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ABSTRACT   

With the rising need for microfabricated chip-scale atomic clocks to enable high precision timekeeping in portable 
applications, there has been active interest in developing miniature (<few cm3), chip-scale alkali vapor lamps, since 
vapor plasma discharge sources are currently the standard for optical pumping in double-resonance clocks. We reported 
in 2012 a first microfabricated chip-scale Rubidium dielectric barrier discharge lamp. The device’s preliminary results 
indicated its high potential for optical pumping applications and wafer-scale batch fabrication. The chip-scale plasma 
light sources were observed to be robust with no obvious performance change after thousands of plasma ignitions, and 
with no electrode erosion from plasma discharges since the electrodes are external. However, as atomic clocks have strict 
lamp performance requirements including less than 0.1% sub-second optical power fluctuations, power consumption less 
than 20 mW and a device lifetime of at least several years, it is important to understand the long-term reliability of these 
Rb planar mini-lamps, and identify the operating conditions where these devices can be most reliable and stable. In this 
paper, we report on the reliability of such microfabricated lamps including a continuous several month run of the lamp 
where the optical power, electrical power consumption and temperature stability were continuously monitored. We also 
report on the effects of temperature, rf-power and the lamp-drive parasitics on the optical power stability and discuss 
steps that could be taken to further improve the device’s performance and reliability.   
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1. INTRODUCTION  
Rubidium discharge lamps have been widely used for developing compact (100-1000 cm3) double-resonance atomic 
clocks, where they are used for optically pumping the Rb atoms in a reference cell for high precision time keeping (clock 
uncertainty <10-12) through microwave interrogation techniques. There has recently been a lot of interest in developing 
miniature (<few cm3) clocks, to improve the performance of highly portable applications such as GPS receivers, but the 
predominantly available inductively-coupled glass-blown Rb discharge lamps could not be scaled down for use here, due 
to their high-power consumption (several watts) and non-planar high-volume geometry. Laser diodes (VCSELs) were 
used instead as they are compact and power efficient but they have several undesirable characteristics including a strong 
temperature dependence of the output wavelength, and ageing effects. A planar mm-scale Rb light source might be more 
suitable for the desired miniature-scale clock as they would extend the characteristic advantages of a Rb discharge lamp 
(such as intrinsically correct light wavelengths of the Rb D1/D2 lines required for optical pumping and very low-
frequency drifts with time), and avoid the limitations of a VCSEL. With our partners in a Swiss consortium developing 
chip-scale atomic clocks, we have recently reported on a chip-scale planar microfabricated capacitively coupled Rb 
dielectric barrier discharge (DBD) lamp prototype3. This development proved the feasibility of low-power mm3 Rb DBD 
lamps and these light sources were further optimized by changing the electrode geometry and buffer gas pressure4, to 
achieve several μW of optical power on the desired Rb D line (minimum power required for optical pumping) with 
higher power efficiency. However, the microfabricated Rb light source can only be used for atomic clocks or 
magnetometers if it can function reliably and with high stability for at least several years. Also, the long-term reliability 
studies of a microfabricated Rb plasma light source have never been previously reported in literature. Hence, the long-
term performance and reliability aspects of the microfabricated Rb DBD lamp were investigated and the operating 
conditions that can maximize the stability and lifetime of the light source are reported here in this paper. 
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3.2 Effect of plasma discharges on the Pyrex walls 

Figure 6a shows a picture of the Rb lamp-cell after the 6-month lifetime test showing the mildly brownish layer formed 
on the inner Pyrex wall. This is most probably due to the Rb atoms diffused into the wall over time (similar to the 
observations reported by other groups8). This layer causes increased Rb self-absorption leading to Doppler broadening of 
the emitted Rb D lines and also overall reduced transmission of the D line power15. However, as the Rb lamp is intended 
to be operated at low power (10 µW Rb D output), this would most probably not be a limiting factor for its use in an 
atomic clock application (as seen from Figure 5, the optical power emitted after 6 months is still in the same range as the 
initially set value), but a slight degradation in the clock performance can be expected due to the possible Rb D line 
Doppler broadening.  

Placing electrodes external to the discharge gap (electrodeless) avoids a major lifetime-limiting problem of electrode 
erosion from plasma discharges. However, the inner dielectric walls are in contact with the discharges and hence get 
slightly eroded with time. The erosion rate should primarily depend on the input rf power and the drive frequency. When 
the electron oscillation amplitude is significantly smaller than the discharge gap length (fr>10 MHz for most Rb cells 
here), most of the discharges are contained within the discharge gap with minimal DBDs occurring on the dielectric 
surface. For lower drive frequencies or high input power, the wall erosion will be much higher due to the significant 
amount of surface discharges leading to wall erosion. Separate set of experiments were not performed to study this 
phenomenon as all Rb cells were tested at several frequencies and power levels. However, some fundamental visual 
observations have been made and an example picture of a Rb lamp-cell photographed using an optical microscope with 
focus on the inner dielectric wall after several months of operation is reported here in Figure 6b. From visual 
observations, some etching of the dielectric layers was observed where dark shallow spots that would reduce the output 
transmission are seen. The dark spots are most probably high concentrations of diffused Rb originating into the glass 
wall. The intensity of the spots were higher with a higher presence of liquid Rb in the cells, especially when the light 
source was operated for hundreds of hours (not necessarily continuously) at the drive frequency less than ~8 MHz. This 
is because of the higher number of electrons bombarding the liquid Rb present on the dielectric wall at lower drive 
frequencies and this leads to an increased presence of Rb vapor atoms with high energy eventually diffusing into the 
nearby dielectric walls. When the light source was predominantly operated at a higher frequency (such as in the lifetime 
test), a Rb thin film was formed rather than dark spots with no visually observable Pyrex erosion. 

4. CONCLUSIONS 
Reliability aspects of microfabricated Rb DBD light sources were investigated and reported. The light source emitted in 
the relevant optical power range required for low-power optical pumping in atomic clocks and it was found to operate 
without any functional problems for at least six months, emitting a stable 100 µW of total optical power at 100 °C 
(corresponds to 6 µW of Rb D2 line power). The light source was fully functional after the test indicating that it has high 
potential to operate without significant degradation for several years. A brownish thin film layer is formed on the inner 
Pyrex wall after prolonged operation which would possibly result in a slight degradation in the optical pumping 
performance with time. This could probably be reduced by changing to a better-suited glass substrate, like the SCHOTT 
8436 glass type. Surface discharges due to condensed Rb droplets on the inner dielectric walls and microdischarges 
occurring over the dielectric surface increase optical instability and the rates of erosion of the dielectric surface and Rb 
diffusion. Hence, to significantly reduce these effects, the cell p.d and drive frequency values have to be chosen such that 
the electron oscillation amplitude is lower than the discharge gap length. The microfabricated plasma light sources are 
thus expected to operate with high stability for several years, enabling a new class of very compact atomic clocks and 
quantum sensors. 
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