

Nikolay Tsyrulin, Diane Lancon, R. Viennois, E. Giannini, M. Boehm, M. Jimenez-Ruiz, A. A. Omrani, B. Dalla Piazza and H. M. Rønnow Laboratory for Quantum Magnetism (LQM)

Ecole Polytechnique Federale de Lausanne (EPFL) – Swiss Federal Institute of Technology Lausanne

Iron based superconductors and cuprates

- Some similarities:
 - Layered structure
 - Superconductivity near antiferromagnetic phase
- But also many differences:
- Metallic / Mott insulator ceramic
- Multi-band / single band

A remarkable common feature

- Our experiments on $Fe_{1+y}Te_{0.7}Se_{0.3}$ reveal hour-glass (HG) dispersion, like in the cuprates (Also reported by several other groups)
 - Hour-glass dispersion is rare in magnetic materials
 - That both high-Tc classes have HG can hardly be a coincidence
 - But does HG cause superconductivity or is it caused by superconductivity?

- Within each family there are also differences
 - So lets step back and look for common features

Excess iron switch off SC

- Te/Se constant and vary Fe
- show incommensurate excitations
- But, only SC show commensuration to hour-glass shape

Pressure:

- Need to define 3 energies:
 - E_{ha} the commensuration energy of the hour-glass dispersion
 - the energy below which E_{dap} spectral weight is removed
 - E_{max} the energy where maximum occur when spectral weight is moved to above the gap

Hourglass develop above Tc – Spin-gap below

Commensurate pinch necessary condition for SC y=0.05: no pinch \Leftrightarrow no SC y=0.02: pinch develop above T_c , T_c sets in when pinch 'complete'

Spin gap is consequence of SC Spin gap directly linked to SC gap

die.

Mechanism of SC – gain in magnetic exchange energy?

Bibliography

[1] Nikolay Tsyrulin et al., New J. Phys. **14**, 073025 (2012)

[2] Christensen N B et al., Phys. Rev. Lett. 93 147002 (2004)

[3] Li S et al., Phys. Rev. Lett. **105** 157002 (2010)

How to discover a new superconductor

A conjecture:

Z necessary condition for superconductivity

Search for materials with IC fluctuations and mobile charges. IC spectrum makes material susceptible to competing spin/charge order

When finding a new material class Look for \mathbb{Z} E_{hg} sets upper limit for Tc~5.3 E_{hg} achievable, and hence whether more exploration within this class is fruitful

"random blind walk" in the table of elements \Rightarrow slow at best

