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Abstract. We present a novel, fully-discriminative method for curvi-
linear structure segmentation that simultaneously learns a classifier and
the features it relies on. Our approach requires almost no parameter
tuning and, in the case of 2D images, removes the requirement for hand-
designed features, thus freeing the practitioner from the time-consuming
tasks of parameter and feature selection. Our approach relies on the Gra-
dient Boosting framework to learn discriminative convolutional filters in
closed form at each stage, and can operate on raw image pixels as well
as additional data sources, such as the output of other methods like the
Optimally Oriented Flux. We will show that it outperforms state-of-the-
art curvilinear segmentation methods on both 2D images and 3D image
stacks.

1 Introduction

Linear structures, such as blood vessels, bronchial networks, or dendritic arbors
are pervasive in biological images and their modeling is critical for analysis pur-
poses. Thus, automated delineation techniques are key to exploiting the endless
streams of image data that modern imaging devices produce. Among such delin-
eation techniques, there is a whole class of approaches such as [1–3] that take as
input image segmentations in which pixels or voxels within linear structures are
labeled as one and others as zero. The better the initial segmentation, the more
effective these methods are. To generate them, most approaches compute a local
linearity measure and threshold the resulting scores. This linearity measure can
be postulated a priori [4, 5], optimized to find specific patterns [6, 7], or learned
[8–10] from training data.

In this paper, we propose a novel approach to computing linearity, which
yields better segmentations than using state-of-the-art methods such as [5, 10].
We introduce an original fully-discriminative method that relies on the Gradi-
ent Boosting framework [11, 12] to simultaneously compute optimal filters and
boosting weights at each iteration.

Our weak classifiers rely on convolutional filters whose kernels are learned
during boosting. Arguably, this could be described as learning the classifier pa-
rameters as it is often done by boosting algorithms. However, because the pa-
rameter space is so large, a standard boosting approach, such as a grid search,

? This work was supported in part by the ERC grant MicroNano.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147996727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 C. Becker, R. Rigamonti, V. Lepetit, P. Fua

Fig. 1. Raw images (top) and probability maps p(y = 1|x) (bottom) obtained with
our approach on retinal scans (left) and brightfield microscopy in 2D (center) and
3D (right)(slice cut).

would be impractical. Instead, we compute the kernels in closed form, which
allows us to handle the enormous size of the parameter space. Convolutional
Neural Networks [13] and Deep Belief Networks (DBNs) [14] also simultane-
ously learn convolutional features and classification weights. DBNs in particu-
lar do so in an unsupervised way and only use discriminative information for
fine-tuning. The latter may not be ideal since it has recently been shown that
fully-supervised versions of these approaches have a large unexploited potential
and can significantly outperform competing methods in challenging tasks [15].
However, the neural network architecture adopted in [15] requires specialized
set-up and careful design, and it is computationally expensive to train, even on
GPUs. By contrast, our approach is much less computationally demanding and
involves just few, easily-tunable parameters. The low computational burden is
particularly relevant in that it allows us to deal with 3D image stacks which, de-
spite the prominency they are gaining in the medical domain, cannot be handled
by competing algorithms such as [15] due to the high computational cost.

In the remainder of this paper, we first review briefly the standard Gradient
Boosting framework, and then introduce our approach for jointly learning the
filters our weak learners rely on and the parameters of the classifier that uses
them. Finally, we demonstrate superior performance on several very different
kinds of images that feature linear structures.
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2 Gradient Boosting

Gradient Boosting [11, 12] is a an approach to approximating a function ϕ∗ :

Rn → R by a function ϕ of the form ϕ(x) =
∑M
j=1 αj hj(x) , where the αj ∈ R

are real-valued weights, hj : Rn → R are weak learners, and x ∈ Rn is the input
vector. Gradient Boosting can be seen as a generalization of AdaBoost that can
make use of real-valued weak learners and minimize different loss functions [11].
Gradient Boosting has shown significant performance improvements in many
classification problems with respect to classic AdaBoost [16].

Given training samples {(xi, yi)}i=1,..,N , where xi ∈ Rn and yi = ϕ∗(xi), ϕ(·)
is constructed in a greedy manner, iteratively selecting weak learners and their
weights to minimize a loss function L =

∑N
i=1 L(yi, ϕ(xi)). We use the quadratic

approximation introduced in [12]. Commonly used classification loss functions
are the exponential loss L = e−yiϕ(xi) and the log loss L = log(1 + e−2yiϕ(xi)).

The weak learners hj(·) are generally either decision stumps or regression
trees [11]. Regression trees are a generalization of decision stumps and usually
yield significantly better performance [11], achieving state-of-the-art in many
classification problems [16]. Regression trees are typically learned in a greedy
manner, building them one split at a time, starting from the root [11].

3 Proposed Approach

Assume that we are given training samples {(xi, yi)}i=1...N , where xi ∈ Rn rep-
resents an image, a patch, or the output of a pre-processing filter —in practice
we use OOF [5] for 3D data— and yi ∈ {−1, 1} its label. Our goal is to simul-
taneously learn both the features and a function ϕ(x) : Rn → R based on these
features to predict the value of y corresponding to previously unseen x.

We first recall below how decision stumps and regression trees can be built to
optimize a Gradient Boosting classifier. We then describe how we learn relevant
features while growing the trees.

3.1 Growing Regression Trees

Typically, Gradient Boosting implementations search through sets of weak learn-
ers that rely on a fixed set of features, such as Haar wavelets. At each iteration
j, it selects the hj(·) that minimizes

hj(·) = argmin
h(·)

N∑
i=1

wji

(
h(xi)− rji

)2
(1)

where weight-response pairs {wji , r
j
i } are computed by differentiating L(yi, ϕ) [12].

We consider here weak learners that are regression trees based on convo-
lutions of x with a set of learned convolution kernels Kj . We write them as
hj(x) = T (θj ,Kj ,x) where θj denotes the tree parameters. Standard approaches
learn only the θj , while we also learn the kernels Kj .
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Algorithm 1 Split Learning

Input: Training samples {xi}i=1,..,N . Number P of kernels to explore.
Weights and responses {wi, ri}i=1,..,N . at boosting iteration j, as in [12].
Set W of window locations and sizes, and set L of regularization factors.

// Phase I: kernel search
1: for p = 1 to P do
2: Pick NT1 random samples from training set into T1

3: Pick random window Wcp,ap ∈W, random regularization factor λp ∈ L
4: Find kernel kp:

kp = argmin
k

∑
i∈T1

wi
(
k>Wcp,ap(xi)− ri

)2
+ λp

∑
(m,n)∈N

(
k(m) − k(n)

)2
5: end for

// Phase II: split search
6: Pick N

2
random samples from training set into T2

7: for p = 1 to P do
8: Let Wp(·) = Wcp,ap(·)
9: Find τp, η1,p, η2,p for kp through exhaustive search on T2:

τp, η1,p, η2,p = argmin
τ,η1,η2

∑
i|k>

p Wp(xi)<τ

wi (ri − η1)2 +
∑

i|k>
p Wp(xi)≥τ

wi (ri − η2)2

10: Compute split cost on T2:

εp =
∑

i|k>
p Wp(xi)<τp

wi (ri − η1,p)2 +
∑

i|k>
p Wp(xi)≥τp

wi (ri − η2,p)2

11: end for

12: return (kp, τp, η1,p, η2,p) that yields the smallest εp.

The tree learning procedure is performed one split at a time, as in [11]. A
split consists of a test function t(·) ∈ R, a threshold τ , and return values η1 and
η2. Its prediction function can be written as

s(·) =

{
η1 if t(·) < τ
η2 otherwise.

(2)

Given t(·), the optimal root split at iteration j is found by minimizing∑
i|t(xi)<τ

wji

(
rji − η1

)2
+

∑
i|t(xi)≥τ

wji

(
rji − η2

)2
, (3)

where τ , η1, and η2 are typically found through exhaustive search [11].
In our approach, we introduce a test function that operates on the results

of xi and a kernel k, namely t(xi) = k>xi. Therefore, learning a split in our
framework involves searching for a kernel k, leaf values η1 and η2, and split point
τ that minimize Eq. (3) with t(xi) = k>xi.

Since the space of all possible kernels is enormous, we perform this mini-
mization in stages. Our approach is described in Alg. 1: we first construct a set
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of kernel candidates, then for each candidate we find the optimal τ through ex-
haustive search. For a given pair of kernel k and threshold τ , the optimal values
for η1 and η2 are then simply found as the weighted average of the rji values of
the xi samples that fall on the corresponding side of the split.

This parameter selection step for η1, η2, and τ is standard [11] but the kernel
learning is not, as we consider a much more general form for the kernels k than
is usually done. We now describe this step in detail.

3.2 Learning Convolution Kernels

To make computations tractable, we restrict the kernels k to being square win-
dows within x. This remains more general than most previous methods while
reducing the dimensionality of the problem and allowing our splits to focus on
local image features.

Let us introduce an operator Wc,a(x) that returns, in vector form, the pixel
values of x within a square window centered at c with side length a. The criterion
of Eq. (1) becomes

N∑
i=1

wji

(
k>Wc,a(xi)− rji

)2
, (4)

where k is now restricted to a square window parametrized by c and a. Given c
and a, we can compute the optimal k in closed form by solving the least-squares
problem of Eq. (4). To avoid overfitting, we introduce two refinements:

1. Regularization. We favor smooth kernels by introducing a regularization
term into the criterion of Eq. (4), which becomes:∑

i

wji

(
k>Wc,a(xi)− rji

)2
+ λ

∑
(m,n)∈N

(
k(m) − k(n)

)2
, (5)

where (m,n) ∈ N are pairs of indexes that correspond to neighboring pixels
and k(m) is the mth pixel of kernel k. The second term in Eq. (5) imposes a
smooth kernel, controlled by λ ≥ 0. Note that Eq. (5) can be minimized in
closed form using least squares.

2. Splitting the training set. Filters and splits are learned on a subset of
random samples from the training set, namely T1 and T2, as shown in Alg. 1.

As described in Alg. 1, we repeat this operation for many randomly selected
values of Wc,a(x), λ, T1, and T2 to select the split that returns the smallest
value for the criterion of Eq. (3). The recursive splitting procedure of Alg. 1
then produces trees that are used as weak learners in Gradient Boosting.

Note that with the exponential loss we have rji ∈ {−1, 1} [12]. In this case
and when no regularization is imposed (λ = 0), the k that minimizes Eq. (4)
is identical to the solution of LDA [11] up to a scale factor. However, this is a
particular case of our formulation, which instead allows for smoothing as well as
more outlier-robust losses such as the log loss. Smoothing yields higher general-
ization, while outlier-robust losses are essential to deal with noisy annotations.
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4 Experiments and Results

We evaluated our approach1 on three curvilinear structure delineation tasks, con-
sidering both a 2D dataset composed by retinal scans, and a set of 3D brightfield
images. The first one, called DRIVE [18], is a publicly-available set of 40 RGB
retinal scans and the aim is to segment blood vessels for automated diagnosis
purposes. Since we have two different ground truth sets from two different oph-
thalmologists, it is possible to estimate the score a human expert achieves in
the segmentation task. We preserved the original splitting between train and
test images. The second dataset is composed by four brightfield micrographs
of dyed neurons. We used both the original 3D image stacks and their 2D
minimum-intensity projections. The projected images are particularly complex
in that both staining and projection processes introduce significant structured
and unstructured noise. Also, the images are quite small compared with, for ex-
ample, those of [10, 19], although the ground truth is very accurate in our case.
These factors make this task particularly challenging, and therefore a good test.
Furthermore, the scarcity of training samples makes learning algorithms prone
to overfitting. For the 2D experiments we used two images for training and the
other two for testing. For 3D we used two fully-labeled large stacks, one of size
620× 1300× 135 for training and another one of size 768× 1436× 77 for testing.

We compare our method against the Optimally Oriented Flux (OOF) filter [5]
and [10]. [5] is a handcrafted filter, widely acknowledged as being very good for
delineating tubular structures, while [10] is a hybrid approach that complements
hand-crafted features with features learned in an unsupervised fashion, which
outperforms [5] on both 2D datasets. The parameters of the baselines were tuned
to achieve their best performance, in order to provide a fair comparison. For [10]
we tried Random Forests [11] and Boosted Trees, choosing the one that yields
the highest performance (Random Forests for the DRIVE dataset, Boosted Trees
for the brightfield images).

In all our experiments we set NT1 = 10000 and use the log loss to increase
robustness to outliers [11], with M = 2000, P = 100 and maximum kernel
size 19 × 19 × (19) 2D/(3D). We used two-level trees, α = 0.1 [11], and L =
{500, 1000, 1500, 2000} for all experiments. The only parameter varied between
datasets is patch size, chosen according to the scale of the structures of interest.

Learning supervised filters in 3D is computationally intensive, so we restricted
the search to symmetric separable filters, learning one component at a time with
Eq. (5). This reduces training and testing time considerably. Rotation invariance
in the 3D case is also a major challenge, as learning it directly from the data
would require impractically many training samples. One option to solve this
issue is to introduce artificial rotations of the data, but this would imply an
extremely high computational burden. We therefore employed the OOF score as
an additional channel, given that it incorporates the invariance we seek. This
is conceptually similar to what was done in [10], where unsupervised filters are

1 See [17] for a more detailed description of our approach and parameters. Source code
available at http://cvlab.epfl.ch.
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Fig. 2. (a-c) Precision-recall curves for pixel classification, obtained for different
thresholds on p(y = 1|x). Our approach outperforms all baselines in the 2D and 3D
datasets, without the need for parameter tuning.

complemented with additional features. To reduce computational complexity
further, we use stumps instead of trees for this task.

To compute the probability of each pixel in the input image of being part of
a linear structure p(y = 1|x), we take the sample vectors x to be image patches
centered on individual pixels. Once our classifier is trained, we can compute
p(y = 1|x) = (1 + e-2ϕ(x))-1 [11]. Fig. 1 depicts some of the resulting probability
maps for each dataset. Total training time was 4 hours for the 2D datasets and
6 hours for the 3D one on a 32-core 64-bit architecture.

Fig. 2 shows that our approach not only outperforms the baselines, but also
outperforms human performance on DRIVE in terms of pixel error. It also yields
high performance on 2D and 3D brightfield images, in spite of the inherent
difficulty of this data.

To assess the importance of the supervised filter learning procedure we used
the full filter banks of [10, 19], composed by 121 filters, in the context of our
architecture. This was done by using the pre-computed filters as sub-patches
in random positions, and then performing the usual procedure of Alg. 1. The
resulting curves are labeled “Our approach with filters from [10]”. The gap be-
tween this curve and the one for our approach shows that the supervised filter
learning component of our method is largely responsible for its success.

5 Conclusion

We presented a new approach for curvilinear structure segmentation in 2D and
3D images, which automatically learns features and the classifier that uses them
simultaneously. Our method outperforms current state-of-the-art curvilinear seg-
mentation techniques, requiring almost no parameter tuning, relieving the prac-
titioner from the time-consuming tasks of parameter and feature selection.

In future work, we will endeavor to extend our approach to textured features
such as organelles in EM imagery.
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