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We recently showed that the dephasing representation (DR) provides an efficient tool for computing
ultrafast electronic spectra and that further acceleration is possible with cellularization [M. Šulc and
J. Vaníček, Mol. Phys. 110, 945 (2012)]. Here, we focus on increasing the accuracy of this approx-
imation by first implementing an exact Gaussian basis method, which benefits from the accuracy of
quantum dynamics and efficiency of classical dynamics. Starting from this exact method, the DR
is derived together with ten other methods for computing time-resolved spectra with intermediate
accuracy and efficiency. These methods include the Gaussian DR, an exact generalization of the
DR, in which trajectories are replaced by communicating frozen Gaussian basis functions evolv-
ing classically with an average Hamiltonian. The newly obtained methods are tested numerically on
time correlation functions and time-resolved stimulated emission spectra in the harmonic potential,
pyrazine S0/S1 model, and quartic oscillator. Numerical results confirm that both the Gaussian basis
method and the Gaussian DR increase the accuracy of the DR. Surprisingly, in chaotic systems the
Gaussian DR can outperform the presumably more accurate Gaussian basis method, in which the two
bases are evolved separately. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4813124]

I. INTRODUCTION

High time resolution (such as 10−15 s) is essential for
understanding many quantum dynamical processes in chem-
ical physics and has been the main challenge of ultrafast
spectroscopy for over two decades.1 In theoretical studies,
in contrast, short time scales should simplify matters by re-
quiring shorter simulations. Still, solving the time-dependent
Schrödinger equation (TDSE) is challenging even for short
times due to the exponential scaling with dimensionality.
In practice, one must seek a compromise between accu-
racy and computational efficiency, which is provided, e.g.,
by semiclassical2, 3 or time-dependent finite-basis4–6 methods.
Both approaches benefit from the ultrafast character of the dy-
namics not only thanks to a lower computational cost, but also
because their accuracy deteriorates at longer times. Among
these methods, semiclassical initial value representation7 and
methods employing Gaussian bases6, 8 were employed suc-
cessfully for “direct” dynamics in which the electronic struc-
ture is evaluated on the fly.

In this paper, we propose an, in-principle, exact Gaussian
basis method (GBM) that generalizes and increases the ac-
curacy of the dephasing representation9, 10 (DR), an efficient
semiclassical approximation particularly fitted for calcula-
tions of time-resolved electronic spectra.11, 12 In electronic
spectroscopy, the DR and closely related approximations are
known as phase averaging,13 Wigner-averaged classical limit,
or linearized semiclassical initial value representation14, 15

a)Electronic mail: jiri.vanicek@epfl.ch

(LSC-IVR,16 in the generalized sense17), and have been used
by several authors.14, 15, 18, 19

Although the original formulation of the DR pertains to
a single electronic potential energy surface, a generalization
to multiple surfaces exists.20, 21 The DR has many other ap-
plications: e.g., in inelastic neutron scattering,22 as a measure
of the dynamical importance of diabatic,23 nonadiabatic,20 or
spin-orbit couplings,21 and as a measure of the accuracy of
quantum molecular dynamics on an approximate potential en-
ergy surface.24 In the field of quantum chaos, DR success-
fully describes the local density of states and transition from
the Fermi-Golden-Rule to the Lyapunov regime of fidelity
decay.25

The most attractive feature of the DR is its efficiency,
which is, as in the forward-backward semiclassical dynam-
ics of Makri and co-workers,26 partially due to the reduc-
tion of the sign problem. Motivated by numerical compar-
isons with other semiclassical methods,11 we recently proved
analytically27 that the number of trajectories required for con-
vergence of the DR is independent of the system’s dimen-
sionality, Hamiltonian, or total evolution time. Inspired by
Heller’s28 cellular dynamics, we have further increased com-
putational efficiency of the DR by formulating a cellular DR
(CDR).12

Unlike its efficiency, the accuracy of the DR is not always
sufficient. The DR is exact in displaced harmonic oscillators13

and often accurate in chaotic systems,9, 10 but due to its per-
turbative nature, the DR breaks down, e.g., in harmonic os-
cillators with significantly different force constants. Whereas
Zambrano and Ozorio de Almeida29 proposed to correct DR
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with a prefactor, in this paper the accuracy of DR is increased
with a Gaussian basis approach.

Since any quantum dynamics can be performed in a
Gaussian basis, methods employing Gaussian bases should
also be useful for time-resolved spectroscopy. Any basis-set
approach is, in principle, exact; the only inexactness stems
from the incompleteness of the basis. As a result, the goal is
to find the smallest basis giving sufficiently converged result.
A useful way to reduce basis size is to employ time-dependent
bases that explore all dynamically important regions of phase
space. Such an approach has been explored extensively in the
Multi-Configuration Time-Dependent Hartree (MCTDH),4

Gaussian MCTDH,5, 30 and Multiple Spawning6, 31 methods.
Here, we propose two exact methods that are closely related
to these4–6, 30, 31 and several other32–34 methods employing
Gaussian bases, yet are specific to time-resolved spec-
troscopy. One of the two methods, which we call the Gaussian
basis method, uses two bases evolving classically with two
Hamiltonians corresponding to the two electronic states. The
other method employs a single basis evolved classically with
the average Hamiltonian (AH). Because of its relation to the
DR, we call it the Gaussian DR (GDR). Our results show that
both the Gaussian basis method and the Gaussian DR im-
prove the accuracy of DR in time-resolved stimulated emis-
sion (TRSE) spectra calculations in a harmonic potential,
pyrazine S0/S1 model, and chaotic quartic oscillator.

Moreover, we show that the DR emerges naturally from
the exact Gaussian basis method by a sequence of three ap-
proximations: propagating the basis with the average Hamil-
tonian (which gives the Gaussian DR), using independent
Gaussians (IGs), and assuming local approximation (LA) for
the potential. Since the three approximations may be taken in
arbitrary order and the local approximation relaxed to a local
harmonic approximation (LHA), we derive ten intermediate
approximations, potentially useful for future applications. We
observe a remarkable property that using the average Hamil-
tonian for propagating the basis, which is seemingly an ap-
proximation, can sometimes outperform the original Gaussian
basis method. This occurs particularly in chaotic systems and
parallels a property of the semiclassical DR.

The rest of this paper is organized as follows: Sec. II
describes the central theoretical concepts. Section III uses
methods from Sec. II to compute time correlation functions
and time-resolved stimulated emission spectra, and Sec. IV
provides conclusions. An essential part of the paper is
Appendix B describing an efficient numerical implementation
of the methods from Sec. II.

II. THEORY

A. Time-resolved stimulated emission: Spectrum,
time correlation function, and dephasing
representation

To be specific, we restrict the discussion to TRSE. Within
the electric dipole approximation, time-dependent perturba-
tion theory, and ultrashort pulse approximation, this spectrum
can be computed as a Fourier transform of the following cor-

relation function:11, 12

CTRSE(t, τ ) = E2
pu Epr Tr[ρ̂0(T )μ̂01Û1(−t − τ )

× μ̂10Û0(t)μ̂01Û1(τ )μ̂10]. (1)

Above, Epu and Epr are the amplitudes of the pump and probe
laser pulses, ρ̂0(T ) represents the nuclear density operator in
the electronic ground state at temperature T, μ̂ij is the transi-
tion dipole moment operator coupling electronic states i and
j, τ stands for the time delay between the pump and probe
pulses, and t is time after the probe pulse. Finally, Ûj denotes
the nuclear quantum evolution operator

Ûj (t) = exp(−iĤj t/¯) (2)

with Hamiltonian Ĥj = T̂ + V̂j , where T̂ is the kinetic en-
ergy operator and V̂j is the jth potential energy surface. In all
expressions, the hat denotes operators in the Hilbert space of
nuclei.

Within the Franck-Condon approximation and in the zero
temperature limit, correlation function (1) simplifies to

CTRSE(t, τ ) = E2
pu Epr|μ10|4f (t, τ ), (3)

where

f (t, τ ) := 〈ψ1(t, τ )|ψ0(t, τ )〉, (4)

|ψj (t, τ )〉 := Ûj (t)Û1(τ )|�init〉, (5)

is a specific time correlation function and the initial state
|�init〉 is generally the vibrational ground state of the ground
potential energy surface. The TRSE spectrum, given by35

σTRSE(ω, τ ) ∝ ω E2
pu Epr|μ10|4σ (ω, τ ),

is proportional to the wavepacket spectrum σ obtained36 via
the Fourier transform of f:

σ (ω, τ ) = Re
∫ ∞

0
dt f (t, τ ) eiωt . (6)

Correlation function (4) specific to the stimulated emis-
sion is a special case of a more general concept of fidelity
amplitude,37, 38 defined as

f (tf ) = 〈�init|ÛI(tf , 0)−1ÛII(tf , 0)|�init〉, (7)

where ÛJ (tf , 0), J = I, II, is the time evolution operator for a
time-dependent Hamiltonian ĤJ (t̃):

ÛJ (tf , 0) = T exp

[
− i

¯

∫ tf

0
dt̃ ĤJ (t̃)

]
. (8)

Correlation function (4) for TRSE is obtained from the
general fidelity amplitude (7) if the time-dependent Hamilto-
nians ĤJ (t) in Eq. (8) are

ĤI(t̃) = Ĥ1 for 0 ≤ t̃ ≤ τ + t,

ĤII(t̃) =
{

Ĥ1 for 0 ≤ t̃ ≤ τ,

Ĥ0 for τ ≤ t̃ ≤ τ + t.



034112-3 Šulc et al. J. Chem. Phys. 139, 034112 (2013)

Besides applications in electronic spectroscopy,14, 15, 18, 19 cor-
relation function (7) proved useful, e.g., in nuclear mag-
netic resonance spin echo experiments39 and theories of
quantum computation,37 decoherence,37, 38, 40 and inelastic
neutron scattering.22 The fidelity amplitude was also used
as a measure of the dynamical importance of diabatic,23

nonadiabatic,20 or spin-orbit couplings,21 and of the accuracy
of quantum molecular dynamics on an approximate potential
energy surface.24

In practical calculations, correlation function (7) is usu-
ally approximated, and DR provides an efficient semiclassical
approximation.9, 10, 13–15, 18, 19 If we denote by xt := (qt, pt) the
phase-space coordinates at time t of a point along a classical
trajectory of the average11, 13, 29 Hamiltonian (HI + HII)/2,
the DR of fidelity amplitude (7) is written as

fDR(t, τ ) = h−D

∫
dx0ρW(x0) ei�S(x0,t, τ )/¯, (9)

with

ρW(q0, p0) =
∫

ds eisT·p0/¯〈q0 − s/2|ρ̂init|q0 + s/2〉. (10)

Here, D is the number of degrees of freedom, ρW repre-
sents the Wigner transform of the initial density operator
ρ̂init = |�init〉〈�init|, and �S(x0, t, τ ) denotes the action due
to the difference �H := HII − HI along trajectory xt:

�S(x0, t, τ ) = −
∫ t+τ

0
dt̃ �V (xt̃ , t̃). (11)

For TRSE (4),

�V = VII − VI

=
{

0 for 0 ≤ t̃ ≤ τ,

V0 − V1 for τ ≤ t̃ ≤ τ + t.
(12)

Throughout this paper, time dependence is denoted by t as a
superscript or argument in parentheses. Italics subscripts label
either nuclear (i ∈ {1, . . . , D}) or electronic (i ∈ {0, 1}) de-
grees of freedom. Vectors and matrices in the D-dimensional
vector space of nuclei are denoted by italics: e.g., q or p. The
inner product and contraction of tensors in this space are de-
noted by · , as in qT · p.

The DR (9) can be derived9, 10 by linearization of
the semiclassical propagator and improves on a previous
method41 inspired by the semiclassical perturbation theory of
Miller and co-workers.42 Shi and Geva14 derived the DR with-
out invoking the semiclassical propagator—by linearizing43

the path integral quantum propagator.

B. Quantum dynamics and time correlation functions
in a classically evolving Gaussian basis

Since our main objective is to improve the accuracy of the
DR (9) by evaluating correlation function (4) without invok-
ing the semiclassical perturbation approximation, we solve
the TDSE in a classically evolving Gaussian basis. Follow-
ing Heller and Davis,44–46 the initial state and the state at time

t are expanded as

|�init〉 =
N∑

α=1

cα|φα〉, (13)

|ψ(t)〉 =
N∑

α=1

cα(t)|φα(t)〉, (14)

where the time-dependent basis {φα(t)}Nα=1 consists of nor-
malized Gaussians

|φα(t)〉 = |γα, qt
α, pt

α〉 (15)

with

〈q|γ,Q,P 〉 :=
(

det γ

πD

) 1
4

exp[iP T · (q − Q)/¯

− (q − Q)T · γ · (q − Q)/2]. (16)

The real symmetric width matrix γ in Eq. (16) is assumed
to be time-independent as in Heller’s46 frozen Gaussians ap-
proximation (FGA). The time-dependent parameters qt

α and
pt

α in Eq. (15) denote the position and momentum of the cen-
ter of the Gaussian state |φα〉, which evolves classically:

ẋα = {xα,H (xα)}. (17)

As in the MCTDH method,47 the evolution of the basis com-
pensates for its incompleteness. Above and throughout this
paper, Greek subscripts, such as α ∈ {1, . . . , N}, label basis
functions or components of vectors in the N-dimensional vec-
tor space spanned by {φα}. Vectors and matrices in this space
are denoted with the bold Roman font (e.g., c and H below);
the inner product and contraction of tensors are expressed by
juxtaposition of matrices, as in Hc.

Inserting ansatz (14) into the TDSE yields a first-order
differential equation for the expansion coefficients:

S(t) ċ(t) = −
[

i

¯
H(t) + D(t)

]
c(t), (18)

where S(t) denotes the time-dependent overlap matrix

Sαβ(t) := 〈φα(t)|φβ(t)〉 (19)

and H(t) the Hamiltonian matrix

Hαβ(t) ≡ Tαβ(t) + Vαβ(t)

= 〈φα(t)|T̂ |φβ(t)〉 + 〈φα(t)|V̂ (t)|φβ(t)〉. (20)

The non-Hermitian time-derivative matrix D, defined as

Dαβ(t) := 〈φα(t)|φ̇β(t)〉, (21)

satisfies

Ṡ(t) = D(t)† + D(t). (22)

Our “frozen” Gaussian basis functions depend on time only
via the classically evolving coordinates qt

α, pt
α:

φ̇α(q, t) = φα(q, t)
{
q̇ t

α

T · γα · (
q − qt

α

)
+ i

¯

[
ṗt

α

T · (
q − qt

α

) − pt
α

T · q̇ t
α

]}
. (23)
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Analytical formulae for S, D, T, and V matrix elements are
derived in Appendix A, while the numerical implementation
of the propagation algorithm is described in Appendix B.

Propagation equations (18) can also be obtained from
the Dirac-Frenkel variational principle applied to the ansatz
(14) with the coefficients cα(t) playing the role of varia-
tional parameters. Note, however, that the centers of indi-
vidual Gaussians propagate along classical trajectories of the
original, classical Hamiltonian. This fact does not follow
from the variational principle but is enforced as in the work
of Heller.44, 46, 48 Hence, the propagation of the Gaussians is
uncoupled,4 although–in contrast to the independent Gaus-
sian approximation of Sawada et al.32–the propagation of the
expansion coefficients does require communication between
the Gaussians [see Eq. (18)]. The Gaussian MCTDH4, 5, 30

and minimum error32, 33 methods, on the other hand, treat
both the expansion coefficients and all Gaussian parameters
variationally.49, 50 The concept of classical trajectories is mod-
ified also in the coupled coherent states,34 where individual
Gaussians evolve according to the reordered Hamiltonian, i.e.,
on a potential energy surface that is averaged over the width of
the Gaussian basis function. Finally, the propagation Eq. (18)
is a special case of the central equation of multiple spawning,6

which also considers couplings between electronic states and
allows the basis to change its size during dynamics.

Up to this point, the presentation applied to general quan-
tum dynamics. Now we describe how to use the Gaussian
basis formalism to evaluate the correlation function (4) for
TRSE. The initial state (13) must be propagated with the two
different propagators to obtain the two final states (5). In anal-
ogy to Eq. (14), these final states51 are expanded as

|ψj (t, τ )〉 =
N∑

α=1

cj,α(t, τ )|φj,α(t, τ )〉, (24)

where cj, α(0, 0) = cα and |φj, α(0, 0)〉 = |φα〉. The two bases
are propagated classically with two separate equations (17):
one for x0, α , the other for x1, α . Using Eq. (24), fidelity ampli-
tude (4) becomes

fGBM(t, τ ) = c1(t, τ )† M(t, τ ) c0(t, τ ) (25)

with

Mαβ(t, τ ) := 〈φ1,α(t, τ )|φ0,β(t, τ )〉.
Matrix elements Mαβ differ from overlaps Sj, αβ := 〈φj, α(t, τ )
|φj, β(t, τ )〉 since α and β in Mαβ denote basis functions
evolved with two different Hamiltonians. We refer to the
method specified by Eq. (25) simply as the GBM.

C. Several approximations and derivation of
dephasing representation from the Gaussian
basis method

It is often necessary to treat the propagation Eq. (18) ap-
proximately. This is especially true in ab initio applications,
where the evaluation of the potential becomes expensive. An-
other reason is the implicit matrix inversion in Eq. (18). We
first discuss approximations relevant for general quantum dy-
namics in a Gaussian basis.

1. Independent Gaussians

This approximation avoids the inversion problem as well
as matrix multiplication by assuming that

Sαβ ≈ δαβ, (26)

which is justified if the basis is sparse enough so that differ-
ent basis functions have a negligible overlap. As derived in
Appendix A, if Eq. (26) is satisfied exactly, then the D and
H = T + V matrices are diagonal. For D and T matrices, this
statement follows directly from Eqs. (A6) and (A8). As for V,
Eqs. (A10)–(A12) demonstrate that the first three moments
of the potential are also diagonal under the IG assumption of
Eq. (26). More generally, the text following Eq. (A9) shows
that each term of the Taylor expansion of Vαβ contains a fac-
tor of Sαβ ; hence, if Sαβ = δαβ , then Vαβ ∝ δαβ for any well-
behaved potential V (q). In practice, however, Eq. (26) is sat-
isfied only approximately and higher order terms in V may
lead to significant couplings even when the overlaps are small.
Approximate diagonality of H must therefore be taken as an
additional assumption, which we consider to be an inherent
part of the IG approximation.

Employing the IG approximation in Eq. (18) thus
switches off communication between basis functions as in
the independent Gaussian approximation.32 More explicitly,
since elements of D satisfy

Dαβ(t) = − i

¯
pt

α

T · q̇ t
α δαβ, (27)

propagation equation (18) decouples,

ċα(t) = i

¯

[
i¯Dαα(t) − Hαα(t)

]
cα(t)

= i

¯

[
pt

α

T · q̇ t
α − Hαα(t)

]
cα(t), (28)

and one can formally write the solution as

cα(t) = cα exp

{
i

¯

∫ t

0
dt̃

[
pt̃

α

T · q̇ t̃
α − Hαα(t̃)

]}
, (29)

where the kinetic contribution [Eq. (A8)] to Hαα(t) is

Tαα(t) = 1

2
pt

α

T · m−1 · pt
α+¯

2

4
Tr(γ · m−1)

and m denotes the diagonal mass matrix. This result is equiv-
alent to the central equation of Heller’s FGA.46

2. Approximating Vαβ

In ab initio applications, the most challenging part of the
propagation (18) is evaluating potential matrix elements Vαβ .
Even for analytical potentials, it is generally impossible to ob-
tain Vαβ in closed form. Thanks to the local nature of Gaus-
sian basis states (16), a useful approximation is provided by
expanding the potential in a Taylor series and evaluating the
resulting integrals analytically. Most frequently used are the
following two approximations:

1. Local approximation: Taylor expansion (A9) is trun-
cated after the zeroth order,

Vαβ ≈ V LA
αβ = V (Q)Sαβ, (30)
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where Q = (qα + qβ)/2. The LA is equivalent to the
zeroth-order saddle-point approximation used in multi-
ple spawning.6

2. Local harmonic approximation: Taylor expansion (A9)
is truncated after the second order, using Eqs. (A10) and
(A11) for the first and second moments. The diagonal
elements, in particular, become

V LHA
αα = V (qα) + 1

4
Tr[∇2V (qα) · γ −1]. (31)

As a result, the LHA requires the expensive Hessian
matrix. Sawada et al.32 observed that the LHA in con-
junction with the variational principle decouples the
Gaussian basis functions. In our setting, this decou-
pling effect5, 32 does not occur both because the Gaus-
sians are not treated fully variationally (in particular,
we use frozen and not thawed Gaussians) and because
the potential is expanded about the average coordinate
Q = (qα + qβ)/2 instead of qα or qβ [see Eq. (A9)].
Therefore, we distinguish between the independent
Gaussian approximation of Sawada et al.32 and IG of
Eq. (26).

Our numerical calculations also exploited the fourth-
order expansion, permitting exact treatment of the potential
in all systems discussed in Sec. III.

3. Evolving the basis with the AH

Unlike IG or LHA, this approximation is specific to the fi-
delity amplitude. In analogy to the DR, a single basis was em-
ployed for the two propagations and evolved classically with
the average Hamiltonian H := (HI + HII)/2 according to
Eq. (17). With this assumption M ≡ S and fidelity amplitude
(25) simplifies to

fAH(t, τ ) = c1(t, τ )† S(t, τ ) c0(t, τ ) =: fGDR(t, τ ), (32)

where the subscripts on c’s must be retained since the Hamil-
tonian matrix elements in Eq. (18) still depend on the elec-
tronic state. Note that if the basis were complete at all times,
using the AH would not constitute any approximation. There
is an important difference, however, between the GBM (25)
and AH method (32). In GBM, | f | decays partially due to de-
creasing overlap between corresponding basis functions, i.e.,
due to decreasing diagonal elements of M. In the AH method
(32), in contrast, a single basis is used, and the diagonal ele-
ments of the overlap matrix S remain unity at all times. Hence,
| f | decays exclusively due to interference and not due to ba-
sis overlaps. A similar interpretation gave the name to the
semiclassical dephasing representation (9), in which | f | de-
cays solely due to dephasing and not due to decreasing classi-
cal overlaps.9, 10 Because of this analogy, we refer to the AH
method specified by Eq. (32) as the GDR. Note that the idea
of using a common basis was also exploited in the “single-
set” version of the MCTDH method4 and in Shalashilin’s52

multiconfigurational Ehrenfest method, where the common
basis is propagated with a Hamiltonian given by an Ehrenfest-
weighted average instead of an arithmetic average of HI and
HII as in the GDR.

4. Derivation of the DR from GBM

We now derive the DR from the exact GBM (25) by a
sequence of four approximations: AH, IG, LHA, and LA (see
Fig. 1). As shown above, AH approximation yields the GDR
(32), which, together with the IG approximation (26), gives

fAH+IG(t, τ ) = c1(t, τ )† c0(t, τ )

=
∑

α

|cα|2 exp

[
i

¯

∫ t+τ

τ

dt̃ �Vαα

(
qt̃

α

)]
. (33)

The LHA (31) implies that �Vαα ≈ �V LHA
αα := V LHA

0,αα

− V LHA
1,αα and

fAH+IG+LHA(t, τ ) =
∑

α

|cα|2 exp

[
i

¯

∫ t+τ

τ

dt̃ �V LHA
αα

(
qt̃

α

)]
.

(34)

GBM
(no approx.)

H0 and H1

Sαβ �= δαβ

exact Vj

GDR
( = AH)

(H0 + H1)/2
Sαβ �= δαβ

exact Vj

FGA
( = IG)

H0 and H1

Sαβ = δαβ

exact Vj

AH+IG

(H0 + H1)/2
Sαβ = δαβ

exact Vj

average
Hamiltonian

In
dep

en
den

t

Gau
ss

ian
s

LA

H0 and H1

Sαβ �= δαβ

LA for Vj

AH+LA

(H0 + H1)/2
Sαβ �= δαβ

LA for Vj

IG+LA
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FIG. 1. Approximations involved in the derivation of dephasing represen-
tation (DR) from the Gaussian basis method (GBM). The commutative di-
agram shows several ways to go from the–in principle exact–GBM (top) to
the–usually least accurate but most efficient–DR (bottom). Different approx-
imations are distinguished by different directions and different line types:
dotted lines = Independent Gaussians (IG), dashed lines = average Hamil-
tonian (AH), and solid lines = Local Harmonic Approximation (LHA) or
Local Approximation (LA) for the potential energy matrix elements. The fig-
ure indicates that the renormalized IG+LA value agrees in absolute value
with poor man’s Herman-Kluk approximation.53
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Finally, using the cruder LA (30) instead of the LHA implies
that Vj,αα(qt

α) ≈ Vj (qt
α) and

fAH+IG+LA(t, τ ) =
∑

α

|cα|2 exp

[
i

¯

∫ t+τ

τ

dt̃ �V
(
qt̃

α

)]

= fDR(t, τ ), (35)

which is a discretized version of the DR (9) with the square
coefficients |cα|2 playing the role of the Monte Carlo sam-
pling weights. Note that the last result could also be obtained
by assuming infinitesimally narrow Gaussians, i.e., γ → ∞,
in Eq. (31).

Derivation of the DR from the GBM is summarized in
Fig. 1, showing the four elementary approximations involved.
Since three approximations may be taken in arbitrary order,
ten intermediate methods exist between the GBM and DR,
all together giving 12 methods ranging from the exact GBM
to the semiclassical DR. Above, final expressions were pre-
sented for six of the 12 methods: GBM (25), FGA = IG
[Eqs. (25) and (29)], GDR = AH (32), AH+IG (33),
AH+IG+LHA (34), and DR = AH+IG+LA (35). The re-
maining six methods are easily obtained by applying a subset
of the four elementary steps (AH, IG, LHA, or LA) to the
original GBM (25).

III. NUMERICAL EXAMPLES

In this section, the methods from Sec. II are used
to compute time correlation functions required for TRSE
spectra. While the efficiency of the original DR is pro-
nounced especially in high-dimensional systems (due to its
D-independent convergence rate mentioned in the Introduc-
tion), here we focus on few-dimensional systems which per-
mit benchmark exact quantum calculations using the thawed
Gaussian approximation44, 54 (TGA) or split-operator meth-
ods. As pointed out above, the GDR and GBM constitute a
conceptual bridge between computational efficiency and for-
mal accuracy; while both GDR and GBM converge to the ex-
act quantum result, the number of trajectories required for
convergence will certainly increase with D, yet—as will be
clear from the examples below—this growth is typically much
slower than the exponential scaling with D for fixed-grid
methods.

A. Test systems

1. Harmonic potential

In this model, the potential energy surface j is represented
by a one-dimensional harmonic potential

Vj (q) = Ej + 1

2
kj (q − dj )2, (36)

where dj is the displacement and kj the force constant. (For
convenience, we set E0 = E1 = 0, since nonzero Ej values
only shift the spectrum, but do not change its shape.)

2. Pyrazine S0/S1 model

This system is a simplified version of the four-
dimensional vibronic coupling model, which takes into ac-
count normal modes ν1, ν6a, ν9a, and ν10a of pyrazine.55 The
S0 and S1 surfaces from Ref. 55 are used, but the nonadia-
batic coupling between states S1 and S2 is neglected since this
coupling is much less important for the S0 → S1 excitation
than for the often studied S0 → S2 excitation. This approxima-
tion was justified by two independent exact quantum calcula-
tions, with and without the S1/S2 coupling, which yielded only
marginally different spectra (not shown). However, even this
simplified model requires a nontrivial Duschinsky rotation56

to transform between normal modes of the ground and excited
states.

3. Quartic oscillator

This two-dimensional system, chosen because of its
chaotic dynamics,57 consists of two potential energy surfaces

Vj (q1, q2) = Ej + 1

2
q2

1q2
2 + 1

4
βj

(
q4

1 + q4
2

)
. (37)

Chaotic behavior is due to the coupling term q2
1q2

2/2 since
for β j → ∞ the Hamiltonian T + Vj becomes separable and
hence integrable.

B. Computational details

The initial state was a Gaussian representing the ground
vibrational state of the ground PES V0 [in the harmonic
potential (36)] or S0 (in the pyrazine S0/S1 model). Initial
states used in the quartic oscillator are specified in the figure
captions. The Gaussian basis was generated with the Monte
Carlo technique (with ξ = 2 and ε = 0.8, see Appendix B 4)
except in one-dimensional applications, where an equidistant
phase-space grid was used (with Nq = Np = N1/2, see
Appendix B 4). The width matrix γ from Eq. (15) was always
equal to the width matrix � of the initial state.

In the quartic oscillator, exact quantum-mechanical (QM)
benchmark results were obtained with a fourth-order split-
operator method,11 whereas in the harmonic and pyrazine
S0/S1 models, QM results were obtained with Heller’s TGA
(Refs. 44 and 54), which is exact in quadratic potentials. Clas-
sical trajectories were evolved with a fourth-order symplectic
integrator,11 while the propagation (B2) of the c vector was
performed with the exponential method (B6). This was fea-
sible because of the limited size of the basis. The propaga-
tion time steps used for the harmonic oscillator, pyrazine, and
quartic oscillator were 1 a.u., 0.2 a.u., and 10−3, respectively.
Unit mass was used unless stated otherwise.

For Gaussian initial states in quadratic potentials, the
DR results were computed efficiently with the recently
published12 CDR. This was possible since under these con-
ditions CDR based on a single trajectory is equivalent to the
fully converged DR, which would otherwise require thou-
sands of trajectories.58



034112-7 Šulc et al. J. Chem. Phys. 139, 034112 (2013)

0.85

0.90

0.95

1.00

0 1 2

∣ ∣
f
∣ ∣

QM ( = TGA)(a)

Nh = 1.0

DR (converged)

0.6

0.7

0.8

0.9

1.0

0 1 2

∣ ∣
f
∣ ∣

t/103 [a.u.]

(c)

Nh = 1.5

0.85

0.90

0.95

1.00

0 1 2

GBM (N = 9)(b)

Nh = 1.5

GDR (N = 9)

0.6

0.7

0.8

0.9

1.0

0 1 2
t/103 [a.u.]

(d)

Nh = 2.0

FIG. 2. Time correlation function for time-resolved stimulated emission between two harmonic surfaces (36). Delay time τ = 5000 a.u. ≈ 121 fs, mass
m = 1250 a.u., and the initial state is the ground state of the ground surface V0. Nh gives the number of basis functions per phase-space area h = 2π¯.
Parameters in Eq. (36) are (all in a.u.): E0 = E1 = d0 = 0, d1 = 0.08, k0 = 0.5, and (a/b) k1 = 0.52: displacement is the dominant change; (c/d) k1 = 0.7: change
of the force constant is dominant.

C. Time-resolved stimulated emission: Time
correlation functions and spectra

Now we turn to the main results comparing the approx-
imations discussed in Subsection II C. Three overall conclu-
sions can be drawn from these results: First, the GBM cor-
rects the inaccuracies of the DR. Second, in chaotic systems,
a finite basis evolving with the average Hamiltonian can,
surprisingly, provide more accurate results than two bases
evolved separately. Third, despite its simplicity, even the orig-
inal DR is useful for computing TRSE spectra. The results
are presented in four groups according to whether the DR
works and whether the GBM (25) converges faster than the
GDR (32).

1. GBM outperforms GDR and DR works

This occurs, e.g., in the harmonic model (36) with a large
displacement |d1 − d0| and only a small change in the force
constant |k1 − k0| [see Figs. 2(a) and 2(b)]. The figure shows
that both GBM and GDR converge to the exact QM result. As
expected in this simple system, GBM converges faster than
GDR, in which the basis evolves with the average Hamilto-
nian. Convergence of GDR is accelerated by moving the N
Gaussians closer to one another [compare panels (a) and (b)].
While our grid is regular, a similar effect was observed in
“compressed” Monte Carlo sampling.59 Even the DR is rather
accurate and would be exact13 for k1 = k0.

2. GBM outperforms GDR and DR breaks down

The DR breaks down in simple systems such as the har-
monic surfaces (36) when the force constants differ signifi-
cantly. Figure 2(c) shows that the DR captures the initial de-
cay of f but not its revivals. Methods employing Gaussian
bases fix this failure. GBM converges faster than GDR, al-
though the performance of GDR is, again, improved if the
basis functions are closer to one another [compare panels (c)
and (d)]. Another way to partially correct the breakdown of
DR is to multiply the contributions to the DR by trajectory-
dependent prefactors.29, 58 Fortunately, in real systems with
dissipation the recurrences in f are damped, which improves
the credibility of the DR.

As shown in Fig. 3(a), in the pyrazine S0/S1 model the
GBM again converges to the exact QM result faster (with
N = 32) than the GDR. Although the DR does not yield cor-
rect amplitudes of the peaks, their positions are reproduced
remarkably well. This is further confirmed in the TRSE spec-
trum in Fig. 3(b), which was computed by Fourier transform-
ing f multiplied by a phenomenological damping function4

χ (t) = exp(−t2/T 2). (38)

As the positions of peaks are well reproduced, one could con-
sider this a success rather than a failure of DR. Note that the
negative values present even in the exact QM spectrum in
Fig. 3(b) are not numerical artifacts—unlike a continuous-
wave spectrum, the TRSE spectrum defined by Eq. (6) is
not guaranteed to be positive for all frequencies, although its
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FIG. 3. Time-resolved stimulated emission in the pyrazine S0/S1 model from
Subsection III A. Initial state is the ground state of the S0 surface and the de-
lay time τ = 2 × 103 a.u. ≈ 48 fs. (a) Time correlation function. The damp-
ing function of Eq. (38) with T = 6 × 103 a.u. ≈ 145 fs is shown by a gray
dashed-double-dotted line. (b) Corresponding spectrum.

integral over all frequencies is positive. The appearance of
negative values is due to the nonstationary character of the
initial state prepared by the pump pulse on the excited sur-
face, and is discussed in detail in Ref. 35.

3. GDR outperforms GBM and DR works

Unexpectedly, in the chaotic quartic oscillator (37) the
seemingly more approximate GDR converges faster than the
GBM [see Fig. 4(a)]. Although the rapid divergence of classi-
cal trajectories aggravates the incompleteness of the Gaussian
basis, this problem is much less severe in GDR. In GBM, the
two bases diverge rapidly even for a small change |β1 − β0| in
Eq. (37). Unless both bases cover essentially the entire avail-
able phase space, fGBM will decay artificially fast due to the
decay of overlaps between the two bases. In contrast, GDR
avoids this decay by using a single basis for dynamics on both
surfaces. Unlike the GBM, which would only converge when
the two bases approached completeness, the GDR converges
with a very small basis since the main contribution to the de-
cay of f(t) in the chaotic quartic oscillator comes from the
decay of the scalar product c1(t, τ )† c0(t, τ ) and hence is rel-
atively insensitive to the off-diagonal elements of the overlap
matrix S. Similarly, the success of the original DR in chaotic
systems relies on the use of a single Hamiltonian for propa-
gating classical trajectories.9, 10 This explanation is confirmed
in Fig. 4(a), in which GBM exhibits a spurious decay, whereas
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FIG. 4. Time correlation function for time-resolved stimulated emission
in quartic oscillator (37). Parameters of the potential energy surfaces are
E0 = E1 = 0 and, in the notation of Eq. (39), β0 = 0.2 and δ = 1/16. Time
delay τ = 0. Initial state is a Gaussian (15) with γ 1 = γ 2 = 1 centered at
(Qinit, Pinit), where Qinit = (0, 4) and Pinit = (4, 0). (a) Comparison of vari-
ous methods and their convergence as a function of N: GDR converges faster
than GBM. (V is treated exactly in both methods.) (b) Effect of the Local
Harmonic Approximation (LHA) on GBM and GDR: The LHA for V breaks
down. (N = 64 in all methods. In the notation of Fig. 1, GBM+LHA stands
for LHA and GDR+LHA for AH+LHA.)

GDR (with N = 64) agrees with the quantum result. Remark-
ably, due to chaotic motion, increasing N up to 256 improves
the GBM result only marginally (not shown). Thanks to us-
ing the average Hamiltonian, DR matches the quantum de-
pendence as well as the GDR, albeit at the cost of more tra-
jectories. Comparing GDR with and without the LHA for the
potential, Fig. 4(b) demonstrates that the widely used LHA
breaks down completely in the quartic oscillator. In this sys-
tem, matrix elements of V must be treated exactly.

4. GDR outperforms GBM and DR breaks down

The success of the DR in chaotic systems is not univer-
sal. Figure 5 shows the time correlation function for several
choices of the parameter β0, controlling chaoticity, and of the
difference �β := β1 − β0 between the two surfaces. In Fig. 5,
the perturbation strength is measured by parameter δ, defined
as

δ := �β/β0 = β1/β0 − 1. (39)

In eight of the nine Fig. 5 panels, GDR converges faster than
GBM. In accordance with the heuristic arguments presented
above, superiority of GDR over GBM increases with increas-
ing chaoticity, i.e., decreasing β0. This superiority disappears
gradually with increasing perturbation δ due to the increasing
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FIG. 5. Time correlation function for time-resolved stimulated emission in quartic oscillator (37). Time delay τ = 0. Initial state is a Gaussian (15) with
γ 1 = γ 2 = 1 centered at the phase-space origin. Parameter δ is the relative perturbation strength defined by Eq. (39), whereas β0 controls chaoticity (which
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error inherent in the propagation of the finite basis with the
AH.

IV. CONCLUSIONS

We have shown how the DR (9), an efficient semiclassical
method for computing ultrafast electronic spectra, emerges
naturally from the formulation of quantum dynamics in a clas-
sically evolving Gaussian basis. This was achieved by a series
of three elementary approximations: evolving the basis with
the AH, using IG, and applying LA for the potential. Along
with the derivation based on linearizing the path integral,14

this result puts the DR on strong theoretical footing and
justifies its place among efficient semiclassical methods for
computing specific time correlation functions. Moreover, the
accuracy of the DR has been increased by presenting two in-
principle exact generalizations of the DR: the GBM and GDR.
The GBM is a straightforward application of the concept of a
Gaussian basis to time correlation functions of time-resolved
spectroscopy. The GDR, in contrast, is a natural generaliza-
tion of the DR since (i) GDR utilizes a single basis for propa-
gating the quantum state with both Hamiltonians, (ii) this ba-
sis propagates classically with the average Hamiltonian, and
(iii) the decay of the time correlation function is due to inter-
ference and not due to decay of basis overlaps.

As expected, in many situations the GBM converges
faster than the GDR. Surprisingly, in chaotic systems the
GDR can outperform the GBM in which the two bases evolve
separately with the “correct” Hamiltonians. Numerical results
presented in Sec. III confirm that both methods achieve our
main goal of increasing the accuracy of the DR in calcu-
lations of ultrafast electronic spectra. As a by-product, ten
intermediate methods between the GBM and DR have been
obtained, which may be useful for future applications. Rela-
tionships between all 12 methods are shown in Fig. 1, which
also represents the ubiquitous balancing between formal ex-
actness (achieved typically at a high computational cost) on
one hand and computational efficiency on the other. In sum-
mary, we believe that our results provide additional insight
into the connections between various exact and semiclassical
methods, and demonstrate the practical value of semiclassical
and Gaussian basis approaches based on classical trajectories.
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APPENDIX A: GAUSSIAN INTEGRALS

Here, we derive formulae for the S, D, and H matrix el-
ements required in Eq. (18). All of these matrix elements can
be expressed in terms of three basic integrals

I0(A, b) :=
∫

dDq e−qT·A·q+bT·q,

I1(A, b, δ) :=
∫

dDq (δT · q) e−qT·A·q+bT·q,

I2(A, b, κ) :=
∫

dDq (qT · κ · q) e−qT·A·q+bT·q,

where A and κ denote D × D positive definite symmetric com-
plex matrices, while b, c, and δ are D-dimensional complex
vectors. The integral I0(A, b) is well known60:

I0(A, b) =
(

πD

det A

) 1
2

exp

(
1

4
bT · A−1 · b

)
. (A1)

Since I1(A, b, δ) = ∑D
l=1 δl

∂
∂bl

I0(A, b), differentiation of
Eq. (A1) with respect to the components of b gives

I1(A, b, δ) = 1

2
I0(A, b)(δT · A−1 · b). (A2)

Similarly, one obtains

I2(A, b, κ) = 1

4
I0(A, b)[cT · κ · c + 2 Tr(κ · A−1)], (A3)

where c := A−1 · b, by noting that

I2(A, b, κ) =
D∑

l,k=1

∂

∂bl

κlk

∂

∂bk

I0(A, b).

As mentioned in Sec. II, the Gaussian basis functions la-
beled by index α have the form

φα(q) = Nα exp[−(q − qα)T · γ · (q − qα)/2

+ ipα
T · (q − qα)/¯], (A4)

where the superscript t denoting time dependence is omitted
for simplicity. The D × D constant real matrix γ is assumed
to be independent of α and to be symmetric positive definite
in order that the basis functions (A4) be square normalizable.

Calculation of the overlap matrix Sαβ = 〈φα(t)|φβ(t)〉 is
simplified by introducing vectors

�q := qα − qβ, Q := (qα + qβ)/2,

�p := pα − pβ, P := (pα + pβ)/2.

Special case of the integral I0 [Eq. (A1)] yields

Sαβ = exp[−(�qT · γ · �q + �pT · γ −1 · �p/¯2)/4]

× exp(i �qT · P/¯). (A5)

Application of the identity

Dαβ = (
q̇T

β · ∇qβ
+ ṗT

β · ∇pβ

)
Sαβ

for the time-derivative matrix elements (21) to Eq. (A5) for
Sαβ gives

Dαβ = Sαβ

[
ṗT

β · (γ −1 · �p + i¯�q)/(2¯2)

+ q̇T
β · (γ · �q/2 − iP/¯)

]
. (A6)

As for the kinetic operator T̂ , we assume a slightly general-
ized form

T̂ = −¯
2

2

D∑
k,l=1

gkl

∂2

∂qk∂ql

, (A7)

where gkl represents matrix elements of a symmetric posi-
tive definite matrix g. (Nevertheless, all numerical calcula-
tions employed a diagonal T̂ corresponding to gkl = δklm

−1
k ,

i.e., g was the inverse of the diagonal mass matrix m.) Matrix
elements of T̂ are given by

Tαβ = Sαβ

[
1

2
P effT · g · P eff + 1

4
¯2Tr (g · γ )

]
(A8)

with P eff := P + i¯ γ · �q/2.
It is impossible to write the potential energy matrix ele-

ments Vαβ in a closed form for a general potential V (q). One
can, however, obtain a useful approximation by expanding the
potential in a truncated Taylor series about the coordinate Q,
at which the expression |φα(q)�φβ(q)| attains its maximum,
and by evaluating the resulting integral analytically. Adopting
the multi-index notation, the potential is approximated up to
the lth order as

V (q) ≈
l∑

|λ|=0

DλV

λ!

∣∣∣∣
Q

· (q − Q)λ. (A9)

Contributions to Vαβ from individual terms in Eq. (A9) are
obtained by a repeated application of the differential operator
i¯(∇pα

− ∇pβ
)/2 to the overlap matrix Sαβ . As a result, one

obtains the first moment

Iαβ := 〈φα|q̂ − Q|φβ〉

= i¯

2
(∇pα

− ∇pβ
)Sαβ = Sαβ ρ, (A10)

the second moment

Jαβ,rs := 〈φα|(q̂ − Q)r (q̂ − Q)s |φβ〉

= −¯
2

4
(∇pα

− ∇pβ
)2
rsSαβ

= Sαβ[ρrρs + (1/2)(γ −1)rs], (A11)

and the third moment

Kαβ,rst := 〈φα|(q̂ − Q)r (q̂ − Q)s(q̂ − Q)t |φβ〉

= − i¯3

8
(∇pα

− ∇pβ
)3
rstSαβ

= Sαβ{ρrρsρt + (1/2)[(γ −1)rsρt

+ (γ −1)stρr + (γ −1)trρs]}, (A12)

where ρ := −iγ −1 · �p/(2¯). The fourth moment is a
bit complicated to reproduce here. Nevertheless, it is easily
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evaluated by using Eq. (A10) together with

i¯

2

(∇pα
− ∇pβ

)
ρ = 1

2
γ −1.

APPENDIX B: EFFICIENT NUMERICAL
IMPLEMENTATION

1. Numerical algorithm for the propagation
equation (18)

Input:
• initial state |�init〉 at time t0, |ψ(t0)〉 = |�init〉
• final propagation time T, time step �t

• number of basis elements N
Output: state |ψ(T)〉 at time T

1: t := t0
2: expand |�init〉 into the basis {|φα(t)〉}Nα=1 Eqs. (13) and (14)
3: while t ≤ T do
4: construct the S,D,H matrices Eq. (18)
5: update the expansion coefficients cα(t)
6: propagate classically all N Gaussians by �t

7: renormalize |ψ(t)〉 for norm-nonconserving propagators
8: t := t + �t
9: end while

2. Factoring out the semiclassical phase
factor in Eq. (18)

Propagation (18) can be accelerated by evaluating the
dominant oscillatory behavior of cα(t) semiclassically, which
is achieved by factoring out the semiclassical phase factor in
expansion (14),

|ψ(t)〉 =
N∑

α=1

c̃α(t) eiScl
α (t)/¯|φα(t)〉, (B1)

where Scl
α (t) = ∫ t

0 dt̃ [q̇ t̃
α · pt̃

α − H (qt̃
α, pt̃

α)] is the classical ac-
tion. New coefficients c̃α(t) are propagated according to the
equation

S̃(t) ˙̃c(t) = −
{

i

¯

[
H̃(t) + S̄(t)

] + D̃(t)

}
c̃(t). (B2)

The modified matrices can be expressed as

Z̃αβ (t) = Zαβ(t) exp

{
i

¯

[
Scl

β (t) − Scl
α (t)

]}
, (B3)

S̄αβ(t) = S̃αβ(t)Ṡcl
β (t), (B4)

where Z stands for S, D, or H. A similar factorization was em-
ployed by Martínez and Ben-Nun6 in the multiple spawning
and by Shalashilin and Child34 in the coupled coherent states.

3. Solving the propagation Eqs. (18) or (B2)

Classical propagation of the basis (i.e., of qα and pα)
and the action Scl

α is performed with a symplectic
algorithm.12, 61 Quantum propagation (18) of the basis coeffi-
cients cα is a more involved process: While quite sophisticated
algorithms62–64 exist for similar problems, here we employed

two simple methods based on dividing the propagation range
[0, T] into equal intervals of size �t.

Both the implicit Euler method,

cn+1 =
[

Sn+1 +
(

i

¯
Hn+1 + Dn+1

)
�t

]−1

Sn+1cn, (B5)

and the exponential method,

cn+1 = exp

[
−S−1

n

(
i

¯
Hn + Dn

)
�t

]
cn, (B6)

are clear in the matrix notation, with subscript n denoting
the nth propagation step. In addition, the wave function was
renormalized by rescaling cn by (c†nSncn)−1/2 after each step.
While it was essential only for the implicit Euler method, the
renormalization was always performed since for sufficiently
large N, the O(N2) cost of renormalization is negligible com-
pared to the overall O(N3) cost of both methods. In the algo-
rithm of Appendix B 1, steps 4, 5, and 6 must be reordered
as 6, 4, 5 for the implicit Euler method (B5) since the basis
must first be propagated in order to evaluate matrices at the
(n + 1)th step.

In practice, it is neither necessary nor desirable to com-
pute the inverse matrix S−1

n . For example, rather than com-
puting X := S−1

n ( i
¯

Hn + Dn) as indicated, it is preferable to
solve a system of linear equations SnX = i

¯
Hn + Dn for X

using any standard method. In this context, Martínez and co-
workers31 suggested to use singular value decomposition;63

theoretical justification was given by Kay.65 A different ap-
proach, consisting in inverting Sn by an iterative algebraic
procedure was explored by Andersson.66

Due to matrix exponentiation, the exponential method
(B6) is feasible only for smaller basis sets. Although presum-
ably more accurate, this method does not necessarily permit a
larger time step �t than the first-order implicit Euler method
with renormalization. The reason is that for badly conditioned
Sn, eigenvalues of the matrix S−1

n ( i
¯

Hn + Dn)�t become
large except for very small time step �t. Since most numerical
methods for matrix exponentiation require eigenvalues of the
exponentiated matrix to be small,67 lowering �t is required.

Sawada et al.32 proposed to monitor eigenvalues of Sn

during propagation, concluding that the basis size was insuf-
ficient if all eigenvalues were (in absolute value) close to 1. In
contrast, if some eigenvalues are very small, some functions
should be removed in order to restore regularity of Sn. Such
features, however, have not been implemented here.

In our calculations, the exponential method allows a
much larger time step than the implicit Euler method (both
in the pyrazine S0/S1 model and in the quartic oscillator, see
Fig. 6). Figure 6 also suggests that the modified propagation
Eq. (B2) from Appendix B 2 permits increasing the time step
in comparison with the original propagation Eq. (18). This im-
provement is more pronounced in the implicit Euler method
(B5) than in the exponential method (B6).

4. Choice of the basis in Eq. (14)

Another numerical issue is the choice of basis in Eq. (14),
which must represent |�init〉 properly. A small approximation
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FIG. 6. Error of the correlation function f computed with the GBM as a func-
tion of time step �t. The figure compares the normalized L2 errors ε�t := ‖f�t

− f‖/‖f‖ on the time interval [0, T] obtained with the implicit Euler method
(B5) and exponential method (B6) applied to the propagation Eqs. (18) or
(B2) [without and with the semiclassical factorization (B1)]. (a) Pyrazine
S0/S1 model (N = 32, T = 18000 a.u., other parameters as in Fig. 3).
(b) Quartic oscillator (N = 32, T = 12, other parameters as in Fig. 4).

error (in the L2 sense) in Eq. (14), however, does not guarantee
quality of the basis at later times. In general, a compromise is
required between the size of the basis and its acceptability
from the dynamical point of view.

Two methods used for the Sec. III calculations are de-
scribed below, with more thorough discussions available
elsewhere.45, 59, 68 To keep notation simple, we assume that
D = 1 and consider the initial state to be a Gaussian (15):

|�init〉 := |�,Q,P 〉. (B7)

Equidistant phase-space basis functions are constructed
as

φα(q) = 〈q|γ, qi, pj 〉, α = iNp + j,

where

qi = Q + 2i − (Nq − 1)

2
�q, 0 ≤ i < Nq,

pj = P + 2j − (Np − 1)

2
�p, 0 ≤ j < Np.

(B8)

Symbols Nq and Np represent the numbers of points in the
corresponding phase-space coordinates. The size of basis is
N = NqNp.

Grid spacings �q and �p are chosen to ensure a given
number Nh of basis functions per phase-space area h = 2π¯

0

1

2

3

50 100 150 200

ln
(l

n
κ
)

N

Nh = 1.1
Nh = 1.0
Nh = 0.9

FIG. 7. Dependence of the condition number κ of the overlap matrix (19)
on the size N and density of the basis constructed according to Eq. (B8).
D = 1, γ = 1, and Nh denotes the number of basis functions per phase-space
area h = 2π¯.

and a constant absolute value of overlap between neighboring
functions with the same index i or j. These requirements imply

�q =
√

2π

Nhγ
and �p = ¯

√
2πγ

Nh

. (B9)

Since the basis is nonorthogonal, ensuring fixed overlap be-
tween neighboring functions does not guarantee constant lin-
ear independence of the basis with increasing N, as illustrated
in Fig. 7, which shows the dependence of the condition num-
ber κ of the overlap matrix S on N.

Monte Carlo basis is generated with an algorithm59, 69, 70

sampling the coherent-state basis functions from the absolute
value of the overlap χ := 〈γ , q, p|�, Q, P〉 of the initial state
(B7) with a basis state |γ , q, p〉 of Eq. (15). The absolute value
of this overlap, understood as a function of q and p, is

|χ (q, p)|2 ∝ exp

[
− γ�

γ + �
(q − Q)2 − 1

¯2

(p − P )2

γ + �

]
.

(B10)

The overall procedure is as follows:

Input:
• desired number of basis elements N

• parameters ξ > 0, γ > 0, and 1 > ε > 0
Output: Gaussian basis used in Eq. (14)
1: α := 1
2: while α ≤ N do
3: sample q, p from the distribution ∼ |χ (q, p)|2ξ

4: η := sup1≤β<α |〈φβ |γ, q, p〉|
5: if η < ε then
6: |φα〉 := |γ , q, p〉
7: α := α + 1
8: end if
9: end while

The conditional statement in step 5 is added to improve the
condition number κ of the resulting overlap matrix S.6 A mod-
ified approach based on orthogonal projections was proposed
by Wu and Batista71 in their matching-pursuit split-operator
Fourier-transform technique.
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