphs of Kλ0(λ ) and
√

Jλ0(λ )sgn(λ −λ0)

are in agreement in a relatively large neighborhood of λ0, regardless of its value. To
check this, consider the parametrization λ = λ0 + (λ − λ0) = λ0 + ∆ for which
we have Jλ0(λ ) = ∆ log(1+∆/λ0) = (∆ 2/λ0)(1−∆/(2λ0)), while Kλ0(λ ) =
2
(√

λ0 +∆ −
√

λ0
)
= ∆/

√
λ0 −∆ 2/(4λ 3/2

0 ). The leading term of the signed root
of J and of the Key is ∆/

√
λ0, which is the standardization obtained by dividing
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the raw effect λ − λ0 by the standard error at the null hypothesis. We leave it to
the reader to check that the next order term also is in agreement. The classical VST
suggests that when λ0 = 1, the correct parameter to use for testing and evaluating
evidence is η = 2(

√
λ −1), while the KLD gives

√
(λ −1) log(λ ).

3 Non-central chi-squared family

In this section we illustrate some of the results from Sections 1 and 2 in the con-
text of the chi-squared family with known degrees of freedom and unknown non-
centrality parameter. This model is not an exponential family.

3.1 Comparing the KLD with the Key

Let X ∼ χ2
ν (λ ) have the non-central chi-squared distribution with ν degrees of free-

dom and non-centrality parameter λ . In most applications ν is known and λ is un-
known. It is not possible to compute the Kullback-Leibler symmetrized divergence
(KLD) between χ2

ν (λ0) and χ2
ν (λ1) analytically, but because of the well-known

VST, we think that it has to be

J(λ0;λ1)
.
=
(√

λ1 +ν/2 −
√

λ0 +ν/2
)2

. (7)

The approximation (7) is confirmed by computational results for many choices of ν ,
λ0 and λ1, some of which are presented in Figure 1. But first we show the motivation
for the conjecture by finding the Key for the evidence in X when testing λ ≤ λ0
against λ > λ0.Using the fact that E[X ] = ν + λ and Var[X ] = 2ν + 4λ , one can
write Var[X ] = g(E[X ]), where g(t) = 4t −2ν . Its inverse square root has indefinite
integral

h−ν(x) =
∫ x dt√

4t −2ν
=
√

x−ν/2+ c . (8)

Thus by the standard method (p. 32 of Bickel and Doksum, 1977), hν(x) is a poten-
tial VST for X . It is only defined for x > ν/2, but this is not a practical restriction
because

Pν , λ (X ≤ ν/2)≤ Pν , 0(X ≤ ν/2)≈ Φ
(
−

√
ν

2
√

2

)
, (9)

which is negligible even for moderate ν . The approximation of E[h(X)] by
√

E[X ]−ν/2+
c leads to (7).
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Fig. 1 In all plots the solid line depicts the graph of Kλ0 (λ ), for the χ2
ν (λ ) model, when testing

λ ≤ λ0 against λ > λ0. The dashed line that approximates it is the signed square root of the

Kullback-Leibler symmetrized divergence
√

Jλ0 (λ )sgn(λ −λ0). The latter is computed by Monte

Carlo integration on R. For the two left hand plots ν = 3 and in the upper plot λ0 = 2 while in the
bottom plot λ0 = 6. For the two right hand plots ν = 9 and in the upper plot λ0 = 2 while in the
bottom plot λ0 = 6. The dotted vertical lines mark the null hypothesis.

3.2 Tests for the non-centrality parameter

Given X1, . . . ,Xn i.i.d. with Xi ∼ χ2
ν (λ ), it is desired to test the null λ = λ0 against

λ > λ0 using as test statistic the sample mean X̄n. Any VST is derived as above to

be hn(X̄n) =
√

n
√

X̄n −ν/2+ c. To convert this into evidence Tn for λ > λ0 we
need to choose c so that E[Tn] = E[hn(X̄n)] is monotone increasing in λ with value 0

at the boundary λ = λ0. To a first approximation, E[
√

X̄n −ν/2] =
√

λ +ν/2 so

we choose c =−
√

n
√

λ0 +ν/2. Then

E[Tn]
.
=
√

n
[√

λ +ν/2 −
√

λ0 +ν/2
]
. (10)

It remains to check that Tn is approximately normal with variance near 1 and this is
left to the reader. Other important results are that the evidence grows with the square
root of the sample size and the Key function is monotone increasing in λ from 0 at



12 Stephan Morgenthaler and Robert G. Staudte

the null. The Key function evidently is Kλ0(λ ) =
√

λ +ν/2 −
√

λ0 +ν/2. Now it
is apparent, in view of Proposition 1, how the conjecture (7) arises, even though the
non-central chi-squared distribution is not an exponential family.

Figure 1 shows some examples of the approximation (7). Even for ν = 3 (left-
hand plots) the approximation is good near the null; and the approximations appear
to improve with ν . This means that we can use the simple expression Kλ0(λ ) =√

λ +ν/2 −
√

λ0 +ν/2 for the Key to carry out inference for λ as described in
Section 1. Further, we know that the Key is a good approximation to the signed
square root of the KLD between null and alternative hypothesized distributions, at
least for a large neighborhood of λ0.

While the above ideas are straightforward, we do not always have n independent
observations on a chi-squared family; rather the non-central chi-squared distribution
arises through a consideration of K groups, as described in the next subsection.

3.3 Between group sum of squares (for known variance)

For each group k = 1, . . . ,K let X′
k = [Xk1,Xk2, . . . ,Xk,nk ] denote a sample of nk

observations, each with distribution N(µk,1). Also assume the elements of X′ =
[X1, . . . ,XK ] are independent. Further introduce the total sample size N = ∑k nk, the
sample proportions qk = nk/N, the kth sample mean X̄k, the overall sample mean
X̄ = ∑k qkX̄k, its expectation µ = ∑k qkµk and the parameter λ = N ∑k qk(µk −µ)2.
Then the between group sum of squares Y = N ∑k qk(X̄k − X̄)2 ∼ χ2

ν (λ ), where
ν = K−1, see Section 22.1, [6]. The ratio θ = λ/N = ∑k qk(µk −µ)2 depends only
on the relative sample sizes qk, and measures the variability of the group means
µk using a weighted sum of squared deviations from the weighted mean µ , with
weights qk.

Let the test statistic be S = Y/N. The transformation to evidence for θ > θ0 is
then T =

√
N
[√

S−ν/(2N) −
√

θ0 +ν/(2N)
]

. Further, introduce the parameter
r = ν/N = (K − 1)/N; the mean and variance of S in this notation are E[S] = θ +
r and Var[S] = (4θ + 2r)/N. The expected evidence for θ ≥ θ0 become Eθ [T ]

.
=√

N Kθ0,N(θ), with the Key given by

Kθ0,N(θ)
.
=
√

θ + r/2 −
√

θ0 + r/2 − 1
2N

√
θ + r/2

. (11)

This shows that the expected evidence is monotone increasing in θ for θ > θ0,
and is approximately 0 at θ = θ0. For fixed θ it grows with

√
N. Also, for fixed

θ , if r = (K − 1)/N remains fixed with increasing N, the correction term becomes
negligible and the Key is essentially the first two terms of (11). If K = o(N) as
N → ∞, then r → 0 and the Key approaches Kθ0,+∞(θ) =

√
θ −

√
θ0.
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Fig. 2 In the first row of plots above are shown the empirical biases and standard deviation of T
for ν = K−1 = 4 degrees of freedom in Example 2 of Section 3. The results correspond to N = 10
(dotted line), N = 20 (dashed line), and N = 40 (solid line). The second row of plots gives the
empirical coverage probabilities of nominal 95% upper confidence bounds and 95% confidence
intervals.

Confidence intervals for the non-centrality parameter.

To obtain the confidence bounds of Equation (3) we need to solve for θ =K −1
θ0,N

(u)

Setting c =−
√

θ0 + r/2 we start with

u = Kθ0,N(θ) =
√

θ + r/2 + c− 1
2N

√
θ + r/2

. (12)

Solving this quadratic in θ yields

K −1
θ0,N

(u) =
1
2

[
1
N
+{(u− c)2 − r}+

{
(u− c)4 +

2(u− c)2

N

}1/2
]
. (13)

Evaluating this function at u± = (T ± z0.975)/
√

N, for T =
√

N
[√

S−ν/(2N) +c
]

yields the 95% confidence interval for θ in terms of the test statistic S = Y/N =

∑k qk(X̄k − X̄)2. For convenience we note that u±− c =
√

S− r/2 ± z0.975/
√

N.
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The performance of T and confidence intervals for θ based on it were examined
by generating 100,000 simulations of Y = NS ∼ χ2

ν (λ ) for various choices of ν =
K −1 and N, and then computing the average bias T −

√
NKθ0,N(θ) (which is free

of θ0), the average standard deviation SD[T ], the one-sided 95% confidence bound
empirical coverage, and finally the two-sided 95% confidence interval empirical
coverage probabilities. These results are plotted as a function of θ over the range
[0,3] in Figure 2.

In the above derivation of confidence intervals we included a bias term in the
Key to see if the resulting confidence intervals had better coverage than when we
used the simpler the simpler Key Kθ0(θ) =

√
θ + r/2 −

√
θ0 + r/2 . However, one

only loses a little in accuracy of coverage probabilities and the derivation of the
confidence interval is much quicker by the standard method K3 of Section 1.2.

4 Conclusions and further research problems

We have shown that it is often possible and practical to define an evidence T in favor
of alternatives. This statistic is based on the idea of variance stabilization and the
mean function of this evidence is closely related to the Kullback-Leibler divergence
(KLD). Investigating the generality of this result merits further research.

In general, it may be said that the KLD gives insights into a variety of infer-
ential questions and deserves renewed attention by statisticians. In the following
we give two other examples that show the power of the KLD in revealing underly-
ing structure. When the densities to be compared are fi(x) = f (x/σi)/σi, one has
KLD(σ1,σ2) = KLD(1,σ2/σ1) — the ratio of the scales is the essential parame-
ter. To be more precise, we have to compute the KLD. If the underlying density is
normal, one obtains KLD(σ1,σ2) =

1
2 (σ2/σ1 −σ1/σ2)

2. Reparametrizing to σ2 =

(1+∆)σ1, we have 1
2 (1+∆ −1/(1+∆))2 for the value of the KLD. This expands

into 1
2

(
1+∆ − [1−∆ +∆ 2 +O(∆ 3)]

)2
= 1

2

(
2∆ −∆ 2 +O(∆ 3)

)2. The square root
for ∆ > 0 leads to the Key (

√
2∆ − ∆ 2/

√
2 + O(∆ 3), which is up to this or-

der the same as
√

2 log(1+∆) =
√

2(log(σ2)− log(σ1)). Thus, the transformed
parameter obtained through the signed root of the KLD is simply the logarithm
and furthermore, the test statistic is based on the difference. This is, of course,
simply related to the fact that if the observed random variable Y = σX0, then
log(Y ) = log(X0)+ log(σ), which transforms the model into location-form.

Another example concerns robust, heavy-tailed models. When comparing fi(x)=
f ((x− µi)/σ0)/σ0, it is easy to show that the KLD only depends on δ = (µ2 −
µ1)/σ . As we have seen in our prototypical example, the KLD has value δ 2 for the
normal shift model. What happens, if one moves to a heavy-tailed density? Figure
3 shows the case of the Cauchy density. It turns out that the amount of information
available for small δ remains linear in δ and a loss of information only occurs for
large values. Thus, with appropriate estimators of δ , no loss of information due to
heavy-tails occurs. The loss is only due to the difficulty in estimating δ . As robust
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theory shows, it is possible to construct compromise estimators that exploit this
underlying information successfully for a wide range of tail behaviors. A similar
loss of information for large values of δ occurs in the central Student-t model with
unknown scale σ and a smallish number of degrees of freedom.

−4 −2 0 2 4

−
2

−
1

0
1

2

Fig. 3 The dark curve shows the signed root of the KLD for two standard Cauchy densities with a
translational shift between them. The values were computed by Monte Carlo simulation. The value
of the shift is indicated on the x-axis. The grey line has a slope equal to the ratio of the normal
upper quartile divided by the Cauchy upper quartile, which can serve as an estimator of the scale
change when switching the standard normal to the standard Cauchy density. For small shifts, there
is but a tiny difference between the straight line and the root of the Cauchy KLD. For large shifts,
the Cauchy KLD grows at a slower pace and turns out to be sub-linear.

Even though we have only considered cases, where the underlying parameter
takes real values, extensions to multidimensional parameters are possible and this
problem is open to further investigation. It would also be of interest to consider
examples where the evidence is multidimensional.
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