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Abstract

This paper presents an information–theoretical method for weighting ensemble forecasts with new information. Weighted ensemble
forecasts can be used to adjust the distribution that an existing ensemble of time series represents, without modifying the values in
the ensemble itself. The weighting can, for example, add new seasonal forecast information in an existing ensemble of historically
measured time series that represents climatic uncertainty. A recent article in this journal compared several methods to determine
the weights for the ensemble members and introduced the pdf-ratio method. In this article, a new method, the minimum relative
entropy update (MRE-update), is presented. Based on the principle of minimum discrimination information, an extension of the
principle of maximum entropy (POME), the method ensures that no more information is added to the ensemble than is present in
the forecast. This is achieved by minimizing relative entropy, with the forecast information imposed as constraints. From this same
perspective, an information–theoretical view on the various weighting methods is presented. The MRE-update is compared with
the existing methods and the parallels with the pdf-ratio method are analysed. The paper provides a new, information–theoretical
justification for one version of the pdf-ratio method that turns out to be equivalent to the MRE-update. All other methods result in
sets of ensemble weights that, seen from the information–theoretical perspective, add either too little or too much (i.e. fictitious)
information to the ensemble.
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1. Introduction

“Probability is relative, in part to [our] ignorance,
in part to our knowledge.” - Pierre-Simon Laplace,
1825

A recent article in this journal by Stedinger and Kim (2010)
addressed methods to produce weighted ensemble forecasts. In
this type of forecasts, weights for the individual ensemble mem-
bers are updated to deviate from the usual equal weights, to
reflect information that was not included in the generation of
the ensemble. The method of weighting ensemble forecasts has
great potential to combine information from different sources
at different scales and weighted ensembles are readily appli-
cable in water resources planning and reservoir optimization.
A possible application is the generation of seasonal ensemble
forecasts by weighting historically observed time series based
new forecast information from large scale circulation patterns.
Two existing methods for weighting ensembles are the pdf-ratio
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method of Stedinger and Kim (2010), which adjusts the weights
proportional to the ratio of an original and a new pdf, and the
nonparametric and parametric updates of Croley (1996, 2003),
which find weights by minimizing the mean squared difference
in probabilities, with new information imposed as constraints.

Although the updating of the weights constitutes informa-
tion added to the ensemble, the problem of weighting ensem-
bles has never before been analysed from the perspective of
information theory. Applying information–theoretical princi-
ples can be essential to ensure that the reduction in uncertainty
caused by the weighting is in balance with the information pro-
vided by the forecast.

In this paper we argue that the problem of weighting en-
sembles is amenable to the information–theoretical principle of
maximum entropy (POME). We present the minimum relative
entropy update (MRE-update), a method for finding weights
based on an extension of POME. The objective of the paper
is to present the theoretical basis for the MRE-update and to
demonstrate its use. Furthermore, we present an information–
theoretical view on previous weighting methods and compare
them with the MRE-update, specifically focusing on informa-
tion flows that result from the different methods.

Using the information–theoretical concepts, we show that
the Croley parametric update is a second order approximation
of the MRE-update (Weijs, 2011). The parallels with the pdf-
ratio method of Stedinger and Kim (2010) are also explored.
We conclude that when the Gaussian version of the pdf-ratio
method is forced to exactly match the prescribed conditional
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mean and variance, the results are identical to the MRE-update.
Firstly, this is an information–theoretical justification for this
version of the pdf-ratio method. Secondly, it indicates the pdf-
ratio method as a fast way to solve the MRE-update in case the
forecast information consists of a conditional mean and vari-
ance. We only give a short introduction to weighted ensemble
forecasts here. For more background and references, the reader
is referred to Stedinger and Kim (2010).

1.1. Use of ensembles in water resources
Decision making about water resources systems often re-

quires uncertainty to be taken into account. Ensembles are a
common method to describe uncertainty in forecasts, such as
future inflows to a reservoir system. An ensemble consists of
several scenarios (also called members or traces), which rep-
resent the possible future development of the variables of in-
terest. An ensemble of past measured streamflows can, for ex-
ample, be used as a stochastic description of the inputs to a
system of reservoirs (Kelman et al., 1990). Ideally, such a his-
torical ensemble represents the climatic uncertainty about the
inter-annual variability, and at the same time contains a real-
istic stochastic description of spatial and temporal variability
and correlations at smaller timescales. Using ensembles di-
rectly has the advantage that no statistical models have to be
assumed. Ensemble members can be multivariate, e.g. yearly
sets of daily time series of various hydrological variables on
various locations (Faber and Stedinger, 2001). Other examples
of ensembles are the ensemble weather forecasts of European
Centre for Medium range Weather Forecasts (ECMWF), real-
time hydrological forecasts based on these ensemble weather
forecasts (Reggiani et al., 2009; Pagano et al., 2013), and the
extended streamflow predictions (ESP) that are used through-
out the USA as an input for reservoir optimization models or
decision making about flood protection.

To make the remainder of this introduction not too abstract,
it will focus on ESP ensembles, even though the methods pre-
sented are more generally applicable to any ensemble. ESP
forecasts reduce uncertainty by conditioning predicted stream-
flow on initial basin conditions. The ESP forecast is produced
by feeding a distributed hydrological model, which has an ini-
tial state consistent with actual basin conditions, with past ob-
served weather patterns (Day, 1985; Wood and Lettenmaier,
2006). The result is an ensemble of streamflows with one trace
for each historical weather pattern. The ensemble reflects the
climatic uncertainty, but also the information that is in the ac-
tual basin conditions (Wood and Lettenmaier, 2008). This in-
formation reduces the climatic uncertainty in the flows.

Apart from the initial basin conditions, information about
the streamflows might be present in climatic indexes that char-
acterize long term persistence in the atmospheric and oceanic
circulation (Piechota et al., 1998). For example, the phase of the
El Niño Southern Oscillation (ENSO) and the Pacific Decadal
Oscillation (PDO) gives information about the precipitation in
the Pacific Northwest of the USA (Hamlet and Lettenmaier,
1999). Hamlet et al. (2002) proposed a method to select only
the one third of ESP traces that match the ENSO conditions
of the actual year. They calculated that this information, in

combination with a more flexible reservoir operation strategy,
could lead to “an increase of non-firm energy production from
the major Columbia River hydropower dams, ... resulting in an
average increase in annual revenue of approximately $153 mil-
lion per year in comparison with the status quo.” This paper
presents a method to include this type of information into en-
semble forecasts by weighting rather than selecting ensemble
traces.

1.2. Weighted ensembles
Ensemble traces are often stated to be “equally likely”, see

e.g. Cloke and Pappenberger (2009). This should not be taken
too literally. For example, streamflows close to the inter-annual
mean are more likely than streamflows of the most extreme
ensemble members in terms of probability density. Also, the
probability of any scenario exactly occurring with the same
real number(s) as outcome is zero. Ideally ensemble forecasts
are produced in such a way that all ensemble members can be
considered to represent equally probable ranges of the possi-
ble outcomes “closest” to the scenario. This is reflected by the
fact that scenarios usually lie closer to each other around the
mean value. Each scenario represents the same probability, but
a different region of the space (or line in the univariate case) of
the outcome and therefore a different probability density; see
Fig. 1. In that way, the ensemble is a discrete representation
of the underlying probability density function and can be used
in Monte-Carlo approaches, risk analysis and decision making,
see e.g. Georgakakos and Krzysztofowicz (2001) or Van Over-
loop et al. (2008). It also means that we can treat the ensemble
weights as probabilities, even though strictly speaking they are
not.

Often, long-term forecasts based on, for example, ENSO
do not contain information at a high spatial and temporal detail
level, but rather contain information about averages in time and
space, e.g. the total flow at the outlet of a river basin, averaged
over several months. Yet, risk analysis or optimal operation
may depend on events and sequences at shorter timescales and
smaller spatial scales. One could attempt to shift the time series
in the ensemble to match the long term forecast (bottom right
Fig 1), but this could destroy the realism of the traces if the
shifting or scaling procedure is not sophisticated enough.

A reasonable alternative to combine detailed information in
the ensemble of historical time series with forecast information
is to update the probabilities of individual ensemble members
based on the averages the series are labeled with, while leaving
the time series they contain intact (Werner et al., 2004; Ste-
dinger and Kim, 2010). This has the advantage of preserving
high-resolution stochastic structure within the ensembles. The
update of the weights is thus based on averages in space and
time, derived from the time series, compared to information on
these same quantities in the seasonal forecast; see top right of
Fig. 1.

From the information–theoretical perspective presented in
this paper, updating ensemble probabilities to deviate from equal
probabilities implies adding information to the ensemble. That
information is measured by the relative entropy between the
original and the new probabilities (Cover and Thomas, 2006);
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Figure 1: Equally weighted ensemble members can represent a nonuniform density. This density can be changed by shifting or by weighting the ensemble traces.
The left panel in the figure shows historical time series together with their temporal means used to label them, so they can be updated with information about those
means. The right panels show how these means can represent a probability density function, and how an update of this probability density function can be translated
back to be represented in the ensemble. In the upper panel this is done by weighting the initially uniform weights, shown on the vertical axis. In the lower panel,
the update is done by shifting the means of the time series to other streamflow values, after which these shifts should be represented by changing the values in the
corresponding time series. Note that the vertical axis in the lower panel just represents the transition from the original to the new location of the points, and does
not indicate weights; the weights remain unchanged and uniform.

see section 2. To prevent adding more information to the en-
semble than is justified by the forecast, the relative entropy
should be minimized, constrained by the information in the
forecast. In this paper, this method to derive the weights is re-
ferred to as the minimum relative entropy update (MRE-update).
The method is consistent with and an extension of POME ap-
plied to the ensemble weights.

Apart from weighting climatic ensembles with additional
forecast information, the MRE-update method is generally ap-
plicable whenever information is added to an ensemble by ad-
justing probabilities; see e.g. Another possible application could
be a bias correction or variance adjustment for ensembles gen-
erated by Monte Carlo simulations with models. In finance, the
concept of minimum relative entropy has been used to include
price information in a Weighted Monte Carlo simulation, which
is mathematically equivalent to the proposed bias correction ap-
plication of the MRE-update (Avellaneda et al., 2001).

1.3. Previous work on adding forecast information to climatic
ensembles by weighting

Croley (1996) presents a method for updating ensemble mem-
ber probabilities, assuming forecast information is given by a
third party in the form of conditional tercile probabilities (prob-
ability triplets). These are the probabilities of below normal,
normal or above normal conditions, which have equal probabil-
ities of 1

3 in the climatic distribution. Croley presents a nonpara-
metric probability adjustment procedure based on minimization

of the sum of squared deviations of the probabilities from the
uniform distribution. The result is a block adjustment of prob-
abilities, in which all ensemble members within one tercile get
assigned the same weight. This is in line with the literal in-
terpretation of the probability triplets as considered by Wilks
(2000, 2002). The method can also deal with multiple forecasts,
including deterministic “most probable event” forecasts (Cro-
ley, 1997). A procedure that one by one eliminates constraints
according to user priorities helps to reach a feasible solution for
the probability weights.

Croley (2003) presents an alternative parametric approach,
in which sample moments of the forecast distribution can be
imposed as equality constraints on corresponding moments of
the weighted ensemble. A problem with this method is that of-
ten many of the probabilities become zero, so only part of the
original ensemble is used. The cause for this partly lies in the
objective function that Croley proposes. Although it seems rea-
sonable to minimize the adjustment to the probabilities, there
is no clear rationale for using minimum squared deviations as
objective function; see page 345 of Jaynes (2003). Among
the two methods, the parametric one leads to more reasonable,
smoother adjustments than the block adjustment, avoiding sud-
den jumps in probability between adjacent ensemble members
(Stedinger and Kim, 2010).

Stedinger and Kim (2002, 2007, 2010) introduce the pdf-
ratio method, also focusing on obtaining a weighted ensemble,
but now assuming a forecast is given by the third party as a

3



target conditional distribution. They also argue that forecast in-
formation in the form of probability triplets should not be taken
literally, but as a representation of a smooth underlying target
distribution. They propose that probability triplets should be
converted to a likely target distribution that can subsequently be
used in the pdf-ratio method. The pdf-ratio method adjusts the
probability of each ensemble member with the ratio between
marginal (climatic) and conditional (forecast) probability den-
sity functions (pdf) at each sample point. The pdf-ratio method
then normalizes the probabilities to make them sum to one. Al-
though the method does not seem to be very sensitive to distri-
bution type, one still has the problem of assuming a distribution
from only two tercile probabilities or moments. Another prob-
lem is that for relatively large deviations from the climatic dis-
tribution, significant deviations of the resulting moments from
the target moments occur, but this can be solved by an addi-
tional adjustment step.

In this paper we analyse the problem of updating ensemble
probabilities with forecast information from an information–
theoretical viewpoint. We present a new method to include
forecast information in a historical ensemble, based on mini-
mizing relative entropy. In a comparison between our method
and the existing methods, we explicitly show the assumptions
in the existing methods and the differences between various
ways of presenting forecast information. Before introducing the
MRE-update, a short review of relevant information–theoretical
concepts and principles is given.

2. Information, assumptions and entropy

In information theory, information and uncertainty are quan-
tities, measurable in “bits”. Uncertainty, entropy and missing
information are all equivalent properties of a probability dis-
tribution. The central measure for uncertainty, information en-
tropy, as defined by Shannon (1948), specifies the amount of
extra information necessary to obtain certainty. For a discrete
probability distribution the Shannon-entropy is defined as:

H(P) = −
∑
x∈X

p(x) log p(x) (1)

in which X is the support set of the random variable with dis-
crete distribution P and p(x) is the probability of a certain out-
come x. When using a base 2 logarithm, the unit of the resulting
entropy is bits. Shannon (1948) derived his entropy measure
starting from very basic desired properties of a measure of un-
certainty, which uniquely define (1) as measure for uncertainty
(Jaynes, 1957). Shannon’s entropy measure has been proven
useful in many fields of science (see Cover and Thomas, 2006).

A similar measure, relative entropy, expresses divergence
between two probability distributions or the information gain
that is associated with going from one distribution to another.
Relative entropy, or Kullback-Leibler divergence, is defined as:

DKL(Q||P) =
∑
x∈X

q(x) log
(

q(x)
p(x)

)
(2)

in which P and Q are the original and updated distributions re-
spectively and q(x) is the new probability estimate of event x.
Relative entropy has been applied in meteorology in the study
of atmospheric predictability (Leung and North, 1990; Klee-
man, 2002) and as measure for forecast quality (e.g. Roulston
and Smith, 2002; Ahrens and Walser, 2008; Weijs et al., 2010b;
Weijs and Van de Giesen, 2011).

A reduction of entropy implies that information is added
about the uncertain event the distribution describes. Informa-
tion can be added in the form of data or knowledge, but can
also enter implicitly by unwarranted assumptions, all reducing
the entropy of the distribution. When new information in, for
example, a forecast motivates a revision of the probability dis-
tribution from P(X) to Q(X), the relative entropy DKL(Q||P)
is an exact measure of the amount of information added by
that specific forecast. The expectation of DKL(Q||P) over all
possible forecasts is equal to the mutual information between
the forecasts and the random variable X. A good overview of
information-theoretic concepts reviewed in this section can be
found in Cover and Thomas (2006).

2.1. The principle of maximum entropy

Among all discrete probability distributions, the uniform
distribution, in which all outcomes in the support set are equally
likely, maximizes entropy, i.e. has maximum missing infor-
mation. So without any information available except for the
support set, it is rational to assume a uniform distribution. As-
suming any other distribution leads to less uncertainty without
having the information to justify that reduction. This idea was
already formulated by Laplace (1825) .

Jaynes (1957) first formulated the principle of maximum
entropy, which is in fact a generalization of Laplace’s princi-
ple. It states that when making inferences based on incomplete
information, one should choose the probability distribution that
maximizes uncertainty (entropy), subject to the constraints pro-
vided by the available information. Applying this principle
leads to a distribution with maximum uncertainty, but bounded
by what is known. This automatically implies that no false cer-
tainty is created and only truly existing information is added.
The continuous variant of principle of maximum entropy has
been widely applied for derivation of continuous prior distri-
butions and parameter estimation; see e.g. Singh and Singh
(1985); Singh and Rajagopal (1987); Singh (1997) for relevant
references.

Along the same lines of reasoning, the principle of mini-
mum relative entropy or principle of minimum discrimination
information (Kullback, 1997, first edition 1959) states that given
new facts, a new distribution should be chosen that is consistent
with those facts, but apart from that minimizes the information
gain with respect to the original distribution. This principle en-
sures that not more new information is included than is justi-
fied by the new facts. The principle leads to results identical
to those of POME, but generalizes to non-uniform prior distri-
butions. For the discrete form, this means minimum relative
entropy takes into account the initial probabilities in adjusting
a distribution to new facts.
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3. Methods

3.1. The Minimum Relative Entropy update

We propose to apply the principle of minimum relative en-
tropy to adjust the probabilities of a climatic ensemble to reflect
new forecast information. This method is referred to as the min-
imum relative entropy update (MRE-update). The MRE-update
is a constrained minimization of relative entropy to optimally
combine new information in the form of constraints with an
existing ensemble. The method can be used for updating a cli-
matic ensemble, whose members may contain high resolution
spatial and temporal patterns of several variables. New added
information concerns some averaged quantities that character-
ize the traces in the climatic ensemble. This new information
can, for example, be expressed in the form of conditional mo-
ments of those averaged quantities. The information is added
by adjusting the weights of the ensemble members in such a
way that the weighted moments match the forecast.

3.1.1. Rationale of the method
The amount of new information added by the forecast is

the relative entropy between the original uniform distribution
of probabilities and the updated probabilities assigned to the
ensemble. Minimizing this relative entropy, constrained by the
information contained in the forecast, will find weights that
exactly use all information in the forecast, without adding in-
formation that is not in the forecast. Consequently, the new
ensemble is consistent with the forecast, but does not deviate
more than necessary from the observed climatic distribution.
The MRE-update optimally combines new forecast information
with climatic information already present in an ensemble.

3.1.2. Formulation of the method
In the MRE-update, we try to find updated probabilities qi

by minimizing relative entropy to the original uniform distri-
bution of probabilities pi from the updated probabilities qi as-
signed to the n samples xi, given the general constraints of prob-
abilities and the constraints posed by the forecast information.
This results in a nonlinear optimization problem with objective
function:

min
Q

DKL (Q∥P) = min
qi...qn
{

n∑
i=1

qi log(
qi

pi
)} (3)

Because in this case we start from a uniform distribution
of equiprobable ensemble members (pi is constant), which has
maximum entropy, minimizing relative entropy is equivalent to
maximizing the entropy of the distribution of qi:

max
Q

H (Q) = max
qi...qn
{−

n∑
i=1

qi log(qi)} (4)

In the remainder of the paper, we focus on MRE (Eq. 3), be-
cause POME (Eq. 4), although in this case equivalent, is less
flexible to take into account possible prior weights assigned to

the ensemble. Also, MRE makes the analogy with the Croley
methods that we will compare the method to more evident.

The optimization is subject to the constraint that the proba-
bilities sum to one

n∑
i=1

qi = 1 (5)

and that all probabilities are non-negative:

qi ≥ 0 (6)

This last constraint is never binding in the MRE-update, be-
cause the objective function (Eq. 3) already ensures positive
weights. Without any additional forecast information, no extra
constraints are added. Objective function (3) minimizes the di-
vergence from the original uniform distribution. Because con-
straints (5) and (6) are already satisfied by the original distribu-
tion, no adjustment is made.

When forecast information is available, it can be introduced
by additional constraints to the minimization problem. In case
the forecast information is given as probability triplets of be-
low (pb) and above (pa) normal conditions, the following con-
straints are added:

∑
i∈S b

qi = pb (7)

∑
i∈S a

qi = pa (8)

In which S b and S a are the sets of i for which xi ≤ xb and
xi ≥ xa respectively. With xb and xa being the lower and upper
terciles of the climatic distribution for X.

In case the forecast information is given as the conditional
mean µ1 and standard deviation σ1, the following constraints
are imposed:

n∑
i=1

qixi = µ1 (9)

n∑
i=1

qi(xi − µ1)2 = σ2
1 (10)

The resulting constrained convex optimization problem is sub-
sequently solved using a standard gradient search.

To show the flexibility of the MRE-update method to in-
clude other forms of information, an example of including a
prescribed skew will be tested by adding the additional con-
straint

n∑
i=1

qi(xi − µ1)3 = γ1σ
3
1

where γ1 is the target skew.
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3.2. Theoretical test case on a smooth sample and comparison
to existing methods

In this experiment, the results of the MRE-update are com-
pared with the results of the Croley nonparametric adjustment
(Croley, 1996), the Croley parametric adjustment (Croley, 2003)
and the pdf-ratio method Stedinger and Kim (2010). The same
example as the univariate case in Stedinger and Kim (2010) was
used. In this example, an artificially generated smooth climatic
sample of n = 50 scalar values xi is updated with forecast in-
formation of the previously mentioned forms. In a real-world
application, the sample would represent an ensemble of, for ex-
ample, time series. The sample is created by evaluating the
inverse cumulative distribution function of the prescribed origi-
nal distribution at the Hazen plotting positions ((i − 0.5) /n); see
Stedinger and Kim (2010). The sample is drawn from a normal
distribution with mean 3 and standard deviation 1. In absence of
extra information, all 50 samples are considered equiprobable,
with probability 1/50.

The challenge is now to update the probabilities of the sam-
ple values in such a way that the ensemble reflects the forecast
distribution, given the climate information, conditioned on fore-
cast information. It must be noted that when we compare the
methods, we implicitly also compare forecast information of
three different types:

(TC) The conditional tercile probabilities pb, pn and pa

(N) An assumed forecast normal distribution with given
parameters.

(M) The mean µ1 and standard deviation σ1 of the fore-
cast distribution

Table 1 gives an overview of the methods and forecast types,
indicating which combinations are compared and which abbre-
viations are used for the results.

For the pdf-ratio method, Stedinger and Kim (2010) con-
sidered normal, lognormal and gamma type distributions. This
paper focuses on their results using the assumption of a normal
distribution for both climatic and forecast distribution, that has
some parallels with the MRE-update using mean and variance
as constraints. In Stedinger and Kim (2010), the forecast infor-
mation of type TC is converted to type N, using the assumption
of a normal distribution. The rationale behind this is that the
forecast of type TC is likely to represent a smooth underlying
distribution. They compare results of the pdf-ratio method us-
ing forecast N with the Croley nonparametric adjustment using
forecast TC and to CP-M. Since the pdf-ratio method does not
always match the target moments, we also use a variant that
changes the parameters of the target distribution of pdf-N in an
optimization, until the resulting moments after normalization
exactly match the targets.

The Croley methods are based on an optimization using
the same constraints as the MRE-update for both the forecast
TC (results: CP-TC) and the forecast M (results: CP-M). The
objective function that Croley (1996, 2003) proposed for both
methods, however, is different from the MRE-objective (Eq. 3);
instead of minimizing relative entropy, the Croley methods find

the weights by minimizing the squared adjustment in probabili-
ties (Eq. 11), which is in fact the unique difference between the
CP and MRE methods.

min
qi
{

n∑
i=1

(qi − pi)2} (11)

We compare results of the MRE-update with both tercile
probability constraints (MRE-TC) and constraints on mean and
standard deviation (MRE-M) to the results of the Croley non-
parametric adjustment, the Croley parametric adjustment, and
the pdf-ratio method with and without the optimization to ex-
actly match the target moments. The comparison is made for a
hypothetical case, with the various combinations of µ1 and σ1
as described in Stedinger and Kim (2010). For the case of ter-
cile probability constraints (TC), target tercile probabilities are
derived from µ1 and σ1, assuming a normal distribution.

3.3. Information-uncertainty trade-off
To visualise the trade off between uncertainty and informa-

tion from the forecast we can plot information-theoretical mea-
sures of the resulting weight sets in a two dimensional space.
A Pareto front can be obtained by formulating a multi-objective
optimization problem and solving it by using the fast global
optimization algorithm AMALGAM, developed by Vrugt and
Robinson (2007). The problem consists of minimizing two ob-
jectives by finding Pareto-optimal vectors Q of 50 weights for
the ensembles. The first objective is the maximization of the
entropy of the weights. When formulated as the minimization
of the difference with the entropy of uniform weights (Eq. 12)
it can be interpreted as a measure of original uncertainty lost.

min
Q
{Huniform − H (Q)} (12)

The second objective is minimization of the Kullback-Leibler
divergence of the sought distribution from the closest distribu-
tion that exactly matches the target moments. This objective
measures the information loss with respect to the exact fore-
cast.

min
Q

{
DKL

(
Ptarget||Q

)}
(13)

where

Ptarget = arg min
P
{DKL (P||Q)} (14)

and Ptarget is subject to the constraints on sum, mean and vari-
ance in equations 5, 9 and 10. The position of results from
different methods relative to the Pareto front will give insight in
how they balance reduction of uncertainty with information to
justify it.

3.4. Multivariate MRE-update
An important extension is the update of ensemble probabil-

ities to reflect forecast information on multiple variables (Ste-
dinger and Kim, 2010). For more background on the impor-
tance of the multivariate case; see Stedinger and Kim (2007,
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Table 1: An overview of the methods and types of forecasts that are compared in this paper.

Adjustment method Forecast used

Tercile constraints
(TC)

Conditional distri-
bution (N)

Conditional mean
and variance (M)

pb, pn, pa N(µ1, σ1) µ1, σ
2
1

pdf-ratio method (pdf-N)
Croley non-parametric adjustment (CP-TC)
Croley parametric adjustment (CP-M)
Minimum relative entropy update (MRE-TC) (MRE-M)

2010). For all variables, constraints on mean and variance can
be specified separately. Because the size of the ensemble stays
the same, the dimensionality of the optimization problem does
not increase. The only difference is the addition of more con-
straints, which results in a slightly higher risk of the optimiza-
tion problem becoming infeasible. However, tests show that for
most practical problems, enough degrees of freedom exist to
find a solution. An important issue for the multivariate case
is the preservation of cross-correlations (Stedinger and Kim,
2010), especially in cases where risk depends on the joint oc-
currence of for example high water temperatures and low flows.
Preservation of the cross-correlations can be ensured by im-
posing additional equality constraints on the weighted cross-
correlation of the adjusted sample.

Although in this paper we concentrate on the univariate case,
we will briefly show some results to demonstrate the potential
of the MRE-update also for multivariate updates. We consider
the theoretical example from (Stedinger and Kim, 2010) for
comparison, using the exact same data. We use the same bub-
ble plots to show the resulting weights as a function of both
variables.

4. Results

The results are presented as graphs showing the weights of
the individual traces as a function of the value they represent
and the cumulative weights, which form an empirical cumula-
tive distribution function (CDF). Next to the graphs, a number
of tables shows the resulting tercile probabilities, moments and
relative entropies

The codes in Tables 2-4 and the legends of figures 2-5 cor-
respond to the different methods given in Table 1. For the case
of tercile probability constraints (forecast TC), the MRE-update
(with objective eq. 3) always results in exactly the same block
adjustment as for the Croley nonparametric adjustment (objec-
tive eq. 11). For tercile constraints, the minima of the ob-
jective functions thus coincide. The identical results for these
two methods are indicated with TC. Pdf-N indicates pdf-ratio
method, using normal climatic and normal forecast distribu-
tions (forecast N).

4.1. Resulting weights

Figures 2-5 show the assigned probabilities for individual
ensemble members against their x-values. The right graphs in
these figures show the corresponding discrete approximations

for the cumulative distribution functions (CDF), using Hazen
plotting positions, following Stedinger and Kim (2010). The
original smooth sample with uniform weights, drawn from the
climatic normal distribution is also shown (climatic). In the
cumulative distribution plots, also the cumulative distribution
function of the target distribution, used in the pdf-ratio method
is plotted.

From these results, it becomes clear that there is a large
difference between forecasts in the form of probability triplets
and forecasts in the form of moments. When the deviations
from the original moments are small, the results for the meth-
ods using moments and the pdf-ratio method are similar. When
deviations become larger, the Croley parametric method shows
clearly different behavior, while the MRE-update and the pdf-
ratio method show very similar results in many cases. .

4.2. Resulting moments and tercile probabilities

Table 2 shows the target and resulting tercile probabilities
for below and above normal conditions (pb and pa) for the meth-
ods, while Table 3 shows resulting means and standard devi-
ations. Small rounding errors occur due to the limited num-
ber of ensemble members and the way the original sample is
drawn. The effects become apparent for the case µ1=µ0=3 and
σ1=σ0=1 (no new information). Firstly, the discrete approx-
imation of outer tercile probabilities with 17 of the 50 mem-
bers, results in probabilities of 0.34 rather then 1

3 . Secondly,
the standard deviation of the original sample is not exactly one,
but 0.987.

When ignoring small differences due to these numerical ef-
fects, Table 2 shows that for all methods pb and pa match the
assumed target reasonably well for cases with σ1 ≤ 1. For
the cases with increased variance, the methods using moment
constraints show somewhat larger deviation from target proba-
bilities pa and pb.

Results for the mean-variance forecast (type M) show a dif-
ference between MRE-update (MRE-M) and Croley parametric
adjustment (CP-M). The latter tends to result in more ensemble
member probabilities set to zero; see Fig. 2-5. Although results
are different, both satisfy the constraints given by the forecast.
The difference in results is purely due to the difference in ob-
jective function. Naturally, because the moments are imposed
as constraints, both methods will exactly match the target mean
and standard deviation (Table 3), like the results for methods
using tercile constraints (TC) exactly match pb and pa (Table
2).
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Table 2: Resulting tercile probabilities for the four methods compared

True
moments

Target
probabilities

Estimated probabilities

TC pdf-N MRE-M CP-M

µ1 σ1 pb pa pb pa pb pa pb pa pb pa
3.00 0.25 0.043 0.043 0.043 0.043 0.049 0.049 0.050 0.050 0.047 0.047
2.00 0.50 0.873 0.002 0.873 0.002 0.880 0.002 0.881 0.002 0.886 0.000
3.00 0.50 0.195 0.195 0.195 0.195 0.205 0.205 0.205 0.205 0.227 0.227
4.00 0.50 0.002 0.873 0.002 0.873 0.002 0.880 0.002 0.881 0.000 0.885
4.50 0.50 0.000 0.984 0.000 0.984 0.000 0.986 n.a. n.a. n.a. n.a.
5.00 0.50 0.000 0.999 0.000 0.999 0.000 0.999 n.a. n.a. n.a. n.a.
3.00 1.00 0.333 0.333 0.333 0.333 0.340 0.340 0.342 0.342 0.342 0.342
3.00 1.20 0.360 0.360 0.360 0.360 0.364 0.364 0.375 0.374 0.382 0.382
4.00 1.20 0.117 0.682 0.117 0.682 0.127 0.669 0.142 0.712 0.110 0.840
4.50 1.20 0.054 0.814 0.054 0.814 0.064 0.791 0.097 0.843 0.081 0.919
5.00 1.20 0.021 0.905 0.021 0.905 0.029 0.877 0.071 0.931 0.071 0.931

Table 3: Resulting mean and standard deviation for the various methods

Target assuming normal Mean Standard deviation

pb pa µ1 σ1 TC pdf-N CP-M MRE-M TC pdf-N CP-M MRE-M

0.043 0.043 3.00 0.25 3.00 3.00 3.00 3.00 0.41 0.25 0.25 0.25
0.873 0.002 2.00 0.50 2.07 2.00 2.00 2.00 0.61 0.50 0.50 0.50
0.195 0.195 3.00 0.50 3.00 3.00 3.00 3.00 0.76 0.50 0.50 0.50
0.002 0.873 4.00 0.50 3.93 4.00 4.00 4.00 0.61 0.50 0.50 0.50
0.000 0.984 4.50 0.50 4.05 4.52 n.a. n.a. 0.52 0.50 n.a. n.a.
0.000 0.999 5.00 0.50 4.07 4.96 n.a. n.a. 0.51 0.41 n.a. n.a.
0.333 0.333 3.00 1.00 3.00 3.00 3.00 3.00 0.98 0.99 1.00 1.00
0.360 0.360 3.00 1.20 3.00 3.00 3.00 3.00 1.01 1.13 1.20 1.20
0.117 0.682 4.00 1.20 3.61 3.84 4.00 4.00 0.88 1.04 1.20 1.20
0.054 0.814 4.50 1.20 3.81 4.19 4.50 4.50 0.75 0.95 1.20 1.20
0.021 0.905 5.00 1.20 3.95 4.47 5.00 5.00 0.64 0.84 1.20 1.20

Table 4: Resulting relative entropy for the different methods

Target assuming
normal distribution

Resulting divergence (relative entropy)
from original distribution (bits)

µ1 σ1 pb pa TC pdf-N CP-M MRE-M

3.00 0.25 0.043 0.043 1.132 1.324 1.379 1.324
2.00 0.50 0.873 0.002 1.002 1.174 1.251 1.181
3.00 0.50 0.195 0.195 0.257 0.459 0.500 0.459
4.00 0.50 0.002 0.873 1.002 1.174 1.251 1.178
4.50 0.50 0.000 0.984 1.438 2.081 n.a. n.a.
5.00 0.50 0.000 0.999 1.547 3.356 n.a. n.a.
3.00 1.00 0.333 0.333 0.001 0.000 0.000 0.000
3.00 1.20 0.360 0.360 0.005 0.036 0.081 0.078
4.00 1.20 0.117 0.682 0.371 0.561 1.333 0.949
4.50 1.20 0.054 0.814 0.712 1.105 2.870 2.283
5.00 1.20 0.021 0.905 1.035 1.709 5.274 5.274
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4.3. Information contained in forecasts

While the relative entropy is on the one hand used to find
the weights for the MRE-update, by minimizing it in an opti-
mization, it can also be used as a measure to analyse the results
from all methods. Table 4 shows the resulting relative entropy
for the set of ensemble member probabilities, relative to the
original uniform distribution. The “n.a.” entries correspond to
combinations of µ1 and σ1 constraints for which the optimiza-
tion based methods (CP-M) and (MRE-M) were not able to find
a solution. This means that those µ1 and σ1 combinations are
not achievable with the given sample. If a solution is needed, it
can only be found when relaxing the constraints. In all cases,
the result for TC has the lowest relative entropy, followed by
pdf-N, MRE-M and CP-M. The relative entropy resulting from
the MRE-update is the uncertainty reduction by the information
in the forecast. Hence we can see that the forecast of type TC is
less informative than type M (compare TC and MRE-M). The
entropies for (MRE-M) in Table 4 also show that larger shifts in
mean result in larger relative entropy. This corresponds to the
intuition that forecasts add more information when they deviate
more from climatology.

Because the pdf-N and CP-M methods have no information-
theoretical founding, the relative entropy resulting from those
methods does not say much about the amount of information
in the forecast, but does indicate the uncertainty reduction in
the ensemble. Because CP-M has higher relative entropy than
MRE-M, we can say that this first method introduces informa-
tion that is not present in the forecast. This will be further
explained in the discussion in section 5.1. For cases with re-
duced variance and not too large a shift in mean, results of pdf-
N very closely resemble MRE-M. Apparently, the information
contained in the mean and variance constraints is the same in-
formation contained in a normal distribution. This is related to
the fact that the maximal entropy distribution for a given mean
and variance is a normal distribution; see Appendix A. In gen-
eral, there is a duality between sufficient statistics and the con-
straints of a maximum entropy distribution; see Jaynes (2003),
page 520.

If forecast information is given as constraints on conditional
tercile probabilities (TC), there are infinitely many adjustments
possible to satisfy those constraints. However, the adjustment
that minimizes relative entropy is a block adjustment. Gen-
erally, when information about a distribution is given in form
of constraints on quantile probabilities, the maximum entropy
distribution is piecewise uniform. This also holds for the dis-
tribution of probabilities over the discrete scenarios. For the
case of tercile constraints, the objective of minimum squared
deviations of the Croley method has its minimum in the same
location, leading to identical results as MRE.

It might seem strange that results for the MRE-update de-
pend on how the forecast information is presented. Forecast TC
and M give completely different results. However, consider-
ing the tercile probabilities (TC) and moments (M) as different
ways to present the same information implies that some under-
lying information is present, i.e. that we know more about the
information than what is presented. In this example forecast

M contains the extra knowledge that the forecast distribution is
normal. Taking the information-theoretical viewpoint, forecast
TC and M contain different information. If we do not know
anything but these forecasts, we have to take them literally and
thus we obtain different results for both forecasts. Forecasts of
type TC appear to be less informative than forecasts of type M;
see Table 4. Moreover, forecast TC does not seem an appro-
priate way to represent a smooth forecast distribution. Deriv-
ing a mean and standard deviation (forecast M) as given vari-
ables from tercile probabilities (forecast TC), as was done in
Stedinger and Kim (2010), implicitly introduces the assump-
tion that the forecast distribution is normal and hence results in
a smooth update. In an ideal situation, the forecast information
is already in a format that does not need additional assumptions
to be interpreted (Weijs et al., 2010a).

4.4. MRE compared to Croley

The MRE-M and CP-M methods both use a forecast of type
M. Although the same information is used by both methods,
they lead to different results. Logically, because it is the objec-
tive, the MRE-update results in a smaller divergence or relative
entropy than CP-M (Table 4). This means that the MRE-update
retains more of the climatic uncertainty. However, the Cro-
ley parametric method uses the same constraints as the MRE-
update, so the amount of forecast information used is the same.
Table 3 shows that both results are equally consistent with the
forecast, because mean and standard deviation are exactly re-
produced in both cases.

Consequently, from an information-theoretical point of view,
we can say that the Croley method makes an unnecessary ex-
tra deviation from climatology, not motivated by the forecast.
The higher relative entropy means uncertainty is reduced by ar-
tificially introduced information. The minimum squared devia-
tion objective therefore results in an over-confident adjustment.
This is also demonstrated by the fact that several probabilities
are set to zero, without having information that explicitly rules
out those scenarios as representing possible future conditions.

4.5. MRE compared to pdf-ratio, using equivalent forecasts M
and N

Because the maximum entropy distribution for given mean
and variance is a normal distribution, forecast M implies a nor-
mal forecast distribution. When a forecast used in the pdf-ratio
method is a normal distribution (forecast type N) with mean and
standard deviation (of forecast type M) as parameters, forecast
N and M are equivalent and add the same information. There-
fore, the differences in the resulting weights for (pdf-N) and
(MRE-M) are purely due to the methods.

MRE-M gives results similar to the pdf-ratio method (pdf-
N) for adjustments that are not too large and where the ensem-
ble is sufficiently dense; see fig. 1. In cases where the adjust-
ment is large and the sample values do not cover the entire fore-
cast distribution range, the approximation of the forecast distri-
bution needs probability mass in the range outside the sample
values. In the pdf-ratio method, this results in some “missing”
probability.
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Figure 2: Resulting ensemble member probabilities for µ1=3, σ1=0.5 and resulting empirical cumulative distribution. The decreased variance is accounted for by
giving less weight to the outer ensemble members.
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Figure 3: Resulting ensemble member probabilities for µ1=4, σ1=0.5 and resulting empirical cumulative distribution. The Croley parametric method (CP-M) gives
zero weight to the ensemble members below a value of 3, while the MRE-update and pdf-ratio methods give small but non-zero weights.
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Figure 4: Resulting ensemble member probabilities for µ1=3, σ1=1.2 and resulting empirical cumulative distribution. The inflated variance is accounted for by
giving more weight to the outer ensemble members.
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Figure 5: Resulting ensemble member probabilities for µ1=4, σ1=1.2 and resulting empirical cumulative distribution.
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Figure 6: Resulting weights (left) and CDF (right) when an extra constraint on skewness is imposed in the MRE-update. The result is shown for µ1 = 3 , σ1 = 0.5
and a target skewness of 2.

This can clearly be seen in the Fig. 5 (right), where the
value of the target CDF at the highest sample value is still far
from one. The pdf-ratio method (pdf-N) needs a large normal-
ization factor in these cases. All ensemble member probabilities
are multiplied by the same factor, to make them sum to one.
This results in deviations from the target mean and variance,
because the missing probability outside the sample range is di-
vided equally over the traces. Although this leads to smooth
adjustments, it also results in weighted ensembles that do not
conserve the mean and variance of the new information, possi-
bly biasing results of planning and risk analysis.

The (MRE-M) method distributes the missing probability
to the sample values in a way to match exactly the target mean
and variance, as long as the constraints do not become over-
restrictive. Especially when a high adjustment in the mean and
a small variance are required, the problem might become in-
feasible (the “n.a.” entries in the tables). An infeasible MRE-
update indicates that the new information is conflicting with
the historical ensemble and use of a weighted ensemble may be
questionable.

When the MRE-update is forced to match the resulting mo-
ments of the weighted ensemble resulting from pdf-N, the re-
sults of MRE-M and pdf-N are identical.

Conversely, when pdf-N is forced to exactly match the tar-
get moments from the forecast, it will yield a result identical to
MRE-M with the original target moments. In Appendix A, it is
shown analytically why the methods yield the same results. It
is also shown that the Croley parametric method (CP-M) results
in a second order approximation of the MRE-result.

4.6. Results for skew and multivariate constraints

The following results are meant to show the flexibility of
the MRE-update to incorporate more information by additional
constraints. Fig. 6 shows for example how an extra constraint
on skewness results in a different update that represents skew.
For the multivariate MRE-update, the top plot in Fig. 7 shows
the results for the MRE-update exactly matching mean and vari-
ance of both variables, but without explicitly preserving the ini-
tial cross-correlation by including it as a constraint. The mid-
dle plot shows the MRE-update result when a constraint en-
forced the preservation of the initial cross-correlation of 0.8.
The bottom plot in Fig. 7 shows the resulting weights when
the MRE-update is asked to exactly match the means, vari-
ances and cross correlation resulting from the pdf-ratio method
with a bivariate normal distribution (σ1x = 1.145 σ1y = 1.292
ρ1 = 0.751). Also for the multivariate case, it turned out that
the MRE-update using means, variances, and cross-correlation
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is equivalent to the pdf-ratio method with a bivariate normal
distribution, when its moments and cross-correlation would be
forced to exactly match the targets.

5. Discussion

5.1. An information-theoretical view

The previous results showed that the pdf-ratio method does
not exactly match the target moments in the case of large shifts.
Stedinger and Kim (2010) discussed whether it is desirable to
exactly match target moments, arguing that if the moments in
the forecast can not be trusted completely, it might be better to
not exactly match them. The question can then be asked what
justifies that deviation and in what way the resulting moments
should deviate from the forecast.

In the information-theoretical framework, the information
is the reduction in uncertainty. A requirement of the distribu-
tion of updated weights is therefore that the uncertainty is max-
imum, given a quantity of information that is added. If less
information is taken from the forecast because it is not com-
pletely trusted, the maximum permissible reduction in uncer-
tainty will also be less, and vice versa. This can be visual-
ized as a tradeoff between forecast information lost and uncer-
tainty lost. Fig. 8 shows the tradeoff as a Pareto front. Points
below the Pareto front are not attainable, because the change
in weights to include a given portion of the forecast informa-
tion inevitably leads to a given minimum loss of uncertainty.
Solutions above the Pareto front, however, lose more uncer-
tainty than justified by the information. In other words, these
weighted ensembles incorporate a gain in information that did
not come from the forecast. The solutions on the Pareto front
can also be useful when the given ensemble cannot represent
the new information in the forecast; e.g. the n.a. entries in Ta-
bles 2,3 and 4. In that case some forecast information must be
lost in order to find a solution, which should be sought on the
Pareto front.

From Fig. 8, it can be seen that the climatic distribution,
and the MRE-update both lie on the Pareto front. In contrast,
the Croley parametric method is not Pareto optimal according
to these criteria. Although it exactly matches the forecast and
loses no information from the forecast, it does so with more
reduction in uncertainty than strictly needed. Also the pdf-ratio
method does not reach the Pareto front, although is comes close
in many cases. It is conjectured that when the forecast is seen
as two separate pieces of information, one about the mean and
one about the variance, the pdf-ratio solution would lie on the
Pareto front in a 3 dimensional space, where lost information
with respect to mean and variance would be plotted on separate
axes.

While all solutions on the Pareto front indicate rational sets
of weights given varying degrees of trust in the forecast, the
MRE-update lies on the unique point that completely trusts the
forecast. The onus is therefore on the forecaster to reflect both
the information and the uncertainty about the variable under
consideration in that forecast. The MRE-update reflects exactly
this information and uncertainty in the weighted ensemble, and
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Figure 7: Results for the bivariate update of a sample, used in Stedinger and
Kim (2010), with initial means

{
µ0x, µ0y

}
= {3, 3} and initial standard deviations{

σ0x, σ0y
}
= {1, 1}, the new means and standard deviations are

{
µ1x, µ1y

}
=

{3, 3} and
{
σ1x, σ1y

}
= {1.5, 1.5}. The area of the circles represent the weights.

The above two graphs result from the MRE-update and match these targets
exactly. The middle plot maintains the original cross-correlation ρ0 = 0.8,
while the upper plot results in a cross-correlation of 0.934. The bottom plot
shows the result of the MRE-update for the target moments that are the resulting
moments of the pdf-ratio method with bivariate normal target. The resulting
weights are identical to the pdf-ratio solution.
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does not further increase or decrease the uncertainty. A dis-
cussion on why forecasters should communicate carefully cho-
sen summary statistics or preferably their entire probability es-
timates can be found in Weijs et al. (2010a).

While we realize that this analysis can be perceived as bi-
ased because the different weighting methods are evaluated us-
ing the same information-theoretical principles as are used as
the basis for the MRE-update, we think it is useful as a further
illustration of the information-theoretical perspective, which is
the theoretical basis for the MRE-update.

5.2. About the choice of the weighting methods in practice

In general, weighting is most useful when an ensemble is
available that cannot easily be regenerated, and a mild adjust-
ment is needed to reflect new information. For stronger ad-
justments, a weighted ensemble cannot represent the new state
of knowledge anymore and resampling or stochastic time se-
ries generation would be better approaches than weighting. For
weighting, the following considerations are important when choos-
ing the method.

When forecast TC is received, additional information should
be gathered about the moments, support set, or distribution types
to assume. If really no other information is available, the MRE-
update can be used directly with the forecast, resulting in block
adjustment. When information about moments or other ap-
propriately summarized statistics of the forecast distribution is
available, the MRE-update is the most suitable method, as it ex-

actly uses the available information and does not make implicit
assumptions.

The use of the optimization based adjustments proposed by
Croley (1996; 1997; 2003) are a second order approximation of
the MRE-update, but can introduce a reduction of uncertainty
that is not supported by the forecast information. The MRE
objective function should be preferred over the quadratic objec-
tive on information-theoretical grounds. For implementing the
MRE-update in places where the Croley method is applied, it
suffices to replace the quadratic objective function by relative
entropy. This also resolves the problem of many probabilities
set to zero.

Because the pdf-ratio method does not need to solve an opti-
mization problem, it is easier to apply and faster then the MRE-
update. Another advantage of the pdf-ratio method is that it
is relatively easy to include a large amount of information, in-
cluded in estimated climatic and forecast distributions. In many
practical cases, the forecast distribution lies well within the cli-
matic distribution, and large normalization is not required in the
pdf-ratio method. In those cases, the pdf-ratio method provides
a fast and correct adjustment, given that no unfounded assump-
tions are introduced in the estimation of climatic and forecast
distributions. When an extra optimization is done to exactly
match the target moments, it can be used as a fast solver for the
MRE-update.

The MRE-update uses the full information from the fore-
cast, provided the information contained in the forecast distri-
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bution can be converted into mathematical constraints for the
optimization problem. In principle the MRE-update offers pos-
sibilities to include constraints on for example skew, variance
of the log-transformed variable, other quantiles or correlations
in a multivariate setting. Many known parametric distributions
are in fact maximum entropy distributions for combinations of
these types of constraints; see e.g. Singh and Singh (1985);
Singh and Guo (1995). This offers the possibility to reformu-
late pdf-ratio problems as MRE-update problems.

Conversely, it allows fast parametric solution of the MRE-
update by using the pdf-ratio method which is forced to exactly
match the constraints. This offers an opportunity to signifi-
cantly reduce the dimensionality of the optimization problem
for the MRE-update in case of a mean-variance forecast. In-
stead of seeking values for all individual weights, it suffices to
optimize the 2 parameters of the target normal distribution and
the normalization factor. Appendix A shows that this amounts
to finding the 3 Lagrange multipliers in the analytical solution
to the MRE-update.

When we have more information available about the fore-
cast distribution than only mean and variance, like the complete
time series of the predictors and responses, it is possible to es-
timate a joint pdf for them. Bivariate kernel density estimators,
as applied by Sharma (2000), would then be a good way to
derive continuous climatic and target distributions for the pdf-
ratio method. Once one has the joint pdf, the marginal climatic
and conditional forecast pdfs can be derived from it and used
in the pdf-ratio method. If the conditional distribution from the
kernel density estimate can be summarized in a number of con-
straints, it can also be used in the MRE-update.

6. Conclusions and recommendations

In this paper, we introduced the minimum relative entropy
update (MRE-update) as an approach to update ensemble mem-
ber probabilities. Our method is based on the minimization
of relative entropy, with forecast information imposed as con-
straints. The main advantage of the method is that it optimally
combines available climatic and forecast information, without
introducing extra assumptions. Results were compared with
three existing methods to make probability-adjustments to en-
sembles, based on different type of forecast information. We
considered forecast information given as conditional tercile prob-
abilities, a normal distribution, and a given mean and variance.
Analysis of the results from an information-theoretical view-
point explicitly revealed the differences in information contained
in these different types of forecasts and the way existing meth-
ods interpret them.

The block adjustment that results from the Croley nonpara-
metric method may be undesirable due to the discontinuities
in weights at the arbitrarily selected quantiles. However, the
result is in line with the literal information-theoretical interpre-
tation of the probability triplets. When interpreting the fore-
casts in any other way, information is added. It is important to
be aware of this and think carefully about what information is
added. Conversely, forecasts that require this extra interpreta-
tion are in fact incomplete, leaving too much interpretation to

the user of the forecasts. Ideally, seasonal forecasts should pro-
vide pieces of information that are a good summary of the prob-
ability estimate. For smooth distributions, a mean and variance
are more appropriate than probability triplets. See also Weijs
et al. (2010a) for more discussion on how forecasts should be
presented to be most informative.

The information contained in the mean-variance forecast
and in a normal forecast distribution is the same. The MRE-
update results in a weighted ensemble that exactly incorporates
this information. The pdf-ratio method diverges from the fore-
cast information by not exactly matching the given moments.
From an information-theoretical perspective, it is unclear how
to justify this divergence. A multi-objective optimization was
performed to find a Pareto front that represents the tradeoff be-
tween lost information from the forecast and lost initial un-
certainty. An analysis of the methods in this objective-space
revealed that in some cases, the pdf-ratio method reduces un-
certainty more than is justified by the partial information taken
from the forecast. This results in a solution that is not Pareto-
optimal. Also the Croley parametric method lies above the
Pareto front. It uses the full information from the forecast,
but reduces uncertainty more than information permits. One of
the symptoms of this false certainty are the ensemble members
which get weight zero, although nothing in the forecast rules
them out. By definition of the chosen objectives, the MRE-
update results in a Pareto-optimal solution in which the com-
plete information from the forecast is used and no other infor-
mation is added to the weighted ensemble.

The pdf-ratio method has the advantage that it is fast and
does not require an optimization search for all individual weights.
An adaptation of the pdf-ratio method that includes a search
for parameters that result in an exact match of the target mo-
ments is possible. This is equivalent to finding the values of the
Lagrange multipliers for the analytical solution of the MRE-
update (see Appendix A) and results in an optimization prob-
lem that is much easier to solve. In this paper, the equivalence
for the univariate and bivariate normal distributions was demon-
strated, but it is anticipated that similar results can be found for
other distributions for which sufficient statistics exist.

The MRE-update can incorporate information that can be
formulated in terms of constraints. This paper showed also how
skew can be included. In addition, a multivariate example was
given in which information in both means and variances was
matched while also preserving initial cross-correlation. Gener-
ation weighted ensembles using information from non-parametric
forecast pdfs, such for example obtained from kernel density
estimation, remains an open issue.

6.1. Recommendations for future work
While this paper introduced information theory as a tool in

the problem of generating weighted ensemble forecasts and dis-
cussed the theoretical benefits of this approach, an application
to a real-world test case would give more insight in the practical
value. This value could be established by investigating verifi-
cation statistics for the weighted ensembles obtained from the
different methods. These verification statistics would need to
compare the weighted ensemble forecast, consisting of weights
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and time series (or time series of spatial fields) with observa-
tions. Because the design of such an experiment is complex
and involves a number of choices that need to be discussed, it
is beyond the scope of the present paper.

For future experiments to test the practical difference be-
tween the approaches, the following issues should be consid-
ered. Firstly, when the weighted ensembles are compared with
observations, the quality of the original forecast has an impor-
tant impact on the verification score. It may be difficult to sepa-
rate the contribution to the skill of the weighted ensemble of the
forecast that goes in on the one hand, and the weighting method
on the other. Errors in the weighting method might compen-
sate errors in the forecast. It could for example happen that
the forecasts are over-dispersive, and a weighting method that
is theoretically adding too much information by being under-
dispersive compensates this and would score best in a verifica-
tion. Secondly, the weighted ensembles themselves are difficult
to evaluate, and need to be translated back to probability dis-
tributions to evaluate them with verification scores. This trans-
lation involves some subjective choices on how to interpret the
ensemble. Moreover, the forecast only contains information on
the coarse scale, while the fine scale structure of the ensem-
ble members is only intended to provide a realistic stochastic
structure, but not to provide a correct realization that should be
directly compared with measurements. Thirdly, Because en-
semble weighting methods are mainly applicable to situations
of relatively weak forecast skill, where the full range of his-
torical time series is still important, the skill scores will have
a relatively large variation between different instances. To re-
ally demonstrate the advantage in practice, large time series of
forecasts and observations are therefore needed to conclusively
show differences in performance between the weighting meth-
ods.

The Matlab source codes for the MRE-update, as well as
implementations of the other methods compared in this paper,
are available from the website www.hydroinfotheory.net/

mre.
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Appendix A. Equivalence between MRE-update and pdf-
ratio solutions for the normal case

We try to solve

min
q1...qn
{

n∑
i=1

qi log(
qi

pi
)}

subject to the constraints

n∑
i=1

qi = 1

qi ≥ 0
n∑

i=1

qi xi = µ1

n∑
i=1

qi(xi − µ1)2 = σ2
1

this leads to the Lagrangeans ∀i

∂

∂qi


n∑

i=1
qi log(

qi
pi

) + λ1

 n∑
i=1

qi − 1

 + λ2
 n∑
i=1

qi
(
xi − µ1

)2 − σ2
1

 + λ3
 n∑
i=1

qi xi − µ1


 = 0

1 + log qi − log pi + λ1 + λ2 (xi − µ1)2 + λ3 xi = 0

log pi − 1 − λ1 − λ2 (xi − µ1)2 − λ3 xi = log qi

where λ1, λ2 and λ3 are the Lagrange multipliers corresprond-
ing to the constraints for the sum, the mean and the variance,
respectively. The constraint for nonnegativity is never binding
and is left out of the Lagrangean. This leads to a solution of the
form

qi = pie−1−λ1−λ2(xi−µ1)2−λ3 xi (A.1)

The Langrange multiplier can subsequently be solved numeri-
cally to match the constraints.

The result of the pdf-ratio method for normal initial and tar-
get distributions has the same form as equation A.1, but not
necessarily the same values for λ1, λ2 and λ3, because the so-
lution is not forced to satisfy the constraints. When the param-
eters of the target normal distribution that is used as an input
for the pdf-ratio method are modified so that the moments of
the resultant weighted ensembles match µ1 and σ1 exactly, the
result of the pdf-ratio method matches exactly the result of the
MRE-update. The search for the two parameters of the nor-
mal distribution and the normalization constant are exactly the
three degrees of freedom that are required to find λ1, λ2 and λ3
numerically. An analytical solution is not possible because the
constants depend on all individual xi.

Similarly, for the Croley parametric method with the same
constraints, and objective function

min
q1...qn

 n∑
i=1

(qi − pi)2


it can be found that the solution is of the form

∂

∂qi


n∑

i=1

(
qi − pi

)2
+ λ1

 n∑
i=1

qi − 1

 + λ2
 n∑
i=1

qi
(
xi − µ1

)2 − σ2
1

 + λ3
 n∑
i=1

qi xi − µ1

 + λiqi

 = 0

2qi − 2pi + λ1 + λ2
(
xi − µ1

)2
+ λ3 xi + λi = 0

2pi − λ1 − λ2
(
xi − µ1

)2 − λ3 xi + λi = 2qi

where λi are the extra Lagrange multipliers which ensure that
all qi are nonnegative. The solution to the Croley method are
weights that are a parabolic function of the values xi. The
quadratic objective function thus leads to a solution that is a
second order (quadratic polynomial) approximation of the so-
lution found by the MRE-update. ‘
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Appendix B. Supplementary material

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.
jhydrol.2013.06.033 .
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